F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

Size: px
Start display at page:

Download "F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997."

Transcription

1 Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey Mrch 2,1997 Astrct In seminl pper from 1935, Erd}os nd Szekeres showed tht for ech n there exists lest vlue g(n) such tht ny suset of g(n) points in the plne in generl position must lwys contin the vertices of convex n-gon. In prticulr, they otined the ounds 2 +1 g(n) 2n 4 n 2 +1 which hve stood unchnged since then. n 4. In this note we remove the +1 from the upper ound for 1. The min result In 1935, Pul Erd}os nd George Szekeres pulished short pper \A comintoril prolem in geometry" [1] which ws destined to hve profound inuence on the development of comintorics (nd especilly Rmsey theory) during the next 60 yers (cf. [3]). In prticulr, in this pper Erd}os nd Szekeres rediscovered Rmsey's theorem, which hd only just ppered (unknown to them) ve yers erlier. Their investigtions rose from geometricl question of the tlented young mthemticin Esther Klein (soon to ecome Mrs. Szekeres). She sked, \Is it true tht for every n, there is lest vlue g(n) such tht ny set X of g(n) points in the plne in generl position lwys contins the vertices of convex n-gon?" Erd}os nd Szekeres gve severl proofs of the existence of g(n) in [1] nd estlished the following ounds:! 2 +1 g(n) 2n 4 +1: (1) n 2 They lso conjectured tht the lower ound in (1) in fct lwys holds with equlity. This is known [2] to e the cse for n 5. Despite repeted ttempts over the yers, no generl improvement on (1) hs een found. In this note, we mke very smll improvement on the upper ound of (1). Nmely, we show for n 4. g(n) 2n 4 n 2 To pper in Discrete nd Computtionl Geometry y Reserch supported in prt y NSF Grnt No. DMS ! (2)

2 While this is dmittedly rther modest, we hope tht it might suggest methods which could give rise to more sustntil reductions in the upper ound. Proof of (2): By n m-cp we men sequence of m points x 1, x 2 ::: x m such tht the polygonl pth connecting them is concve, i.e., the x i hve incresing x-coordintes nd the pth from x 1 to x m turns clockwise t ech intermedite vertex. Similrly, nm-cup is set of points y 1 y 2 ::: y m with incresing x-coordintes such tht the polygonl pth joining them is convex, i.e., the pth from y 1 to y m lwys turns counterclockwise. 5 - cp 6-cup Figure 1: Cps nd cups The following result from [1] follows esily y induction. Lemm 1. If X E 2 -cp or -cup. is in generl position nd jxj > +4 2 then X contins either n In fct, s shown in [1], this ound is shrp. Theorem If X E 2 is in generl position nd jxj 2n4 for n 4, thenx contins the vertices of convex n-gon. Proof: Suppose the contrry. Rotte X if necessry so tht no line determined y two points of X is either horizontl or verticl. We cn further ssume without loss of generlity tht ll lines determined y two points of X hve slopes less thn 0.1 in solute vlue (y uniformly compressing X in the y-direction, if necessry). Dene A := fx 2 X : x is the left-hnd endpoint of some (n 1)-cp in Xg. 2n5 Cse 1. jaj > n3. Then y Lemm1,A contins n (n 1)-cup, sy, y 1 y 2 ::: y n1. Since y n1 2 A, there y n1 = z 1 z 2 y 1 y z n1 y 2 Figure 2: A cup joining cp exists n (n 1)-cp y n1 = z 1 z 2 ::: z n1 in X. However, this is impossile since either y 1, y 2 :::y n1 z 2 is n n-cup, or y z 1 z 2 ::: z n1 is n n-cp (see Fig. 2). 2n5 Cse 2. jaj < n3. 2

