3D RECONSTRUCTION AND VISUALIZATION OF FEMUR BONE STRUCTURES

Size: px
Start display at page:

Download "3D RECONSTRUCTION AND VISUALIZATION OF FEMUR BONE STRUCTURES"

Transcription

1 3D RECONSTRUCTION AND VISUALIZATION OF FEMUR BONE STRUCTURES Pedro M. B. Torres 1,2, Paulo J. S. Gonçalves 1,2, Jorge M. M. Martins 2 1 Polytechnic Institute of Castelo Branco, School of Technology, Av. Empresário, Castelo Branco, Portugal. 2 Technical university of Lisbon, IDMEC/IST, Av. Rovisco Pais, Lisboa, Portugal. {pedrotorres paulo.goncalves}@ipcb.pt, martins@dem.ist.utl.pt Abstract: Visualization of 3D volume data, obtained from reconstruction of 2D medical images is a very important concept in different areas, e.g., surgical robotics. Perception of anatomical structures of the human body, without the use of evasive techniques, is an important aspect that can increase the rate of precise diagnosis. The usage of Computer-Assisted Orthopedic Surgical (CAOS) techniques by surgeons is rapidly growing. CAOS enhance the Hip Resurfacing or Hip Replacement process, since automatic systems increase surgical tasks precision and accuracy. The surgeon, to achieve a better implant alignment, should use a precise 3D bone visualization tool. The work, presented in this paper describes the techniques of volume rendering of ultrasound (US) and CT images of femur bones, essential for navigating a robot for orthopedic surgery. Maximum Intensity Projection (MIP) is one of the techniques used. MIP consists of projecting the voxel with the highest attenuation value on every view throughout the volume onto a 2D image. For each XY coordinate only the pixel with the highest Hounsfield number along the z-axis is represented so that in a single bi-dimensional image all dense structures in a given volume are observed. The Visualization Toolkit (VTK) and MATLAB are used to implement the methods and analyse the results. Keywords: Visualization, Surface Rendering, Volume Rendering, Medical Imaging, Surgical Robotics. 1. Introduction Recent years have been marked by the development of robotic systems for medical applications in many areas, ranging from rehabilitation systems to surgical robotic applications. The use of robots to automate medical tasks increases its reliability and accuracy. One of the key parts towards the success of surgical robotic systems is the visualization component, useful in the reconstruction of virtual models of the human organs, identify features in the images acquired, identify tumours, traumatisms, and so on. These components are crucial, for surgical planning and robot navigation control. The work presented in this paper was developed in the scope of the HIPROB project. This project consists on the development of a robotic solution for orthopedic surgery, solving some problems caused by current systems, e.g., ROBODOC [1], ACROBOT [2], that use fiducial markers in order to find the bone in space. This approach is currently the most accurate, but leaves lesions in the patients, manifested after surgery by several pains. With HIPROB is expected to obtain the bone 3D location using information from the ultrasound (US) images acquired intraoperatively and CT images acquired on a preoperative scenario. The paper focus on the threedimensional (3D) reconstruction of several medical image datasets implemented on using the Visualization Toolkit (VTK) and Matlab. Two types of rendering methods are implemented, surface rendering and volume rendering. Different algorithms were used to study both reconstruction methods. This paper is organized as follows. In section II, the concepts of 3D rendering methods are presented. The next section, III, describes a brief description of the VTK. Section IV, describes the experimental evaluation and results. Finally, conclusions and future work are presented. 2. 3D Rendering Methods Three-dimensional rendering is the process of creating a realistic 2D image that intuitively conveys 3D relationships. This section describes the techniques of Surfacing Rendering and Volume The Romanian Review Precision Mechanics, Optics & Mechatronics, 2012, No

