The DragonBeam Framework: Hardware-Protected Security Modules for In-Place Intrusion Detection

Size: px
Start display at page:

Download "The DragonBeam Framework: Hardware-Protected Security Modules for In-Place Intrusion Detection"

Transcription

1 : Hardware-Protected Security Modules for In-Place Intrusion Detection Man-Ki Yoon, Mihai Christodorescu, Lui Sha, Sibin Mohan University of Illinois at Urbana-Champaign Qualcomm Research Silicon Valley June 6, 2016

2 Security Monitoring In-place Monitoring n n n OS External Monitoring n n n OS

3 Security Monitoring In-place Monitoring n n n OS External Monitoring n n n OS Unsafety of the monitor

4 Security Monitoring In-place Monitoring n n n OS External Monitoring n n n OS Semantic gap Unsafety of the monitor

5 DragonBeam Framework n n n OS Command/Response Secure Layer Untrusted Layer

6 DragonBeam Framework Monitored Core Secure Core n n n Secure Memory OS Command/Response Untrusted Layer Secure Layer

7 DragonBeam Framework Monitored Core Secure Core n n n Secure Memory OS Command/Response Untrusted Layer Secure Layer Secure Kernel Module - Performs security monitoring operations - Expands the observability - Protected by Secure Core

8 DragonBeam Framework Monitored Core Secure Core n n n Secure Memory OS Command/Response Untrusted Layer Secure Layer Secure Kernel Module Manager - Commands to perform security operations - Analyzes monitored information - Guarantees the integrity and the liveness of

9 DragonBeam Framework Monitored Core Secure Core n n n Secure Memory OS Command/Response Untrusted Layer Secure Layer Secure Memory - Secure communication channel between and - Only accessible by or Secure Core - Also hosts code/data

10 Example Use Case Time Secure Data Memory

11 Example Use Case Sends Command Time check_syscall_table() { send_cmd(cmd_syscall_table); settimer(timeout); } Secure Data Memory

12 Example Use Case Sends Command Time 1 check_syscall_table() { send_cmd(cmd_syscall_table); settimer(timeout); } Secure Data Memory

13 Example Use Case Sends Command Time skm_isr() { save sp; move sp to secure stack; switch (*CMD) { case CMD_SYSCALL_TABLE: send_syscall_table(); break; } restore sp; } 2 1 check_syscall_table() { send_cmd(cmd_syscall_table); settimer(timeout); } Secure Data Memory

14 Example Use Case Sends Command Collects Information Time skm_isr() { save sp; move sp to secure stack; switch (*CMD) { case CMD_SYSCALL_TABLE: send_syscall_table(); break; } restore sp; 3 } 2 1 check_syscall_table() { send_cmd(cmd_syscall_table); settimer(timeout); } send_syscall_table() { get cur_syscall_table; for each entry i write cur_syscall_table[i]; response_ready(); } Secure Data Memory

15 Example Use Case Sends Command Collects Information Time skm_isr() { save sp; move sp to secure stack; switch (*CMD) { case CMD_SYSCALL_TABLE: send_syscall_table(); break; } restore sp; 3 } 2 1 check_syscall_table() { send_cmd(cmd_syscall_table); settimer(timeout); } send_syscall_table() { get cur_syscall_table; for each entry i write cur_syscall_table[i]; response_ready(); } 4 Secure Data Memory

16 Example Use Case Sends Command Analyzes Data Collects Information Time skm_isr() { save sp; move sp to secure stack; switch (*CMD) { case CMD_SYSCALL_TABLE: send_syscall_table(); break; } restore sp; 3 } send_syscall_table() { get cur_syscall_table; for each entry i write cur_syscall_table[i]; response_ready(); } 2 4 Secure Data Memory 5 1 check_syscall_table() { send_cmd(cmd_syscall_table); settimer(timeout); } recv_syscall_table() { cleartimer(timeout); retrieve current syscall table; for each entry i if (cur.table[i]!=org.table[i]) Raise alert! }

17 Challenges Monitored Core Secure Core n n n Secure Memory OS Command/Response identification Secure memory access control integrity and liveness guarantee

18 Registration Requested by, verified by Calculates a hash of s code Directly from physical frames Base address Page Size.text Size Loading Registration request Page table Information Page Table Hierarchy Virtual Address Space Physical Address Space

19 Registration Requested by, verified by Calculates a hash of s code Directly from physical frames Base address Page Size.text Size Loading Registration request Page table Information Find phys. frames of.text Page Table Hierarchy Virtual Address Space.text Physical Frames Physical Address Space

20 Registration Requested by, verified by Calculates a hash of s code Directly from physical frames Base address Page Size.text Size Loading Registration request Page table Information Find phys. frames of.text Page Table Hierarchy Virtual Address Space Calculate the hash of.text Match Not.text Physical Frames Begin operations Halt and alarm Physical Address Space

21 Secure Memory Access Control Who initiated memory transaction? Use the current program counter and page mapping information Registered.text info Secure Memory RAM Array Monitored Core Program Counter Page Table Base Address Within.text? Same with the registered one? Registered Page Table info Malicious Module

22 Secure Memory Access Control What if attacker modifies s page mapping? Physical Address Space Page Table Hierarchy Base Virtual Address Space.text Physical Frames Size

23 Secure Memory Access Control What if attacker modifies s page mapping? Physical Address Space Page Table Hierarchy Base Virtual Address Space.text Physical Frames Size Page Table Hierarchy Altered Malicious Module s Physical Frames

24 Secure Memory Access Control What if attacker modifies s page mapping? Solution: Regularly translate virt-to-phys address and verifies.text hash Physical Address Space Page Table Hierarchy Base Virtual Address Space.text Physical Frames Size Page Table Hierarchy Altered Malicious Module s Physical Frames

25 Heartbeat and Hashing Heartbeat Checks if is alive Only can respond Timeout Requests for HB Receives HB Sends HB Time

26 Heartbeat and Hashing Heartbeat Checks if is alive Only can respond Timeout Requests for HB Receives HB Sends HB Time.text hashing Checks if s code and page mapping have not been altered