3 Then B := X n A stises 2n4 jbj > contrdiction. This leves s the only possiility: Cse 3. jaj = jbj = 2n5 n3 = n4 2n5 n3 = 2n5 n3 nd, similrly s in Cse 2, we rech For ny 2 B, consider the set A [fg. Since this set hs size greter thn 2n5 n3 then y Lemm 1, it contins n (n 1)-cup, sy with right-hnd endpoint y. Now, if y 2 A then s in Cse 1, we rech contrdiction. Hence we must hve y =. Thus, ech 2 B is the right-hnd endpoint of n(n 1)-cup with left-hnd endpoint in A. It follows in similr wy tht ech 2 A is the left endpoint ofn(n 1)-cp with right-hnd endpoint in B. We now form directed iprtite grph G with vertex sets A nd B, nd edge set E consisting of ll pirs (u v), where either u 2 A is the left-hnd endpoint nd v 2 B is the right-hnd endpoint of some (n 1)-cp in X, orv 2 A is the left-hnd endpoint nd u 2 B is the right-hnd endpoint of some(n 1)-cup in X. By the preceding remrks, it follows tht ll vertices of G hve outdegree t lest one. This implies G hs some (directed) cycle C = i1 i1 ir ir. Now consider n edge ( ) 2 E. Let L + () denote the hlf-line strting t nd going down with slope 0.1, nd let R () denote the hlf line strting t nd going down with slope 0:1. Also, let S( ) denote the line segment joining nd. Finlly, lety ( ) denote the region of E 2 (strictly) elow the pth L + ()S( )R () (see Fig. 3). (n 1)-cp S( ) R () L + () Y ( ) Figure 3: Clim 1. X hs no point in Y ( ). Otherwise, if x 2 X \ Y ( ) then the (n 1)-cp spnned y ( ) together with x forms convex n-gon in X, which is contrdiction. 3

4 By n nlogous rgument for ( ) 2 E, withl (), R + (), Y ( ) dened ccordingly (see Fig. 4), we lso see tht Y ( ) cn contin no point ofx. Y ( ) L () S( ) R + () (n 1)-cup Figure 4: Next, consider two connected edges ( ) nd ( 0 )ine. We cnnot hve = 0, since if we did, then X would contin convex (2n 4)-gon (formed y the (n 1)-cp nd (n 1)-cup spnned y nd ), which is impossile. Clim 2. 0 must lie ove the line through nd. Proof: Suppose not. Then from the geometry of the sitution (see Fig. 5), either 0 2 Y ( ) or 2 Y ( 0 ),contrdiction. A similr rgument shows if ( ) 2 E nd ( 0 ) 2 E then 0 Y ( 0 ) 0 0 Y ( ) Figure 5: must lie elow the line through nd. Finlly, consider the cycle C = i1 i1 ir ir occurring in G. Ifr =1thenwend convex (2n 4)-gon, which is impossile. So, we my ssume r 2. By Clim 2, ech of the ngles etween djcent edges, i1 i1 i1 i2 i2 i2 ir ir ir i1 must turn in counterclockwise direction. Hence, the lines through the consecutive edges i1 i1 i1 i2 i2 i2 hve incresing slopes, nd ny pir of these lines intersects t n ngle of less thn 2 rctn 0:1 < 12. However, since ll of the slopes of the lines re etween 0:1 nd 0.1, nd C is cycle, we rech contrdiction. We re inclined to elieve (s did Erd}os nd Szekeres) tht the lower ound 2 +1is the true vlue of g(n). However, we dmit tht there is little rel evidence yet for this elief. 4

5 References [1] P. Erd}os nd G. Szekeres, A comintoril prolem in geometry, Compositio Mth. 2 (1935), [2] P. Erd}os nd G. Szekeres, On some extremum prolems in elementry geometry, Ann. Univ. Sci. Budpest. Eotvos Sect. Mth. 3{4 (1961), 53{62. [3] R. L. Grhm nd J. Nesetril, Rmsey theory in the work of Pul Erd}os, The Mthemtics of Pul Erd}os, (R. L. Grhm nd J. Nesetril, eds.), Springer Verlg, Heidelerg,

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

The Complexity of Nonrepetitive Coloring

The Complexity of Nonrepetitive Coloring The Complexity of Nonrepetitive Coloring Dániel Mrx Institut für Informtik Humoldt-Universitt zu Berlin dmrx@informtik.hu-erlin.de Mrcus Schefer Deprtment of Computer Science DePul University mschefer@cs.depul.edu