2 Rendering, used in this work. Surface Rendering interprets the datasets by generating a set of polygons that represent the anatomical surface, and displaying a three-dimensional model representation. Polygons representing the outer surface of an object can be identified by running an isosurface detection algorithm (e.g. a Marching Cubes algorithm [3]). This method show 3D relationships most effectively, but suffer from artefacts and fail to effectively display lesions hidden behind overlying bone or located beneath the bone cortex. It also does not display the most important information in the image dataset, because simplifies the data into a binary form, classifying each pixel as either bone or not bone. In other hand, Volume Rendering represents 3D objects as a collection of cube-like building blocks called voxels, or volume elements. Each voxel is a sample of the original volume, a 3D pixel on a regular 3D grid. Each voxel has associated one or more values quantifying some measured or calculated properties of the original object, such as transparency, luminosity, density, flow velocity or metabolic activity. The main advantage of this type of rendering is its ability to preserve the integrity of the original data throughout the visualization process. Using this method is possible show subcortical lesions, minimally displaced fractures, and hidden areas of interest with few artefacts. Depending on the degree of surface shading and opacity, multiple overlying and internal features can be shown, and the displayed intensity is related to the amount of bone encountered along a line extending through the volume. This technique, however, requires huge amounts of computational time and is generally more expensive than conventional surface rendering technique. The present paper is focused in the Maximum Intensity Projection (MIP) Algorithm. This method, first introduced by Jerold Wallis [4] is a Volume Rendering method for 3D data, which projects in the visualization plane the voxels with maximum intensity. The technique consists of projecting the highest intensity captured by the rays perpendicular to the projection of the image, i.e. the method only displays the highest intensity value seen through each pixel. This type of projection is used to highlight the important parts of the image. Figure 1 shows a basic illustration of algorithm: for every pixel (1) in the viewing plane (2) a ray (3) is cast through the volume (4). Although other voxels are intersected by the ray, only the voxel with the highest intensity value (5) is projected onto the viewing plane at that pixel position [5]. Considering a 3D volume dataset f, and project parallel to the z- axis (axial projection) by computing the maximum value. The result is denoted by equation (1): MIP algorithm has been developed and currently there are several variants of the MIP such as Multiresolution Maximum Intensity Projection (MMIP) algorithm [6], Depth-shaded Maximum Intensity Projection (DMIP) [7] or Local Maximum Intensity Projection (LMIP) [8][9], which allow multiresolution, and different levels of transparency. Figure 1 shows an illustration of MIP algorithm in its simplest form. (1) Figure 1 a) Maximum Intensity Projection overview. Figure extracted from [5]. b) example of projection of voxel intensity. 3. Brief Description of the VTK The Visualization Toolkit (VTK) [10] is an opensource, object-oriented software system for 3D computer graphics, image processing and visualization. It is provided as a C++ library with interfaces to the interpreted languages such as Tcl, Python and Java. In this work, Microsoft Visual 52 The Romanian Review Precision Mechanics, Optics & Mechatronics, 2012, No. 41

3 Studio 2010, with VTK, is adopted to reconstruct the 3D images using the 2D CT image sequence in DICOM format. Conventional 3D visualization tools usually have important limitations such as low efficient code execution, poor computing capacity. VTK overcomes these limitations, because has constantly evolved, has fast algorithms and computationally efficient. 4. Experimental Results This section presents the bone reconstruction results, performed with VTK and Matlab, for CT and ultrasound (US) images. For CT reconstruction, femur bone reconstruction is performed by 360 CT two-dimensional (2D) crosssection images, with scanning interval of 0.75 mm between them, acquired by a Siemens SOMATON Sensation 16 CT Scanner, with image resolution of The images were stored in DICOM (Digital Imaging and Communications in Medicine) standard format, the most common in medical images management. The use of this standard facilitates the communications between different types of medical equipment and it is possible to store images in different datasets, useful to reconstruct different views. With the reconstruction is possible to visualize the bone in 360º, for complete visualization, in its total length (270 mm) and identify possible lesions, if existing. To reconstruct the volume of the bone it is necessary to load images (vtkdicomimagereader class), rendering the images (vtkrenderer class) and finally create a volume (vtkvolume class). Figure 2 shows a CT slice and a US image of the femur bone. Figure 3, represent the volume reconstruction of bone, performed with the MIP algorithm for the CT images. Figure 2 a) An original CT image and b) US image. Figure 3 Femur Bone Reconstruction, with a high level of transparency (MIP). The Romanian Review Precision Mechanics, Optics & Mechatronics, 2012, No

4 The application developed allows combine colours and opacity of the representation and thus highlight the parts that are most interesting finding in the representation. Figure 4 presents an example where it intends to highlight more the bone definitions, giving less importance to the interior, unlike the results of Figure 3, which is very transparent. Figure 4 Femur Bone Reconstruction, with highlight bone definitions. Figure 5 shows a section of the bone highlighting the cross section and view inside the bone. These representations have a good image quality showing a perfect bone constitution, inside and outside. It is visible the nodules of the femur in a perfect and realistic reconstruction. To compare the reconstruction results, obtained from CT images and US images, of the femur, extensive tests were performed using Matlab and VTK. For this, the Volume Rendering and Surface Rendering algorithms, described in section II, were implemented. US images, of the femur, were acquired with Aloka Prosound 2 equipment with a 5 MHz probe placed in the end effector of a robot, where the probe was moved at a constant speed. 489 Figure 5 Cross section Femur Bone Reconstruction. US images of the femur were acquired, with 0.55 mm between them. After processing the images, reconstruction was performed. Figure 6 shows the Volume Rendering of CT images (a) and US images (b). As ultrasound does not penetrate the bone, in this type of image is only possible to view the upper surface of the femur. The results obtained from the Matlab implementation, for the volume reconstruction with the CT images, have less quality 54 The Romanian Review Precision Mechanics, Optics & Mechatronics, 2012, No. 41