27 Random Check Intervals To prevent TOCTTOU (Time Of Check To Time Of Use) attacks Attacker cannot guess the pattern of checks OP HB OP HB HS HB HS OP HB OP HS OP HB HB OP Time OP Operation (Send/Response/Analysis) HB Heartbeat (Request/Send/Receive) HS Hashing.text

28 Implementation Leon3 Core 1 (Monitored Core) Pipeline AHBRAM Secure Memory Secure Data/Stack Leon3 Core 2 (Secure Core) Pipeline Leon3 processor on Xilinx ZC702 FPGA SPARC V8, soft-core 83.3 MHz 256 MB MMU Access Control Controller Base Size Unused MMU AMBA AHB BUS AHB2AXI Bridge AHB2APB Bridge IRQ Linux Main Memory Multiprocessor Interrupt Controller IRQ

29 Implementation Leon3 Core 1 (Monitored Core) Pipeline Leon3 on-chip SRAM (128KB) AHBRAM Secure Memory Secure Data/Stack Leon3 Core 2 (Secure Core) Pipeline Leon3 processor on Xilinx ZC702 FPGA SPARC V8, soft-core 83.3 MHz 256 MB MMU Access Control Controller Base Size Unused MMU AMBA AHB BUS AHB2AXI Bridge AHB2APB Bridge IRQ Linux Main Memory Multiprocessor Interrupt Controller IRQ

30 Implementation Leon3 Core 1 (Monitored Core) Pipeline and for Secure Memory access control AHBRAM Secure Memory Secure Data/Stack Leon3 Core 2 (Secure Core) Pipeline Leon3 processor on Xilinx ZC702 FPGA SPARC V8, soft-core 83.3 MHz 256 MB MMU Access Control Controller Base Size Unused MMU AMBA AHB BUS AHB2AXI Bridge AHB2APB Bridge IRQ Linux Main Memory Multiprocessor Interrupt Controller IRQ

31 Implementation Leon3 Core 1 (Monitored Core) Pipeline AHBRAM Secure Memory Secure Data/Stack Leon3 Core 2 (Secure Core) Pipeline Leon3 processor on Xilinx ZC702 FPGA SPARC V8, soft-core 83.3 MHz 256 MB MMU Access Control Controller Base Size Unused MMU AMBA AHB BUS AHB2AXI Bridge AHB2APB Bridge IRQ Linux Main Memory Multiprocessor Interrupt Controller IRQ Unmodified Linux 3.8

32 Evaluation Use Cases 1) System call table integrity check 2) Hidden module detection

33 Evaluation Use Cases 1) System call table integrity check 2) Hidden module detection Main Memory Kernel Module List Module 1 Kernel Module Region (12MB) Module 2 Module 4

34 Evaluation Use Cases 1) System call table integrity check 2) Hidden module detection Main Memory Kernel Module List Module 1 Kernel Module Region (12MB) No matching module Module 2 Module 4 Module 3 (Hidden)

35 Evaluation Use Cases 1) System call table integrity check 2) Hidden module detection Sends Command Receives Result Traverses module list Finds orphan pages Time Main Memory Kernel Module List Module 1 Kernel Module Region (12MB) No matching module Module 2 Module 4 Module 3 (Hidden)

36 Evaluation Performance Overhead Average ratio of execution time to the case of No SPEC Benchmarks on the monitored core Heartbeat (100 ms).text hashing (100 ms) System call table check (100 ms) Hidden module detection (100 ms) bzip2 hmmer libquantum mcf sjeng Benchmark

37 Evaluation Performance Overhead Average ratio of execution time to the case of No SPEC Benchmarks on the monitored core In- Procedure Heartbeat (100 ms).text hashing (100 ms) System call table check (100 ms) Hidden module detection (100 ms) bzip2 hmmer libquantum mcf sjeng Benchmark

38 Evaluation Performance Overhead Average ratio of execution time to the case of No SPEC Benchmarks on the monitored core Memory traffic interference Heartbeat (100 ms).text hashing (100 ms) System call table check (100 ms) Hidden module detection (100 ms) bzip2 hmmer libquantum mcf sjeng Benchmark

39 Evaluation Performance Overhead Average ratio of execution time to the case of No SPEC Benchmarks on the monitored core Random order Random interval: [0,1,,199,200] ms Back-to-back with prob. of 5% Heartbeat (100 ms).text hashing (100 ms) System call table check (100 ms) Hidden module detection (100 ms) Random (random interval) bzip2 hmmer libquantum mcf sjeng Benchmark

40 Evaluation Hardware Cost Modified Leon3 Core 1 (Monitored Core) AHBRAM Leon3 Core 2 (Secure Core) Pipeline Secure Memory Secure Data/Stack Pipeline MMU Access Control Controller Base Size Unused MMU AMBA AHB BUS AHB2AXI Bridge AHB2APB Bridge IRQ Linux Main Memory Multiprocessor Interrupt Controller IRQ

41 Evaluation Hardware Cost Modified Leon3 Core 1 (Monitored Core) AHBRAM Leon3 Core 2 (Secure Core) Pipeline Secure Memory Secure Data/Stack Pipeline MMU Access Control Controller Base Size Unused MMU AMBA AHB BUS Resource Original W/ DragonBeam AHB2AXI Bridge AHB2APB Bridge Registers % Look-up Tables Multiprocessor Main % Interrupt Linux Memory Controller IRQ IRQ

42 Extension to Multiple Monitored Cores Extended to quad-core Works only for SMP Single Leon3 Core 1 (Monitored Core 1) Pipeline Secure Memory Secure Data/Stack Leon3 Core 4 (Secure Core) Pipeline MMU Access Control Controller Base Size Unused MMU Pipeline MMU Pipeline MMU Leon3 Core 2 (Monitored Core 2) Leon3 Core 3 (Monitored Core 3)

43 Extension to Multiple Monitored Cores Extended to quad-core Works only for SMP Single Monitored Cores 1 N-1 1 N-1 Mux Mux Extension for N-1 monitored cores Leon3 Core 1 (Monitored Core 1) Pipeline MMU Registered Base >= 0/1 Pipeline Secure Memory Secure Data/Stack < MMU 0/1 Transaction Master ID Leon3 Core 2 (Monitored Core 2) Access Control Controller Registered Base + Size Base Size Pipeline = Unused 0/1 Registered Leon3 Core 4 (Secure Core) MMU 0/1 Leon3 Core 3 (Monitored Core 3) Bus Interface Pipeline = MMU Transaction Master ID ID(Secure Core)