More information

Lost in Translation: A Reflection on the Ballot Problem and André's Original Method

Lost in Translation: A Reflection on the Ballot Problem and André's Original Method Lost in Trnsltion: A Reflection on the Bllot Prolem nd André's Originl Method Mrc Renult Shippensurg University Presented t MthFest August 5, 2007 The Bllot Prolem (1887) In how mny wys cn upsteps nd downsteps

More information

Graphs with at most two trees in a forest building process

Graphs with at most two trees in a forest building process Grphs with t most two trees in forest uilding process rxiv:802.0533v [mth.co] 4 Fe 208 Steve Butler Mis Hmnk Mrie Hrdt Astrct Given grph, we cn form spnning forest y first sorting the edges in some order,

More information

arxiv: v1 [math.co] 18 Sep 2015

arxiv: v1 [math.co] 18 Sep 2015 Improvements on the density o miml -plnr grphs rxiv:509.05548v [mth.co] 8 Sep 05 János Brát MTA-ELTE Geometric nd Algeric Comintorics Reserch Group rt@cs.elte.hu nd Géz Tóth Alréd Rényi Institute o Mthemtics,

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

The Complexity of Nonrepetitive Coloring

The Complexity of Nonrepetitive Coloring The Complexity of Nonrepetitive Coloring Dániel Mrx Deprtment of Computer Science nd Informtion Theory Budpest University of Technology nd Econonomics Budpest H-1521, Hungry dmrx@cs.me.hu Mrcus Schefer

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

1 Quad-Edge Construction Operators

1 Quad-Edge Construction Operators CS48: Computer Grphics Hndout # Geometric Modeling Originl Hndout #5 Stnford University Tuesdy, 8 December 99 Originl Lecture #5: 9 November 99 Topics: Mnipultions with Qud-Edge Dt Structures Scribe: Mike

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

arxiv: v1 [cs.cg] 9 Dec 2016

arxiv: v1 [cs.cg] 9 Dec 2016 Some Counterexmples for Comptible Tringultions rxiv:62.0486v [cs.cg] 9 Dec 206 Cody Brnson Dwn Chndler 2 Qio Chen 3 Christin Chung 4 Andrew Coccimiglio 5 Sen L 6 Lily Li 7 Aïn Linn 8 Ann Lubiw 9 Clre Lyle

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

Determining Single Connectivity in Directed Graphs

Determining Single Connectivity in Directed Graphs Determining Single Connectivity in Directed Grphs Adm L. Buchsbum 1 Mrtin C. Crlisle 2 Reserch Report CS-TR-390-92 September 1992 Abstrct In this pper, we consider the problem of determining whether or

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Two Upper Bounds for the Erdős Szekeres Number with Conditions

Two Upper Bounds for the Erdős Szekeres Number with Conditions Discrete Comput Geom (2013) 49:183 188 DOI 10.1007/s00454-012-9474-9 Two Upper Bounds for the Erdős Szekeres Number with Conditions Florian Strunk Received: 8 July 2011 / Revised: 2 July 2012 / Accepted:

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Some necessary and sufficient conditions for two variable orthogonal designs in order 44

Some necessary and sufficient conditions for two variable orthogonal designs in order 44 University of Wollongong Reserch Online Fculty of Informtics - Ppers (Archive) Fculty of Engineering n Informtion Sciences 1998 Some necessry n sufficient conitions for two vrile orthogonl esigns in orer

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Typing with Weird Keyboards Notes

Typing with Weird Keyboards Notes Typing with Weird Keyords Notes Ykov Berchenko-Kogn August 25, 2012 Astrct Consider lnguge with n lphet consisting of just four letters,,,, nd. There is spelling rule tht sys tht whenever you see n next

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

Notes for Graph Theory

Notes for Graph Theory Notes for Grph Theory These re notes I wrote up for my grph theory clss in 06. They contin most of the topics typiclly found in grph theory course. There re proofs of lot of the results, ut not of everything.