5 than the results achieved with VTK and the computational cost is much higher. Surface Rendering technique was only implemented in order to compare the results with Volume Rendering technique. Figure 7 shows the results of surface rendering obtained with CT images and US images. To the reconstruction with CT images unable to reconstruct the total dimension of the bone, because computational cost was very high and Matlab was not enough memory to process so much data. Figure 6 Bone Reconstruction (Volume Rendering) with a) CT images and b) US images. Figure 7 Bone Reconstruction (Surface Rendering) with a) CT images and b) US images. 5. Conclusions and Future Work The reconstruction based on VTK shows much better results than other types of software and is best suited to reconstruct medical images. This paper discusses 3D reconstruction and gives an example of reconstruction and visualization from CT images and US images. Volume rending plays an important part in reconstructing the bone and perform better results than Surface rendering. The results demonstrate that VTK is a robust tool to integrate the visualization component of HIPROB project. As The Romanian Review Precision Mechanics, Optics & Mechatronics, 2012, No

6 future work is expected to perform bone reconstruction in VTK with ultrasound images and integrate the components of image registration between CT datasets and US datasets. Acknowledgments This work was supported by: Strategic Project, reference PEst-OE/EME/LA0022/2011, through FCT (under the Unit IDMEC - Pole IST, Research Group IDMEC/LAETA/CSI): by FCT, under the project PTDC/EME-CRO/099333/2008;, IDMEC; by the European Union FP7 Project: ECHORD, experiment HIPROB. 6. References [1] Kazanzides, P.; Zuhars, J.; Mittelstadt, B.; Williamson, B.; Cain, P.; Smith, F.; Rose, L.; Musits, B.;, "Architecture of a surgical robot," Systems, Man and Cybernetics, 1992., IEEE International Conference on, vol., no., pp vol.2, Oct [2] Davies, B.L.; Fan, K.L.; Hibberd, R.D.; Jakopec, M.; Harris, S.J.;, "ACROBOT - using robots and surgeons synergistically in knee surgery," Advanced Robotics, ICAR '97. Proceedings., 8th International Conference on, vol., no., pp , 7-9 Jul [3] William E. Lorensen, Harvey E. Cline: Marching Cubes: A high resolution 3D surface construction algorithm. In: Computer Graphics, Vol. 21, Nr. 4, July 1987 [4] Wallis, J.W.; Miller, T.R.; Lerner, C.A.; Kleerup, E.C., "Three-dimensional display in nuclear medicine," Medical Imaging, IEEE Transactions on, vol.8, no.4, pp , Dec [5] Stefan Bruckner, Performing Maximum Intensity Projection with the Visualization Toolkit, Seminar Paper, Austria, 2002; [6] Roerdink, J.B.T.M.;, "Multiresolution maximum intensity volume rendering by morphological adjunction pyramids," Image Processing, IEEE Transactions on, vol.12, no.6, pp , June 2003; [7] Heidrich, W.; McCool, M.; Stevens, J.;, "Interactive maximum projection volume rendering," Visualization, Visualization '95. Proceedings., IEEE Conference on, vol., no., pp.11-18, 433, 29 Oct-3 Nov [8] Yoshinobu S., Nobuyuki S., Shin N., Shinichi T., Ron K., Local Maximum Intensity Projection (LMIP): A New Rendering Method for Vascular Visualization, in Journal of Computer Assisted Tomography, Vol. 22, N. 6, pp , November/December [9] Stefan Bruckner and M. Eduard Gröller, Instant Volume Visualization using Maximum Intensity Difference Accumulation. Eurographics / IEEE-VGTC Symposium on Visualization, Vol. 28, n. 3, [10] seen in June 2012; 56 The Romanian Review Precision Mechanics, Optics & Mechatronics, 2012, No. 41

Robot Calibration for Precise Ultrasound Image Acquisition

Robot Calibration for Precise Ultrasound Image Acquisition Abstract Robot Calibration for Precise Ultrasound Image Acquisition Pedro M. B. Torres 1,2, Paulo J. S. Gonçalves 1,2, Jorge M. M. Martins 2 1 Polytechnic Institute of CasteloBranco, School of Technology,

More information

Ultrasound Based Navigation and Control for Orthopaedic Robot Surgery. Pedro Miguel Baptista Torres. Curso de Doutoramento em Engª.

Ultrasound Based Navigation and Control for Orthopaedic Robot Surgery. Pedro Miguel Baptista Torres. Curso de Doutoramento em Engª. Ultrasound Based Navigation and Control for Orthopaedic Robot Surgery Pedro Miguel Baptista Torres Curso de Doutoramento em Engª. Mecânica Seminário PhD Universidade de Lisboa - Instituto Superior Técnico

More information

A Study of Medical Image Analysis System

A Study of Medical Image Analysis System Indian Journal of Science and Technology, Vol 8(25), DOI: 10.17485/ijst/2015/v8i25/80492, October 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Medical Image Analysis System Kim Tae-Eun

More information

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Rendering Computer Animation and Visualisation Lecture 9 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Volume Data Usually, a data uniformly distributed

More information

Volume Illumination, Contouring

Volume Illumination, Contouring Volume Illumination, Contouring Computer Animation and Visualisation Lecture 0 tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Overview -