44 Extension to Multiple Monitored Cores Extended to quad-core Works only for SMP Single Leon3 Core 1 (Monitored Core 1) Pipeline Secure Memory Secure Data/Stack Leon3 Core 4 (Secure Core) Pipeline MMU Controller Base Access Size Control Resource Original W/ DragonBeam Unused MMU Dual Core Quad Core Registers % Look-up Tables % Pipeline MMU Pipeline Registers % Look-up Tables % MMU Leon3 Core 2 (Monitored Core 2) Leon3 Core 3 (Monitored Core 3)

45 Conclusion DragonBeam Framework HW/SW framework for trusted security monitoring Bootstrap trust into SW layer from trusted HW Multicore-based Expanded observability due to in-place monitoring Secure Kernel Module Allows for customized security modules to system developers Monitored Core Secure Core Applicati Applicati on n on Secure Memory OS Command/Response

46 Thank you

Decoupling Dynamic Information Flow Tracking with a Dedicated Coprocessor

Decoupling Dynamic Information Flow Tracking with a Dedicated Coprocessor Decoupling Dynamic Information Flow Tracking with a Dedicated Coprocessor Hari Kannan, Michael Dalton, Christos Kozyrakis Computer Systems Laboratory Stanford University Motivation Dynamic analysis help

More information

Resource-Conscious Scheduling for Energy Efficiency on Multicore Processors

Resource-Conscious Scheduling for Energy Efficiency on Multicore Processors Resource-Conscious Scheduling for Energy Efficiency on Andreas Merkel, Jan Stoess, Frank Bellosa System Architecture Group KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe

More information

Next Generation Multi-Purpose Microprocessor

Next Generation Multi-Purpose Microprocessor Next Generation Multi-Purpose Microprocessor Presentation at MPSA, 4 th of November 2009 www.aeroflex.com/gaisler OUTLINE NGMP key requirements Development schedule Architectural Overview LEON4FT features

More information

Scheduling the Intel Core i7

Scheduling the Intel Core i7 Third Year Project Report University of Manchester SCHOOL OF COMPUTER SCIENCE Scheduling the Intel Core i7 Ibrahim Alsuheabani Degree Programme: BSc Software Engineering Supervisor: Prof. Alasdair Rawsthorne

More information

ESA Contract 18533/04/NL/JD

ESA Contract 18533/04/NL/JD Date: 2006-05-15 Page: 1 EUROPEAN SPACE AGENCY CONTRACT REPORT The work described in this report was done under ESA contract. Responsibility for the contents resides in the author or organisation that

More information

Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems

Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems Balancing DRAM Locality and Parallelism in Shared Memory CMP Systems Min Kyu Jeong, Doe Hyun Yoon^, Dam Sunwoo*, Michael Sullivan, Ikhwan Lee, and Mattan Erez The University of Texas at Austin Hewlett-Packard

More information

Prototyping Architectural Support for Program Rollback Using FPGAs

Prototyping Architectural Support for Program Rollback Using FPGAs Prototyping Architectural Support for Program Rollback Using FPGAs Radu Teodorescu and Josep Torrellas http://iacoma.cs.uiuc.edu University of Illinois at Urbana-Champaign Motivation Problem: Software

More information

LEON4: Fourth Generation of the LEON Processor

LEON4: Fourth Generation of the LEON Processor LEON4: Fourth Generation of the LEON Processor Magnus Själander, Sandi Habinc, and Jiri Gaisler Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden Tel +46 31 775 8650, Email: {magnus, sandi, jiri}@gaisler.com

More information

Semantic Security Analysis of SCADA Networks to Detect Malicious Control Commands in Power Grids

Semantic Security Analysis of SCADA Networks to Detect Malicious Control Commands in Power Grids Semantic Security Analysis of SCADA Networks to Detect Malicious Control Commands in Power Grids Hui Lin, Adam Slagell, Zbigniew Kalbarczyk, Peter W. Sauer, and Ravishankar K. Iyer Department of Electrical

More information

System Simulator for x86

System Simulator for x86 MARSS Micro Architecture & System Simulator for x86 CAPS Group @ SUNY Binghamton Presenter Avadh Patel http://marss86.org Present State of Academic Simulators Majority of Academic Simulators: Are for non

More information

Enhanced Operating System Security Through Efficient and Fine-grained Address Space Randomization

Enhanced Operating System Security Through Efficient and Fine-grained Address Space Randomization Enhanced Operating System Security Through Efficient and Fine-grained Address Space Randomization Anton Kuijsten Andrew S. Tanenbaum Vrije Universiteit Amsterdam 21st USENIX Security Symposium Bellevue,

More information

Hardware OS & OS- Application interface

Hardware OS & OS- Application interface CS 4410 Operating Systems Hardware OS & OS- Application interface Summer 2013 Cornell University 1 Today How my device becomes useful for the user? HW-OS interface Device controller Device driver Interrupts

More information

Lec 22: Interrupts. Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University. Announcements

Lec 22: Interrupts. Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University. Announcements Lec 22: Interrupts Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University HW 3 HW4: due this Friday Announcements PA 3 out Nov 14 th Due Nov 25 th (feel free to turn it in early) Demos and

More information

Energy-centric DVFS Controlling Method for Multi-core Platforms

Energy-centric DVFS Controlling Method for Multi-core Platforms Energy-centric DVFS Controlling Method for Multi-core Platforms Shin-gyu Kim, Chanho Choi, Hyeonsang Eom, Heon Y. Yeom Seoul National University, Korea MuCoCoS 2012 Salt Lake City, Utah Abstract Goal To

More information

The Design Complexity of Program Undo Support in a General-Purpose Processor

The Design Complexity of Program Undo Support in a General-Purpose Processor The Design Complexity of Program Undo Support in a General-Purpose Processor Radu Teodorescu and Josep Torrellas Department of Computer Science University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