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Single-Player and Two-Player Buttons & Scissors Games

Single-Player and Two-Player Buttons & Scissors Games Single-Plyer nd Two-Plyer Buttons & Scissors Gmes The MIT Fculty hs mde this rticle openly ville. Plese shre how this ccess enefits you. Your story mtters. Cittion As Pulished Pulisher Burke, Kyle, et

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Vertex Intersection Graphs of Paths on a Grid

Vertex Intersection Graphs of Paths on a Grid Journl of Grph Algorithms nd Applictions http://jg.info/ vol. 16, no. 2, pp. 129 150 (2012) Vertex Intersection Grphs of Pths on Grid Andrei Asinowski 1 Eld Cohen 2,3 Mrtin Chrles Golumic 2,3 Vincent Limouzy

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

arxiv:cs.cg/ v1 18 Oct 2005

arxiv:cs.cg/ v1 18 Oct 2005 A Pir of Trees without Simultneous Geometric Embedding in the Plne rxiv:cs.cg/0510053 v1 18 Oct 2005 Mrtin Kutz Mx-Plnck-Institut für Informtik, Srbrücken, Germny mkutz@mpi-inf.mpg.de October 19, 2005

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

Misrepresentation of Preferences

Misrepresentation of Preferences Misrepresenttion of Preferences Gicomo Bonnno Deprtment of Economics, University of Cliforni, Dvis, USA gfbonnno@ucdvis.edu Socil choice functions Arrow s theorem sys tht it is not possible to extrct from

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

arxiv:math/ v2 [math.co] 28 Feb 2006

arxiv:math/ v2 [math.co] 28 Feb 2006 Chord Digrms nd Guss Codes for Grphs rxiv:mth/0508269v2 [mth.co] 28 Feb 2006 Thoms Fleming Deprtment of Mthemtics University of Cliforni, Sn Diego L Joll, C 92093-0112 tfleming@mth.ucsd.edu bstrct lke

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Angle Properties in Polygons. Part 1 Interior Angles

Angle Properties in Polygons. Part 1 Interior Angles 2.4 Angle Properties in Polygons YOU WILL NEED dynmic geometry softwre OR protrctor nd ruler EXPLORE A pentgon hs three right ngles nd four sides of equl length, s shown. Wht is the sum of the mesures

More information

Geometrical tile design for complex neighborhoods

Geometrical tile design for complex neighborhoods COMPUTATIONAL NEUROSCIENCE ORIGINAL RESEARCH ARTICLE pulished: 23 Novemer 2009 doi: 103389/neuro100202009 Geometricl tile design for complex neighorhoods Eugen Czeizler* nd Lil Kri Deprtment of Computer

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Research Announcement: MAXIMAL CONNECTED HAUSDORFF TOPOLOGIES

Research Announcement: MAXIMAL CONNECTED HAUSDORFF TOPOLOGIES Volume 2, 1977 Pges 349 353 http://topology.uburn.edu/tp/ Reserch Announcement: MAXIMAL CONNECTED HAUSDORFF TOPOLOGIES by J. A. Guthrie, H. E. Stone, nd M. L. Wge Topology Proceedings Web: http://topology.uburn.edu/tp/

More information

AVolumePreservingMapfromCubetoOctahedron

AVolumePreservingMapfromCubetoOctahedron Globl Journl of Science Frontier Reserch: F Mthemtics nd Decision Sciences Volume 18 Issue 1 Version 1.0 er 018 Type: Double Blind Peer Reviewed Interntionl Reserch Journl Publisher: Globl Journls Online

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

RETRACTS OF TREES AND FREE LEFT ADEQUATE SEMIGROUPS

RETRACTS OF TREES AND FREE LEFT ADEQUATE SEMIGROUPS Proceedings of the Edinurgh Mthemticl Society (2011) 54, 731 747 DOI:10.1017/S0013091509001230 RETRACTS OF TREES AND FREE LEFT ADEQUATE SEMIGROUPS MARK KAMBITES School of Mthemtics, University of Mnchester,