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

Visualisation : Lecture 1. So what is visualisation? Visualisation

Visualisation : Lecture 1. So what is visualisation? Visualisation So what is visualisation? UG4 / M.Sc. Course 2006 toby.breckon@ed.ac.uk Computer Vision Lab. Institute for Perception, Action & Behaviour Introducing 1 Application of interactive 3D computer graphics to

More information

Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images

Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images Mamoru Kuga a*, Kazunori Yasuda b, Nobuhiko Hata a, Takeyoshi Dohi a a Graduate School of

More information

3D Surface Reconstruction of the Brain based on Level Set Method

3D Surface Reconstruction of the Brain based on Level Set Method 3D Surface Reconstruction of the Brain based on Level Set Method Shijun Tang, Bill P. Buckles, and Kamesh Namuduri Department of Computer Science & Engineering Department of Electrical Engineering University

More information

Sensor-aided Milling with a Surgical Robot System

Sensor-aided Milling with a Surgical Robot System 1 Sensor-aided Milling with a Surgical Robot System Dirk Engel, Joerg Raczkowsky, Heinz Woern Institute for Process Control and Robotics (IPR), Universität Karlsruhe (TH) Engler-Bunte-Ring 8, 76131 Karlsruhe

More information

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set

3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set 3D Volume Mesh Generation of Human Organs Using Surface Geometries Created from the Visible Human Data Set John M. Sullivan, Jr., Ziji Wu, and Anand Kulkarni Worcester Polytechnic Institute Worcester,

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction Following the introductory lab 0, this lab exercise the student through

More information

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Computational Medical Imaging Analysis Chapter 4: Image Visualization Computational Medical Imaging Analysis Chapter 4: Image Visualization Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information

A Navigation System for Minimally Invasive Abdominal Intervention Surgery Robot

A Navigation System for Minimally Invasive Abdominal Intervention Surgery Robot A Navigation System for Minimally Invasive Abdominal Intervention Surgery Robot Weiming ZHAI, Yannan ZHAO and Peifa JIA State Key Laboratory of Intelligent Technology and Systems Tsinghua National Laboratory

More information

CT IMAGE PROCESSING IN HIP ARTHROPLASTY

CT IMAGE PROCESSING IN HIP ARTHROPLASTY U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 3, 2013 ISSN 2286 3540 CT IMAGE PROCESSING IN HIP ARTHROPLASTY Anca MORAR 1, Florica MOLDOVEANU 2, Alin MOLDOVEANU 3, Victor ASAVEI 4, Alexandru EGNER 5 The use

More information

Open Topology: A Toolkit for Brain Isosurface Correction

Open Topology: A Toolkit for Brain Isosurface Correction Open Topology: A Toolkit for Brain Isosurface Correction Sylvain Jaume 1, Patrice Rondao 2, and Benoît Macq 2 1 National Institute of Research in Computer Science and Control, INRIA, France, sylvain@mit.edu,

More information

Efficient Volumetric Ray Casting for Isosurface Rendering

Efficient Volumetric Ray Casting for Isosurface Rendering Efficient Volumetric Ray Casting for Isosurface Rendering Jae Jeong Choi 1 Byeong-Seok Shin 2 Yeong Gil Shin 1 Kevin Cleary 3 1. Department of Computer Science, Seoul National University, Seoul, Republic

More information

Medical Image Processing: Image Reconstruction and 3D Renderings

Medical Image Processing: Image Reconstruction and 3D Renderings Medical Image Processing: Image Reconstruction and 3D Renderings 김보형 서울대학교컴퓨터공학부 Computer Graphics and Image Processing Lab. 2011. 3. 23 1 Computer Graphics & Image Processing Computer Graphics : Create,

More information

Exploiting Typical Clinical Imaging Constraints for 3D Outer Bone Surface Segmentation

Exploiting Typical Clinical Imaging Constraints for 3D Outer Bone Surface Segmentation Exploiting Typical Clinical Imaging Constraints for 3D Outer Bone Surface Segmentation Chris Mack, Vishali Mogallapu, Andrew Willis, Thomas P. Weldon UNC Charlotte, Department of Electrical and Computer

More information

Surface Construction Analysis using Marching Cubes

Surface Construction Analysis using Marching Cubes Surface Construction Analysis using Marching Cubes Burak Erem Northeastern University erem.b@neu.edu Nicolas Dedual Northeastern University ndedual@ece.neu.edu Abstract This paper presents an analysis

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

Data Visualization (CIS/DSC 468)

Data Visualization (CIS/DSC 468) Data Visualization (CIS/DSC 46) Volume Rendering Dr. David Koop Visualizing Volume (3D) Data 2D visualization slice images (or multi-planar reformating MPR) Indirect 3D visualization isosurfaces (or surface-shaded

More information

A Survey of Volumetric Visualization Techniques for Medical Images

A Survey of Volumetric Visualization Techniques for Medical Images International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 4, April 2015, PP 34-39 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A Survey

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

Medical Image Analysis

Medical Image Analysis Computer assisted Image Analysis VT04 29 april 2004 Medical Image Analysis Lecture 10 (part 1) Xavier Tizon Medical Image Processing Medical imaging modalities XRay,, CT Ultrasound MRI PET, SPECT Generic