More information

ProtoFlex: FPGA-Accelerated Hybrid Simulator

ProtoFlex: FPGA-Accelerated Hybrid Simulator ProtoFlex: FPGA-Accelerated Hybrid Simulator Eric S. Chung, Eriko Nurvitadhi James C. Hoe, Babak Falsafi, Ken Mai Computer Architecture Lab at Multiprocessor Simulation Simulating one processor in software

More information

The Design Complexity of Program Undo Support in a General Purpose Processor. Radu Teodorescu and Josep Torrellas

The Design Complexity of Program Undo Support in a General Purpose Processor. Radu Teodorescu and Josep Torrellas The Design Complexity of Program Undo Support in a General Purpose Processor Radu Teodorescu and Josep Torrellas University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu Processor with program

More information

Designing, developing, debugging ARM Cortex-A and Cortex-M heterogeneous multi-processor systems

Designing, developing, debugging ARM Cortex-A and Cortex-M heterogeneous multi-processor systems Designing, developing, debugging ARM and heterogeneous multi-processor systems Kinjal Dave Senior Product Manager, ARM ARM Tech Symposia India December 7 th 2016 Topics Introduction System design Software

More information

ASIC Logic. Speaker: Juin-Nan Liu. Adopted from National Chiao-Tung University IP Core Design

ASIC Logic. Speaker: Juin-Nan Liu. Adopted from National Chiao-Tung University IP Core Design ASIC Logic Speaker: Juin-Nan Liu Adopted from National Chiao-Tung University IP Core Design Goal of This Lab Prototyping Familiarize with ARM Logic Module (LM) Know how to program LM Outline Introduction

More information

Memory Mapped ECC Low-Cost Error Protection for Last Level Caches. Doe Hyun Yoon Mattan Erez

Memory Mapped ECC Low-Cost Error Protection for Last Level Caches. Doe Hyun Yoon Mattan Erez Memory Mapped ECC Low-Cost Error Protection for Last Level Caches Doe Hyun Yoon Mattan Erez 1-Slide Summary Reliability issues in caches Increasing soft error rate (SER) Cost increases with error protection

More information

Hardware Software Co-design and SoC. Neeraj Goel IIT Delhi

Hardware Software Co-design and SoC. Neeraj Goel IIT Delhi Hardware Software Co-design and SoC Neeraj Goel IIT Delhi Introduction What is hardware software co-design Some part of application in hardware and some part in software Mpeg2 decoder example Prediction

More information

SpaceWire Remote Terminal Controller

SpaceWire Remote Terminal Controller Remote Terminal Controller Presented by Jørgen Ilstad On board Payload Data Section, ESTEC Wahida Gasti, ESA ESTEC Co Authors Sandi Habinc, Gaisler Research Peter Sinander, SAAB Space Slide : 1 Overview

More information

Architectural Support for Operating Systems

Architectural Support for Operating Systems Architectural Support for Operating Systems Today Computer system overview Next time OS components & structure Computer architecture and OS OS is intimately tied to the hardware it runs on The OS design

More information

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware.

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware. Department of Computer Science, Institute for System Architecture, Operating Systems Group Real-Time Systems '08 / '09 Hardware Marcus Völp Outlook Hardware is Source of Unpredictability Caches Pipeline

More information

Graduate Institute of Electronics Engineering, NTU. ASIC Logic. Speaker: Lung-Hao Chang 張龍豪 Advisor: Prof. Andy Wu 吳安宇教授.

Graduate Institute of Electronics Engineering, NTU. ASIC Logic. Speaker: Lung-Hao Chang 張龍豪 Advisor: Prof. Andy Wu 吳安宇教授. ASIC Logic Speaker: Lung-Hao Chang 張龍豪 Advisor: Prof. Andy Wu 吳安宇教授 May 21, 2003 PP. 2 Prototyping Goal of This Lab Familiarize with ARM Logic Module (LM) Know how to program LM PP. 3 Introduction ARM

More information

Microarchitecture Overview. Performance

Microarchitecture Overview. Performance Microarchitecture Overview Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 15, 2007 Performance 4 Make operations faster Process improvements Circuit improvements Use more transistors to make

More information

ARM Processors for Embedded Applications

ARM Processors for Embedded Applications ARM Processors for Embedded Applications Roadmap for ARM Processors ARM Architecture Basics ARM Families AMBA Architecture 1 Current ARM Core Families ARM7: Hard cores and Soft cores Cache with MPU or

More information

A Comparison of Capacity Management Schemes for Shared CMP Caches

A Comparison of Capacity Management Schemes for Shared CMP Caches A Comparison of Capacity Management Schemes for Shared CMP Caches Carole-Jean Wu and Margaret Martonosi Princeton University 7 th Annual WDDD 6/22/28 Motivation P P1 P1 Pn L1 L1 L1 L1 Last Level On-Chip

More information

SPEAr: an HW/SW reconfigurable multi processor architecture

SPEAr: an HW/SW reconfigurable multi processor architecture Welcome to the «SPEAr Age» Structured Processor Enhanced Architecture SPEAr: an HW/SW reconfigurable multi processor architecture COMPUTER PERIPHERAL GROUP Outline Economics of Moore s law and market view

More information

Multi-core microcontroller design with Cortex-M processors and CoreSight SoC

Multi-core microcontroller design with Cortex-M processors and CoreSight SoC Multi-core microcontroller design with Cortex-M processors and CoreSight SoC Joseph Yiu, ARM Ian Johnson, ARM January 2013 Abstract: While the majority of Cortex -M processor-based microcontrollers are

More information

Software Defined Modem A commercial platform for wireless handsets

Software Defined Modem A commercial platform for wireless handsets Software Defined Modem A commercial platform for wireless handsets Charles F Sturman VP Marketing June 22 nd ~ 24 th Brussels charles.stuman@cognovo.com www.cognovo.com Agenda SDM Separating hardware from

More information

Part I Introduction Hardware and OS Review

Part I Introduction Hardware and OS Review Part I Introduction Hardware and OS Review The scientist described what is: the engineer creates what never was. Spring 2018 Theodor von 1 Karman The father of supersonic flight Multiprocessor Systems