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

Intersection Graphs of L-Shapes and Segments in the Plane

Intersection Graphs of L-Shapes and Segments in the Plane Intersection Grphs of -Shpes nd Segments in the Plne Stefn Felsner 1, Kolj Knuer 2, George B. Mertzios 3, nd Torsten Ueckerdt 4 1 Institut für Mthemtik, Technische Universität Berlin, Germny. 2 IRMM, Université

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information

Basic Geometry and Topology

Basic Geometry and Topology Bsic Geometry nd Topology Stephn Stolz Septemer 7, 2015 Contents 1 Pointset Topology 1 1.1 Metric spces................................... 1 1.2 Topologicl spces................................ 5 1.3 Constructions

More information

On Approximating Restricted Cycle Covers

On Approximating Restricted Cycle Covers On Approximting Restricted Cycle Covers Bodo Mnthey Universität zu Lüeck, Institut für Theoretische Informtik Rtzeurger Allee 160, 23538 Lüeck, Germny mnthey@tcs.uni-lueeck.de Astrct. A cycle cover of

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3.5.1 Single slit diffrction Wves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. We will consider this lter.

More information

ply the eistence of homeomorphic modifictions. Outline. Section 2 introduces definitions from comintoril topology. Section 3 defines oundry; its sic p

ply the eistence of homeomorphic modifictions. Outline. Section 2 introduces definitions from comintoril topology. Section 3 defines oundry; its sic p Topology Preserving Edge Contrction Λ Tml K. Dey y, Herert Edelsrunner z, Sumnt Guh nd Dmitry V. Nekhyev Astrct We study edge contrctions in simplicil complees nd locl conditions under which they preserve

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

Efficient Algorithms For Optimizing Policy-Constrained Routing

Efficient Algorithms For Optimizing Policy-Constrained Routing Efficient Algorithms For Optimizing Policy-Constrined Routing Andrew R. Curtis curtis@cs.colostte.edu Ross M. McConnell rmm@cs.colostte.edu Dn Mssey mssey@cs.colostte.edu Astrct Routing policies ply n

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

In Search of the Fractional Four Color Theorem. Ari Nieh Gregory Levin, Advisor

In Search of the Fractional Four Color Theorem. Ari Nieh Gregory Levin, Advisor In Serch of the Frctionl Four Color Theorem by Ari Nieh Gregory Levin, Advisor Advisor: Second Reder: (Arthur Benjmin) My 2001 Deprtment of Mthemtics Abstrct In Serch of the Frctionl Four Color Theorem

More information

arxiv: v2 [math.ho] 4 Jun 2012

arxiv: v2 [math.ho] 4 Jun 2012 Volumes of olids of Revolution. Unified pproch Jorge Mrtín-Morles nd ntonio M. Oller-Mrcén jorge@unizr.es, oller@unizr.es rxiv:5.v [mth.ho] Jun Centro Universitrio de l Defens - IUM. cdemi Generl Militr,

More information

ON THE DEHN COMPLEX OF VIRTUAL LINKS

ON THE DEHN COMPLEX OF VIRTUAL LINKS ON THE DEHN COMPLEX OF VIRTUAL LINKS RACHEL BYRD, JENS HARLANDER Astrct. A virtul link comes with vriety of link complements. This rticle is concerned with the Dehn spce, pseudo mnifold with oundry, nd

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

An Expressive Hybrid Model for the Composition of Cardinal Directions

An Expressive Hybrid Model for the Composition of Cardinal Directions An Expressive Hyrid Model for the Composition of Crdinl Directions Ah Lin Kor nd Brndon Bennett School of Computing, University of Leeds, Leeds LS2 9JT, UK e-mil:{lin,brndon}@comp.leeds.c.uk Astrct In

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

arxiv: v1 [cs.cg] 1 Jun 2016

arxiv: v1 [cs.cg] 1 Jun 2016 HOW TO MORPH PLANAR GRAPH DRAWINGS Soroush Almdri, Ptrizio Angelini, Fidel Brrer-Cruz, Timothy M. Chn, Giordno D Lozzo, Giuseppe Di Bttist, Fbrizio Frti, Penny Hxell, Ann Lubiw, Murizio Ptrignni, Vincenzo

More information