More information

Isosurface Rendering. CSC 7443: Scientific Information Visualization

Isosurface Rendering. CSC 7443: Scientific Information Visualization Isosurface Rendering What is Isosurfacing? An isosurface is the 3D surface representing the locations of a constant scalar value within a volume A surface with the same scalar field value Isosurfaces form

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-0) Isosurfaces & Volume Rendering Dr. David Koop Fields & Grids Fields: - Values come from a continuous domain, infinitely many values - Sampled at certain positions

More information

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR Sean Gill a, Purang Abolmaesumi a,b, Siddharth Vikal a, Parvin Mousavi a and Gabor Fichtinger a,b,* (a) School of Computing, Queen

More information

Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization

Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization Zein Salah 1,2, Bernhard Preim 1, Erck Elolf 3, Jörg Franke 4, Georg Rose 2 1Department of Simulation and Graphics, University

More information

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization Volume visualization Volume visualization Volumes are special cases of scalar data: regular 3D grids of scalars, typically interpreted as density values. Each data value is assumed to describe a cubic

More information

4.5 VISIBLE SURFACE DETECTION METHODES

4.5 VISIBLE SURFACE DETECTION METHODES 4.5 VISIBLE SURFACE DETECTION METHODES A major consideration in the generation of realistic graphics displays is identifying those parts of a scene that are visible from a chosen viewing position. There

More information

2 Michael E. Leventon and Sarah F. F. Gibson a b c d Fig. 1. (a, b) Two MR scans of a person's knee. Both images have high resolution in-plane, but ha

2 Michael E. Leventon and Sarah F. F. Gibson a b c d Fig. 1. (a, b) Two MR scans of a person's knee. Both images have high resolution in-plane, but ha Model Generation from Multiple Volumes using Constrained Elastic SurfaceNets Michael E. Leventon and Sarah F. F. Gibson 1 MIT Artificial Intelligence Laboratory, Cambridge, MA 02139, USA leventon@ai.mit.edu

More information

[PDR03] RECOMMENDED CT-SCAN PROTOCOLS

[PDR03] RECOMMENDED CT-SCAN PROTOCOLS SURGICAL & PROSTHETIC DESIGN [PDR03] RECOMMENDED CT-SCAN PROTOCOLS WORK-INSTRUCTIONS DOCUMENT (CUSTOMER) RECOMMENDED CT-SCAN PROTOCOLS [PDR03_V1]: LIVE 1 PRESCRIBING SURGEONS Patient-specific implants,

More information

Lecture 6: Medical imaging and image-guided interventions

Lecture 6: Medical imaging and image-guided interventions ME 328: Medical Robotics Winter 2019 Lecture 6: Medical imaging and image-guided interventions Allison Okamura Stanford University Updates Assignment 3 Due this Thursday, Jan. 31 Note that this assignment

More information

A Haptic VR Milling Surgery Simulator Using High-Resolution CT-Data.

A Haptic VR Milling Surgery Simulator Using High-Resolution CT-Data. A Haptic VR Milling Surgery Simulator Using High-Resolution CT-Data. Magnus ERIKSSON a, Mark DIXON b and Jan WIKANDER a. a The Mechatronics Lab/Machine Design, KTH, Stockholm, Sweden b SenseGraphics AB,

More information

MODELLING OF PROSTHETIC HIP JOINT GENERATED FROM CT SCAN DATA Mahender Koduri 1, G Krishna Teja 2, O Rajender 3 1,2,3

MODELLING OF PROSTHETIC HIP JOINT GENERATED FROM CT SCAN DATA Mahender Koduri 1, G Krishna Teja 2, O Rajender 3 1,2,3 MODELLING OF PROSTHETIC HIP JOINT GENERATED FROM CT SCAN DATA Mahender Koduri 1, G Krishna Teja 2, O Rajender 3 1,2,3 Asst. Professor, Dept. of Mech. Engg. AGI ABSTRACT Total hip arthroplasty is a surgical

More information

Volume rendering for interactive 3-d segmentation

Volume rendering for interactive 3-d segmentation Volume rendering for interactive 3-d segmentation Klaus D. Toennies a, Claus Derz b a Dept. Neuroradiology, Inst. Diagn. Radiology, Inselspital Bern, CH-3010 Berne, Switzerland b FG Computer Graphics,

More information

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering Balázs Csébfalvi bfalvi,, Lukas Mroz, Helwig Hauser, Andreas König, Eduard Gröller Institute of Computer Graphics and Algorithms

More information

Computed Photography - Final Project Endoscope Exploration on Knee Surface

Computed Photography - Final Project Endoscope Exploration on Knee Surface 15-862 Computed Photography - Final Project Endoscope Exploration on Knee Surface Chenyu Wu Robotics Institute, Nov. 2005 Abstract Endoscope is widely used in the minimally invasive surgery. However the