More information

Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications

Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications Processor and Peripheral IP Cores for Microcontrollers in Embedded Space Applications Presentation at ADCSS 2010 MESA November 4 th, 2010 www.aeroflex.com/gaisler Presentation outline Microcontroller requirements

More information

Authenticated Storage Using Small Trusted Hardware Hsin-Jung Yang, Victor Costan, Nickolai Zeldovich, and Srini Devadas

Authenticated Storage Using Small Trusted Hardware Hsin-Jung Yang, Victor Costan, Nickolai Zeldovich, and Srini Devadas Authenticated Storage Using Small Trusted Hardware Hsin-Jung Yang, Victor Costan, Nickolai Zeldovich, and Srini Devadas Massachusetts Institute of Technology November 8th, CCSW 2013 Cloud Storage Model

More information

viommu/arm: full emulation and virtio-iommu approaches Eric Auger KVM Forum 2017

viommu/arm: full emulation and virtio-iommu approaches Eric Auger KVM Forum 2017 viommu/arm: full emulation and virtio-iommu approaches Eric Auger KVM Forum 2017 Overview Goals & Terminology ARM IOMMU Emulation QEMU Device VHOST Integration VFIO Integration Challenges VIRTIO-IOMMU

More information

Flexible Cache Error Protection using an ECC FIFO

Flexible Cache Error Protection using an ECC FIFO Flexible Cache Error Protection using an ECC FIFO Doe Hyun Yoon and Mattan Erez Dept Electrical and Computer Engineering The University of Texas at Austin 1 ECC FIFO Goal: to reduce on-chip ECC overhead

More information

Chap.6 Limited Direct Execution. Dongkun Shin, SKKU

Chap.6 Limited Direct Execution. Dongkun Shin, SKKU Chap.6 Limited Direct Execution 1 Problems of Direct Execution The OS must virtualize the CPU in an efficient manner while retaining control over the system. Problems how can the OS make sure the program

More information

Product Technical Brief S3C2416 May 2008

Product Technical Brief S3C2416 May 2008 Product Technical Brief S3C2416 May 2008 Overview SAMSUNG's S3C2416 is a 32/16-bit RISC cost-effective, low power, high performance micro-processor solution for general applications including the GPS Navigation

More information

QuickRec: Prototyping an Intel Architecture Extension for Record and Replay of Multithreaded Programs

QuickRec: Prototyping an Intel Architecture Extension for Record and Replay of Multithreaded Programs QuickRec: Prototyping an Intel Architecture Extension for Record and Replay of Multithreaded Programs Intel: Gilles Pokam, Klaus Danne, Cristiano Pereira, Rolf Kassa, Tim Kranich, Shiliang Hu, Justin Gottschlich

More information

Architectural Supports to Protect OS Kernels from Code-Injection Attacks

Architectural Supports to Protect OS Kernels from Code-Injection Attacks Architectural Supports to Protect OS Kernels from Code-Injection Attacks 2016-06-18 Hyungon Moon, Jinyong Lee, Dongil Hwang, Seonhwa Jung, Jiwon Seo and Yunheung Paek Seoul National University 1 Why to

More information

Copyright 2016 Xilinx

Copyright 2016 Xilinx Zynq Architecture Zynq Vivado 2015.4 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Identify the basic building

More information

Page 1 SPACEWIRE SEMINAR 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

Page 1 SPACEWIRE SEMINAR 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT Page 1 SPACEWIRE SEMINAR 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT INTRODUCTION The SW IP was developped in the frame of the ESA 13345/#3 contract "Building block for System on a Chip" This presentation

More information

Real-World Buffer Overflow Protection in User & Kernel Space

Real-World Buffer Overflow Protection in User & Kernel Space Real-World Buffer Overflow Protection in User & Kernel Space Michael Dalton, Hari Kannan, Christos Kozyrakis Computer Systems Laboratory Stanford University http://raksha.stanford.edu 1 Motivation Buffer

More information

CISC RISC. Compiler. Compiler. Processor. Processor

CISC RISC. Compiler. Compiler. Processor. Processor Q1. Explain briefly the RISC design philosophy. Answer: RISC is a design philosophy aimed at delivering simple but powerful instructions that execute within a single cycle at a high clock speed. The RISC

More information

A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system

A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system A software platform to support dynamically reconfigurable Systems-on-Chip under the GNU/Linux operating system 26th July 2005 Alberto Donato donato@elet.polimi.it Relatore: Prof. Fabrizio Ferrandi Correlatore:

More information

Chapter 5 Input/Output. I/O Devices

Chapter 5 Input/Output. I/O Devices Chapter 5 Input/Output 5.1 Principles of I/O hardware 5.2 Principles of I/O software 5.3 I/O software layers 5.4 Disks 5.5 Clocks 5.6 Character-oriented terminals 5.7 Graphical user interfaces 5.8 Network

More information

Towards High Assurance Networks of Virtual Machines

Towards High Assurance Networks of Virtual Machines Towards High Assurance Networks of Virtual Machines Fabrizio Baiardi 1 Daniele Sgandurra 2 1 Polo G. Marconi - La Spezia, University of Pisa, Italy 2 Department of Computer Science, University of Pisa,

More information

Linux Kernel Hacking Free Course

Linux Kernel Hacking Free Course Linux Kernel Hacking Free Course 3 rd edition G.Grilli, University of me Tor Vergata IRQ DISTRIBUTION IN MULTIPROCESSOR SYSTEMS April 05, 2006 IRQ distribution in multiprocessor systems 1 Contents: What

More information

System Impact of Distributed Multicore Systems December 5th 2012

System Impact of Distributed Multicore Systems December 5th 2012 System Impact of Distributed Multicore Systems December 5th 2012 Software Systems Division & Data Systems Division Final Presentation Days Mathieu Patte (Astrium Satellites) Alfons Crespo (UPV) Outline

More information

A Fast Instruction Set Simulator for RISC-V

A Fast Instruction Set Simulator for RISC-V A Fast Instruction Set Simulator for RISC-V Maxim.Maslov@esperantotech.com Vadim.Gimpelson@esperantotech.com Nikita.Voronov@esperantotech.com Dave.Ditzel@esperantotech.com Esperanto Technologies, Inc.