More information

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis Advanced Visual Medicine: Techniques for Visual Exploration & Analysis Interactive Visualization of Multimodal Volume Data for Neurosurgical Planning Felix Ritter, MeVis Research Bremen Multimodal Neurosurgical

More information

Volume Visualization

Volume Visualization Volume Visualization Part 1 (out of 3) Overview: Volume Visualization Introduction to volume visualization On volume data Surface vs. volume rendering Overview: Techniques Simple methods Slicing, cuberille

More information

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification Segmentation

More information

GPU-based Volume Rendering. Michal Červeňanský

GPU-based Volume Rendering. Michal Červeňanský GPU-based Volume Rendering Michal Červeňanský Outline Volume Data Volume Rendering GPU rendering Classification Speed-up techniques Other techniques 2 Volume Data Describe interior structures Liquids,

More information

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Illumination. Visualisation Lecture 11. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Illumination Visualisation Lecture 11 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

Emissive Clip Planes for Volume Rendering Supplement.

Emissive Clip Planes for Volume Rendering Supplement. Emissive Clip Planes for Volume Rendering Supplement. More material than fit on the one page version for the SIGGRAPH 2003 Sketch by Jan Hardenbergh & Yin Wu of TeraRecon, Inc. Left Image: The clipped

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

Fast Interactive Region of Interest Selection for Volume Visualization

Fast Interactive Region of Interest Selection for Volume Visualization Fast Interactive Region of Interest Selection for Volume Visualization Dominik Sibbing and Leif Kobbelt Lehrstuhl für Informatik 8, RWTH Aachen, 20 Aachen Email: {sibbing,kobbelt}@informatik.rwth-aachen.de

More information

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment Visualisatie BMT Lecture overview Assignment Arjan Kok a.j.f.kok@tue.nl 1 Makes it possible to see inside or behind objects Complement of transparency is opacity Opacity defined by alpha value with range

More information

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized?

Volume Visualization. Part 1 (out of 3) Volume Data. Where do the data come from? 3D Data Space How are volume data organized? Volume Data Volume Visualization Part 1 (out of 3) Where do the data come from? Medical Application Computed Tomographie (CT) Magnetic Resonance Imaging (MR) Materials testing Industrial-CT Simulation

More information

Medical Visualization - Volume Rendering. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Volume Rendering. J.-Prof. Dr. Kai Lawonn Medical Visualization - Volume Rendering J.-Prof. Dr. Kai Lawonn Medical Visualization Pipeline Acquisition Filtering/Enhancement Mapping Rendering Data are given Data are processed e.g., feature extraction

More information

Mohammad Baharvandy & Sina Fazelpour

Mohammad Baharvandy & Sina Fazelpour Mohammad Baharvandy & Sina Fazelpour Ultrasound Basics Data acquisition in 3D Reconstruction of 2D images 3D Ultrasound Modeling Medical applications 4D Ultrasound 2 Ultrasound consist of sound waves of

More information

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems 2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems Yeny Yim 1*, Xuanyi Chen 1, Mike Wakid 1, Steve Bielamowicz 2, James Hahn 1 1 Department of Computer Science, The George Washington

More information

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING Reveal pathology Reveal the anatomic truth Steven R. Singer, DDS srs2@columbia.edu IDEAL DIAGNOSTIC IMAGING STUDY Provides desired diagnostic

More information

6th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING April 2008, Tallinn, Estonia. Radu, C. & Roşca, I.C.

6th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING April 2008, Tallinn, Estonia. Radu, C. & Roşca, I.C. 6th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING 24-26 April 2008, Tallinn, Estonia ON THE DESIGN OF A MEDICAL IMPLANT USED FOR OSTEOSYNTHESIS OF THE TRANSSINDESMOTIC FIBULAR FRACTURE PART

More information

Volume Rendering. Lecture 21

Volume Rendering. Lecture 21 Volume Rendering Lecture 21 Acknowledgements These slides are collected from many sources. A particularly valuable source is the IEEE Visualization conference tutorials. Sources from: Roger Crawfis, Klaus

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

First Steps in Hardware Two-Level Volume Rendering

First Steps in Hardware Two-Level Volume Rendering First Steps in Hardware Two-Level Volume Rendering Markus Hadwiger, Helwig Hauser Abstract We describe first steps toward implementing two-level volume rendering (abbreviated as 2lVR) on consumer PC graphics

More information

Efficient Rendering of Glossy Reflection Using Graphics Hardware

Efficient Rendering of Glossy Reflection Using Graphics Hardware Efficient Rendering of Glossy Reflection Using Graphics Hardware Yoshinori Dobashi Yuki Yamada Tsuyoshi Yamamoto Hokkaido University Kita-ku Kita 14, Nishi 9, Sapporo 060-0814, Japan Phone: +81.11.706.6530,

More information

Modelling a Lamb Hind Leg

Modelling a Lamb Hind Leg Modelling a Lamb Hind Leg Joanne P. Crocombe Ross D. Clarke MIRINZ Food Technology & Research East Street (Ruakura Campus), PO Box 617 HAMILTON, NEW ZEALAND Andrew J. Pullan Department of Engineering Science

More information

TECHNICAL REPORT. Smart Linking of 2D and 3D Views in Medical Applications

TECHNICAL REPORT. Smart Linking of 2D and 3D Views in Medical Applications Institut für Computergraphik und Algorithmen Technische Universität Wien Karlsplatz 13/186/2 A-1040 Wien AUSTRIA Tel: +43 (1) 58801-18601 Fax: +43 (1) 58801-18698 Institute of Computer Graphics and Algorithms

More information

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data CMPT 467/767 Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification

More information

3D VISUALIZATION OF SEGMENTED CRUCIATE LIGAMENTS 1. INTRODUCTION

3D VISUALIZATION OF SEGMENTED CRUCIATE LIGAMENTS 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 10/006, ISSN 164-6037 Paweł BADURA * cruciate ligament, segmentation, fuzzy connectedness,3d visualization 3D VISUALIZATION OF SEGMENTED CRUCIATE LIGAMENTS

More information

A 3D Computed Tomography Based Tool for Orthopedic Surgery Planning

A 3D Computed Tomography Based Tool for Orthopedic Surgery Planning A 3D Computed Tomography Based Tool for Orthopedic Surgery Planning João Ribeiro, Victor Alves, Sara Silva and Jaime Campos Abstract The preparation of a plan is essential for a surgery to take place in

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Volume Illumination & Vector Field Visualisation

Volume Illumination & Vector Field Visualisation Volume Illumination & Vector Field Visualisation Visualisation Lecture 11 Institute for Perception, Action & Behaviour School of Informatics Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

3DMMVR REFERENCE MANUAL V 0.81

3DMMVR REFERENCE MANUAL V 0.81 3DMMVR REFERENCE MANUAL V 0.81 Page 1 of 30 Index: 1.0 System Requirements...5 1.1 System Processor...5 1.2 System RAM...5 1.3 Graphics Card...5 1.4 Operating System...5 2.0 Conventions...6 2.1 Typographic

More information

The VesselGlyph: Focus & Context Visualization in CT-Angiography

The VesselGlyph: Focus & Context Visualization in CT-Angiography The VesselGlyph: Focus & Context Visualization in CT-Angiography Matúš Straka M. Šrámek, A. La Cruz E. Gröller, D. Fleischmann Contents Motivation:» Why again a new visualization method for vessel data?

More information

Contours & Implicit Modelling 4

Contours & Implicit Modelling 4 Brief Recap Contouring & Implicit Modelling Contouring Implicit Functions Visualisation Lecture 8 lecture 6 Marching Cubes lecture 3 visualisation of a Quadric toby.breckon@ed.ac.uk Computer Vision Lab.

More information

Data Visualization (DSC 530/CIS )

Data Visualization (DSC 530/CIS ) Data Visualization (DSC 530/CIS 60-01) Scalar Visualization Dr. David Koop Online JavaScript Resources http://learnjsdata.com/ Good coverage of data wrangling using JavaScript Fields in Visualization Scalar

More information

The Role of DICOM for Modular Perioperative Surgical Assist Systems Design

The Role of DICOM for Modular Perioperative Surgical Assist Systems Design The Role of DICOM for Modular Perioperative Surgical Assist Systems Design Release 1.00 Oliver Burgert 1, Thomas Treichel 1 and Michael Gessat 1 July 12, 2009 1 Innovation Center Computer Assisted Surgery

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

Scalar Visualization

Scalar Visualization Scalar Visualization 5-1 Motivation Visualizing scalar data is frequently encountered in science, engineering, and medicine, but also in daily life. Recalling from earlier, scalar datasets, or scalar fields,

More information

Level Set Extraction from Gridded 2D and 3D Data

Level Set Extraction from Gridded 2D and 3D Data Level Set Extraction from Gridded 2D and 3D Data David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Incorporating Target Registration Error Into Robotic Bone Milling

Incorporating Target Registration Error Into Robotic Bone Milling Incorporating Target Registration Error Into Robotic Bone Milling Michael A. Siebold *a, Neal P. Dillon b, Robert J. Webster III a,b, and J. Michael Fitzpatrick a a Electrical Engineering and Computer

More information

Neural Network Based Augmented Reality for Detection of Brain Tumor

Neural Network Based Augmented Reality for Detection of Brain Tumor Neural Network Based Augmented Reality for Detection of Brain Tumor P.Mithun, N.R.Raajan School of Electrical & Electronics Engineering, SASTRA University, Thanjavur, TamilNadu, India. Email: nrraajan@ece.sastra.edu

More information

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects Solid Modeling Thomas Funkhouser Princeton University C0S 426, Fall 2000 Solid Modeling Represent solid interiors of objects Surface may not be described explicitly Visible Human (National Library of Medicine)

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

icatvision Quick Reference

icatvision Quick Reference icatvision Quick Reference Navigating the i-cat Interface This guide shows how to: View reconstructed images Use main features and tools to optimize an image. REMINDER Images are displayed as if you are