More information

RAMP-White / FAST-MP

RAMP-White / FAST-MP RAMP-White / FAST-MP Hari Angepat and Derek Chiou Electrical and Computer Engineering University of Texas at Austin Supported in part by DOE, NSF, SRC,Bluespec, Intel, Xilinx, IBM, and Freescale RAMP-White

More information

Meltdown, Spectre, and Security Boundaries in LEON/GRLIB. Technical note Doc. No GRLIB-TN-0014 Issue 1.1

Meltdown, Spectre, and Security Boundaries in LEON/GRLIB. Technical note Doc. No GRLIB-TN-0014 Issue 1.1 Template: GQMS-TPLT-1-1-0 Meltdown, Spectre, and Security Boundaries in LEON/GRLIB Technical note 2018-03-15 Doc. No Issue 1.1 Date: 2018-03-15 Page: 2 of 8 CHANGE RECORD Issue Date Section / Page Description

More information

The SOCks Design Platform. Johannes Grad

The SOCks Design Platform. Johannes Grad The SOCks Design Platform Johannes Grad System-on-Chip (SoC) Design Combines all elements of a computer onto a single chip Microprocessor Memory Address- and Databus Periphery Application specific logic

More information

Challenges of FSW Schedulability on Multicore Processors

Challenges of FSW Schedulability on Multicore Processors Challenges of FSW Schedulability on Multicore Processors Flight Software Workshop 27-29 October 2015 Marek Prochazka European Space Agency MULTICORES: WHAT DOES FLIGHT SOFTWARE ENGINEER NEED? Space-qualified

More information

viommu/arm: full emulation and virtio-iommu approaches Eric Auger KVM Forum 2017

viommu/arm: full emulation and virtio-iommu approaches Eric Auger KVM Forum 2017 viommu/arm: full emulation and virtio-iommu approaches Eric Auger KVM Forum 2017 Overview Goals & Terminology ARM IOMMU Emulation QEMU Device VHOST Integration VFIO Integration Challenges VIRTIO-IOMMU

More information

Lab-2: Profiling m4v_dec on GR-XC3S National Chiao Tung University Chun-Jen Tsai 3/28/2011

Lab-2: Profiling m4v_dec on GR-XC3S National Chiao Tung University Chun-Jen Tsai 3/28/2011 Lab-2: Profiling m4v_dec on GR-XC3S-1500 National Chiao Tung University Chun-Jen Tsai 3/28/2011 Profiling with Real-time Timer Goal: Profiling m4v_vdec on GR-XC3S-1500 using a real-time timer Tasks: Install

More information

HA2lloc: Hardware-Assisted Secure Allocator

HA2lloc: Hardware-Assisted Secure Allocator HA2lloc: Hardware-Assisted Secure Allocator Orlando Arias, Dean Sullivan, Yier Jin {oarias,dean.sullivan}@knights.ucf.edu yier.jin@ece.ufl.edu University of Central Florida University of Florida June 25,

More information

AN OPEN-SOURCE VHDL IP LIBRARY WITH PLUG&PLAY CONFIGURATION

AN OPEN-SOURCE VHDL IP LIBRARY WITH PLUG&PLAY CONFIGURATION AN OPEN-SOURCE VHDL IP LIBRARY WITH PLUG&PLAY CONFIGURATION Jiri Gaisler Gaisler Research, Första Långgatan 19, 413 27 Göteborg, Sweden Abstract: Key words: An open-source IP library based on the AMBA-2.0

More information

Introduction to LEON3, GRLIB

Introduction to LEON3, GRLIB Introduction to LEON3, GRLIB Adi Katav akatav@kaltech.co.il 6201129 4(0) 972+ Ext 101 Introduction to LEON3, GRLIB Few words about KAL: KAL provides professional ASIC consultancy for Digital/Analog ASIC

More information

KeyStone II. CorePac Overview

KeyStone II. CorePac Overview KeyStone II ARM Cortex A15 CorePac Overview ARM A15 CorePac in KeyStone II Standard ARM Cortex A15 MPCore processor Cortex A15 MPCore version r2p2 Quad core, dual core, and single core variants 4096kB

More information

AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing

AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, Srinivas Devadas Massachusetts Institute of Technology L C S Cases

More information

Part I Overview Chapter 1: Introduction

Part I Overview Chapter 1: Introduction Part I Overview Chapter 1: Introduction Fall 2010 1 What is an Operating System? A computer system can be roughly divided into the hardware, the operating system, the application i programs, and dthe users.

More information

Moneta: A High-performance Storage Array Architecture for Nextgeneration, Micro 2010

Moneta: A High-performance Storage Array Architecture for Nextgeneration, Micro 2010 Moneta: A High-performance Storage Array Architecture for Nextgeneration, Non-volatile Memories Micro 2010 NVM-based SSD NVMs are replacing spinning-disks Performance of disks has lagged NAND flash showed

More information

Linux Storage System Bottleneck Exploration

Linux Storage System Bottleneck Exploration Linux Storage System Bottleneck Exploration Bean Huo / Zoltan Szubbocsev Beanhuo@micron.com / zszubbocsev@micron.com 215 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications

More information

Embedded Fingerprint Verification and Matching System

Embedded Fingerprint Verification and Matching System Signal Theory and Communications Group Department of Electronics University of Mondragon Fifth Workshop on Intelligent Solutions in Embedded Systems WISES 07, June 21-22, Madrid A Low-Cost FPGA-based Embedded

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides were originally created by Deniz ALTINBUKEN. P&H Chapter 4.9, pages 445 452, appendix A.7 Manages all of the software and hardware on the

More information

Efficiency and memory footprint of Xilkernel for the Microblaze soft processor

Efficiency and memory footprint of Xilkernel for the Microblaze soft processor Efficiency and memory footprint of Xilkernel for the Microblaze soft processor Dariusz Caban, Institute of Informatics, Gliwice, Poland - June 18, 2014 The use of a real-time multitasking kernel simplifies