More information

IMPROVEMENT OF CONSPICUITY BY FUSION OF PULSE-ECHO DATA

IMPROVEMENT OF CONSPICUITY BY FUSION OF PULSE-ECHO DATA IMPROVEMENT OF CONSPICUITY BY FUSION OF PULSE-ECHO DATA S. M. Song 1, H. Jang 1, J. Kwon 1, J. Sung 2, H. Ahn 2, J. Lee 2 and S. Jang 2 1 Seoul National Universit Seoul, Korea; 2 Sae-An Engineering Corporation,

More information

Clipping. CSC 7443: Scientific Information Visualization

Clipping. CSC 7443: Scientific Information Visualization Clipping Clipping to See Inside Obscuring critical information contained in a volume data Contour displays show only exterior visible surfaces Isosurfaces can hide other isosurfaces Other displays can

More information

INDUSTRIAL SYSTEM DEVELOPMENT FOR VOLUMETRIC INTEGRITY

INDUSTRIAL SYSTEM DEVELOPMENT FOR VOLUMETRIC INTEGRITY INDUSTRIAL SYSTEM DEVELOPMENT FOR VOLUMETRIC INTEGRITY VERIFICATION AND ANALYSIS M. L. Hsiao and J. W. Eberhard CR&D General Electric Company Schenectady, NY 12301 J. B. Ross Aircraft Engine - QTC General

More information

Modifications for P551 Fall 2014

Modifications for P551 Fall 2014 LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT 1 Modifications for P551 Fall 2014 Introduction This lab demonstration explores the physics and technology of Computed Tomography (CT) and guides the

More information

Hybrid Approach for MRI Human Head Scans Classification using HTT based SFTA Texture Feature Extraction Technique

Hybrid Approach for MRI Human Head Scans Classification using HTT based SFTA Texture Feature Extraction Technique Volume 118 No. 17 2018, 691-701 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Hybrid Approach for MRI Human Head Scans Classification using HTT

More information

Bone registration with 3D CT and ultrasound data sets

Bone registration with 3D CT and ultrasound data sets International Congress Series 1256 (2003) 426 432 Bone registration with 3D CT and ultrasound data sets B. Brendel a, *,1, S. Winter b,1, A. Rick c,1, M. Stockheim d,1, H. Ermert a,1 a Institute of High

More information

Texture Mapping using Surface Flattening via Multi-Dimensional Scaling

Texture Mapping using Surface Flattening via Multi-Dimensional Scaling Texture Mapping using Surface Flattening via Multi-Dimensional Scaling Gil Zigelman Ron Kimmel Department of Computer Science, Technion, Haifa 32000, Israel and Nahum Kiryati Department of Electrical Engineering

More information

3D Ultrasound Reconstruction By The 3 Cons: Michael Golden Khayriyyah Munir Omid Nasser Bigdeli

3D Ultrasound Reconstruction By The 3 Cons: Michael Golden Khayriyyah Munir Omid Nasser Bigdeli 3D Ultrasound Reconstruction By The 3 Cons: Michael Golden Khayriyyah Munir Omid Nasser Bigdeli Client Contact: Dr. Joseph McIsaac Hartford Hospital 80 Seymour St. PO Box 5037 Hartford, CT 06102 (860)

More information

On Evolving Fuzzy Modeling for Visual Control of Robotic Manipulators

On Evolving Fuzzy Modeling for Visual Control of Robotic Manipulators On Evolving Fuzzy Modeling for Visual Control of Robotic Manipulators P.J.S. Gonçalves 1,2, P.M.B. Torres 2, J.R. Caldas Pinto 1, J.M.C. Sousa 1 1. Instituto Politécnico de Castelo Branco, Escola Superior

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Patient-Specific Orthopedics Simulation Using ANSYS Technologies N. Hraiech, E. Malvesin and M. Rochette ANSYS France M. Viceconti and F. Taddei Istituti Ortopedici

More information

Calculating the Distance Map for Binary Sampled Data

Calculating the Distance Map for Binary Sampled Data MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Calculating the Distance Map for Binary Sampled Data Sarah F. Frisken Gibson TR99-6 December 999 Abstract High quality rendering and physics-based

More information

Discrete Estimation of Data Completeness for 3D Scan Trajectories with Detector Offset

Discrete Estimation of Data Completeness for 3D Scan Trajectories with Detector Offset Discrete Estimation of Data Completeness for 3D Scan Trajectories with Detector Offset Andreas Maier 1, Patrick Kugler 2, Günter Lauritsch 2, Joachim Hornegger 1 1 Pattern Recognition Lab and SAOT Erlangen,

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

Multipass GPU Surface Rendering in 4D Ultrasound

Multipass GPU Surface Rendering in 4D Ultrasound 2012 Cairo International Biomedical Engineering Conference (CIBEC) Cairo, Egypt, December 20-21, 2012 Multipass GPU Surface Rendering in 4D Ultrasound Ahmed F. Elnokrashy 1,2, Marwan Hassan 1, Tamer Hosny

More information