More information

Introduction to gem5. Nizamudheen Ahmed Texas Instruments

Introduction to gem5. Nizamudheen Ahmed Texas Instruments Introduction to gem5 Nizamudheen Ahmed Texas Instruments 1 Introduction A full-system computer architecture simulator Open source tool focused on architectural modeling BSD license Encompasses system-level

More information

Overhead Evaluation about Kprobes and Djprobe (Direct Jump Probe)

Overhead Evaluation about Kprobes and Djprobe (Direct Jump Probe) Overhead Evaluation about Kprobes and Djprobe (Direct Jump Probe) Masami Hiramatsu Hitachi, Ltd., SDL Jul. 13. 25 1. Abstract To implement flight recorder system, the overhead

More information

CS 261 Fall Mike Lam, Professor. Virtual Memory

CS 261 Fall Mike Lam, Professor. Virtual Memory CS 261 Fall 2016 Mike Lam, Professor Virtual Memory Topics Operating systems Address spaces Virtual memory Address translation Memory allocation Lingering questions What happens when you call malloc()?

More information

Real Time Trace Solution for LEON/GRLIB System-on-Chip. Master of Science Thesis in Embedded Electronics System Design ALEXANDER KARLSSON

Real Time Trace Solution for LEON/GRLIB System-on-Chip. Master of Science Thesis in Embedded Electronics System Design ALEXANDER KARLSSON Real Time Trace Solution for LEON/GRLIB System-on-Chip Master of Science Thesis in Embedded Electronics System Design ALEXANDER KARLSSON Chalmers University of Technology University of Gothenburg Department

More information

Embedded Systems. 7. System Components

Embedded Systems. 7. System Components Embedded Systems 7. System Components Lothar Thiele 7-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

Kruiser: Semi-synchronized Nonblocking Concurrent Kernel Heap Buffer Overflow Monitoring

Kruiser: Semi-synchronized Nonblocking Concurrent Kernel Heap Buffer Overflow Monitoring NDSS 2012 Kruiser: Semi-synchronized Nonblocking Concurrent Kernel Heap Buffer Overflow Monitoring Donghai Tian 1,2, Qiang Zeng 2, Dinghao Wu 2, Peng Liu 2 and Changzhen Hu 1 1 Beijing Institute of Technology

More information

Full-System Timing-First Simulation

Full-System Timing-First Simulation Full-System Timing-First Simulation Carl J. Mauer Mark D. Hill and David A. Wood Computer Sciences Department University of Wisconsin Madison The Problem Design of future computer systems uses simulation

More information

Virtualized and Flexible ECC for Main Memory

Virtualized and Flexible ECC for Main Memory Virtualized and Flexible ECC for Main Memory Doe Hyun Yoon and Mattan Erez Dept. Electrical and Computer Engineering The University of Texas at Austin ASPLOS 2010 1 Memory Error Protection Applying ECC

More information

Building High Performance, Power Efficient Cortex and Mali systems with ARM CoreLink. Robert Kaye

Building High Performance, Power Efficient Cortex and Mali systems with ARM CoreLink. Robert Kaye Building High Performance, Power Efficient Cortex and Mali systems with ARM CoreLink Robert Kaye 1 Agenda Once upon a time ARM designed systems Compute trends Bringing it all together with CoreLink 400

More information

Bus AMBA. Advanced Microcontroller Bus Architecture (AMBA)

Bus AMBA. Advanced Microcontroller Bus Architecture (AMBA) Bus AMBA Advanced Microcontroller Bus Architecture (AMBA) Rene.beuchat@epfl.ch Rene.beuchat@hesge.ch Réf: AMBA Specification (Rev 2.0) www.arm.com ARM IHI 0011A 1 What to see AMBA system architecture Derivatives

More information

HEAD HardwarE Accelerated Deduplication

HEAD HardwarE Accelerated Deduplication HEAD HardwarE Accelerated Deduplication Final Report CS710 Computing Acceleration with FPGA December 9, 2016 Insu Jang Seikwon Kim Seonyoung Lee Executive Summary A-Z development of deduplication SW version

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides were originally created by Deniz ALTINBUKEN. P&H Chapter 4.9, pages 445 452, appendix A.7 Manages all of the software and hardware on the

More information

A Study of the Speedups and Competitiveness of FPGA Soft Processor Cores using Dynamic Hardware/Software Partitioning

A Study of the Speedups and Competitiveness of FPGA Soft Processor Cores using Dynamic Hardware/Software Partitioning A Study of the Speedups and Competitiveness of FPGA Soft Processor Cores using Dynamic Hardware/Software Partitioning By: Roman Lysecky and Frank Vahid Presented By: Anton Kiriwas Disclaimer This specific

More information

Zynq Architecture, PS (ARM) and PL

Zynq Architecture, PS (ARM) and PL , PS (ARM) and PL Joint ICTP-IAEA School on Hybrid Reconfigurable Devices for Scientific Instrumentation Trieste, 1-5 June 2015 Fernando Rincón Fernando.rincon@uclm.es 1 Contents Zynq All Programmable

More information

The Ascend Secure Processor. Christopher Fletcher MIT

The Ascend Secure Processor. Christopher Fletcher MIT The Ascend Secure Processor Christopher Fletcher MIT 1 Joint work with Srini Devadas, Marten van Dijk Ling Ren, Albert Kwon, Xiangyao Yu Elaine Shi & Emil Stefanov David Wentzlaff & Princeton Team (Mike,

More information

Tolerating Malicious Drivers in Linux. Silas Boyd-Wickizer and Nickolai Zeldovich

Tolerating Malicious Drivers in Linux. Silas Boyd-Wickizer and Nickolai Zeldovich XXX Tolerating Malicious Drivers in Linux Silas Boyd-Wickizer and Nickolai Zeldovich How could a device driver be malicious? Today's device drivers are highly privileged Write kernel memory, allocate memory,...

More information

Designing Embedded Processors in FPGAs

Designing Embedded Processors in FPGAs Designing Embedded Processors in FPGAs 2002 Agenda Industrial Control Systems Concept Implementation Summary & Conclusions Industrial Control Systems Typically Low Volume Many Variations Required High

More information

Relative Performance of a Multi-level Cache with Last-Level Cache Replacement: An Analytic Review

Relative Performance of a Multi-level Cache with Last-Level Cache Replacement: An Analytic Review Relative Performance of a Multi-level Cache with Last-Level Cache Replacement: An Analytic Review Bijay K.Paikaray Debabala Swain Dept. of CSE, CUTM Dept. of CSE, CUTM Bhubaneswer, India Bhubaneswer, India

More information

Hardware Software Bring-Up Solutions for ARM v7/v8-based Designs. August 2015

Hardware Software Bring-Up Solutions for ARM v7/v8-based Designs. August 2015 Hardware Software Bring-Up Solutions for ARM v7/v8-based Designs August 2015 SPMI USB 2.0 SLIMbus RFFE LPDDR 2 LPDDR 3 emmc 4.5 UFS SD 3.0 SD 4.0 UFS Bare Metal Software DSP Software Bare Metal Software

More information

ProtoFlex Tutorial: Full-System MP Simulations Using FPGAs

ProtoFlex Tutorial: Full-System MP Simulations Using FPGAs rotoflex Tutorial: Full-System M Simulations Using FGAs Eric S. Chung, Michael apamichael, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, Ken Mai ROTOFLEX Computer Architecture Lab at Our work in this

More information

HDFI: Hardware-Assisted Data-flow Isolation

HDFI: Hardware-Assisted Data-flow Isolation HDFI: Hardware-Assisted Data-flow Isolation Presented by Ben Schreiber Chengyu Song 1, Hyungon Moon 2, Monjur Alam 1, Insu Yun 1, Byoungyoung Lee 1, Taesoo Kim 1, Wenke Lee 1, Yunheung Paek 2 1 Georgia

More information

Hybrid Cache Architecture (HCA) with Disparate Memory Technologies

Hybrid Cache Architecture (HCA) with Disparate Memory Technologies Hybrid Cache Architecture (HCA) with Disparate Memory Technologies Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, Yuan Xie Pennsylvania State University IBM Austin Research Laboratory Acknowledgement:

More information

Scalable Distributed Memory Machines

Scalable Distributed Memory Machines Scalable Distributed Memory Machines Goal: Parallel machines that can be scaled to hundreds or thousands of processors. Design Choices: Custom-designed or commodity nodes? Network scalability. Capability

More information

Tomasz Włostowski Beams Department Controls Group Hardware and Timing Section. Developing hard real-time systems using FPGAs and soft CPU cores

Tomasz Włostowski Beams Department Controls Group Hardware and Timing Section. Developing hard real-time systems using FPGAs and soft CPU cores Tomasz Włostowski Beams Department Controls Group Hardware and Timing Section Developing hard real-time systems using FPGAs and soft CPU cores Melbourne, 22 October 2015 Outline 2 Hard Real Time control

More information

SimXMD: Simulation-based HW/SW Co-Debugging for FPGA Embedded Systems

SimXMD: Simulation-based HW/SW Co-Debugging for FPGA Embedded Systems FPGAworld 2014 SimXMD: Simulation-based HW/SW Co-Debugging for FPGA Embedded Systems Ruediger Willenberg and Paul Chow High-Performance Reconfigurable Computing Group University of Toronto September 9,

More information

Emerging NVM Memory Technologies

Emerging NVM Memory Technologies Emerging NVM Memory Technologies Yuan Xie Associate Professor The Pennsylvania State University Department of Computer Science & Engineering www.cse.psu.edu/~yuanxie yuanxie@cse.psu.edu Position Statement

More information

Performance Optimization for an ARM Cortex-A53 System Using Software Workloads and Cycle Accurate Models. Jason Andrews

Performance Optimization for an ARM Cortex-A53 System Using Software Workloads and Cycle Accurate Models. Jason Andrews Performance Optimization for an ARM Cortex-A53 System Using Software Workloads and Cycle Accurate Models Jason Andrews Agenda System Performance Analysis IP Configuration System Creation Methodology: Create,

More information

ReconOS: An RTOS Supporting Hardware and Software Threads

ReconOS: An RTOS Supporting Hardware and Software Threads ReconOS: An RTOS Supporting Hardware and Software Threads Enno Lübbers and Marco Platzner Computer Engineering Group University of Paderborn marco.platzner@computer.org Overview the ReconOS project programming

More information

V8uC: Sparc V8 micro-controller derived from LEON2-FT

V8uC: Sparc V8 micro-controller derived from LEON2-FT V8uC: Sparc V8 micro-controller derived from LEON2-FT ESA Workshop on Avionics Data, Control and Software Systems Noordwijk, 4 November 2010 Walter Errico SITAEL Aerospace phone: +39 0584 388398 e-mail:

More information

Anatomy of a Real-Time Intrusion Prevention System

Anatomy of a Real-Time Intrusion Prevention System Anatomy of a Real-Time Intrusion Prevention System Koller, R.; Rangaswami, R.; Marrero, J.; Hernandez, I.; Smith, G.; Barsilai, M.; Necula, S.; Sadjadi, S.M.; Tao Li; Merrill, K., Autonomic Computing,

More information

SimXMD Co-Debugging Software and Hardware in FPGA Embedded Systems

SimXMD Co-Debugging Software and Hardware in FPGA Embedded Systems University of Toronto FPGA Seminar SimXMD Co-Debugging Software and Hardware in FPGA Embedded Systems Ruediger Willenberg and Paul Chow High-Performance Reconfigurable Computing Group University of Toronto

More information

HW/SW Co-design Lecture 4: Lab 2 Passive HW Accelerator Design

HW/SW Co-design Lecture 4: Lab 2 Passive HW Accelerator Design HW/SW Co-design Lecture 4: Lab 2 Passive HW Accelerator Design Course material designed by Professor Yarsun Hsu, EE Dept, NTHU RA: Yi-Chiun Fang, EE Dept, NTHU Outline Introduction to AMBA Bus System Passive

More information

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck Main memory management CMSC 411 Computer Systems Architecture Lecture 16 Memory Hierarchy 3 (Main Memory & Memory) Questions: How big should main memory be? How to handle reads and writes? How to find

More information