10.2 Graph Terminology and Special Types of Graphs

Size: px
Start display at page:

Download "10.2 Graph Terminology and Special Types of Graphs"

Transcription

1 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the verties u n v n e is si to onnet u n v. To keep trk of how mny eges re inient to vertex, we mke the following efinition. Definition 2. Let G e grph n v vertex of G. The egree of v, enote eg(v), equls the numer of eges tht re inient on v, with n ege tht is loop ounte twie. The totl egree of G is the sum of the egrees of ll the verties of G. Sine n ege tht is loop is ounte twie, the egree of vertex n e otine from the rwing of grph y ounting how mny en segments of eges re inient on the vertex. A vertex of egree zero is lle isolte. It follows tht n isolte vertex is not jent to ny vertex. A vertex is pennt if n only if it hs egree one. Consequently, pennt vertex is jent to extly one other vertex. Wht o we get when we the egrees of ll the verties of grph G = (V, E)? Eh ege ontriutes two to the sum of the egrees of the verties euse n ege is inient with extly two (possily equl) verties. This mens tht the sum of the egrees of the verties is twie the numer of eges. We hve the result in Theorem 1, whih is sometimes lle the hnshking theorem (n is lso often known s the hnshking lemm), euse of the nlogy etween n ege hving two enpoints n hnshke involving two hns. Theorem 1 (THE HANDSHAKING THEOREM). If G is ny grph, then the sum of the egrees of ll the verties of G equls twie the numer of eges of G. Speifilly, if the verties of G re v 1, v 2,..., v n, where n is nonnegtive integer, then the totl egree of G = eg(v 1 ) + eg(v 2 ) + + eg(v n ) = 2 (the numer of eges of G). Proof. Let G e prtiulr ut ritrrily hosen grph, n suppose tht G hs n verties v 1, v 2,..., v n n m eges, where n is positive integer n m is nonnegtive integer. We lim tht eh ege of G ontriutes 2 to the totl egree of G. For suppose e is n ritrrily hosen ege with enpoints v i n v j. This ege ontriutes 1 to the egree of v i n 1 to the egree v j. This is true even if i = j, euse n ege tht is loop is ounte twie in omputing the egree of the vertex on whih it is inient. Therefore, e ontriutes 2 to the totl egree of G. Sine e ws ritrrily hosen, this shows tht eh ege of G ontriutes 2 to the totl egree of G. Thus Tht is, if G = (V, E) hs m eges, then the totl egree of G = 2 (the numer of eges of G). eg(v) = 2m. (Note tht this pplies even if multiple eges n loops re present.) v V Corollry. The totl egree of grph is even. Proof. By Theorem 1 the totl egree of G equls 2 times the numer of eges, whih is n integer, n so the totl egree of G is even. Proposition. In ny grph there re n even numer of verties of o egree. 1

2 Proof. Let V e n V o e the set of verties of even egree n the set of verties of o egree, respetively, in n unirete grph G = (V, E) with m eges. Then 2m = v V eg(v) = v V e eg(v) + v V o eg(v). Beuse eg(v) is even for v V e, the first term in the right-hn sie of the lst equlity is even. Furthermore, the sum of the two terms on the right-hn sie of the lst equlity is even, euse this sum is 2m. Hene, the seon term in the sum is lso even. Beuse ll the terms in this sum re o, there must e n even numer of suh terms. Thus, there re n even numer of verties of o egree. Exmple 1. Drw grph with the speifie properties or show tht no suh grph exists.. A grph with four verties of egrees 1, 1, 2, n 3. A grph with four verties of egrees 1, 1, 3, n 3. A simple grph with four verties of egrees 1, 1, 3, n 3. Solution.. No suh grph is possile. By orollry of The Hnshking Theorem, the totl egree of grph is even. But grph with four verties of egrees 1, 1, 2, n 3 woul hve totl egree of = 7, whih is o.. Let G e ny of the grphs shown elow. In eh se, no mtter how the eges re lele, eg() = 1, eg() = 1, eg() = 3, n eg() = 3.. There is no simple grph with four verties of egrees 1, 1, 3, n 3. Proof y ontrition: Suppose there were simple grph G with four verties of egrees 1, 1, 3, n 3. Cll n the verties of egree 1, n ll n the verties of egree 3. Sine eg() = 3 n G oes not hve ny loops or prllel eges (euse it is simple), there must e eges tht onnet to,, n. By the sme resoning, there must e eges onneting to,, n. But then eg() 2 n eg() 2, whih ontrits the supposition tht these verties hve egree 1. Hene the supposition is flse, n onsequently there is no simple grph with four verties of egrees 1, 1, 3, n 3. 2

3 Exmple 2. Is it possile in group of nine stuents for eh to e friens with extly five others? Solution. The nswer is no. Imgine onstruting n quintne grph in whih eh of the nine people represente y vertex n two verties re joine y n ege if, n only if, the people they represent re friens. Suppose eh of the people were friens with extly five others. Then the egree of eh of the nine verties of the grph woul e five, n so the totl egree of the grph woul e 45. But this ontrits the orollry to The Hnshking Theorem, whih sys tht the totl egree of grph is even. This ontrition shows tht the supposition is flse, n hene it is impossile for eh person in group of nine people to e friens with extly five others. A Few Speil Simple Grphs Definition 3. A yle C n, n 3, onsists of n verties v 1, v 2,..., v n n eges {v 1, v 2 }, {v 2, v 3 },..., {v n 1, v n }, n {v n, v 1 }. Exmple 3. The yles C 3, C 4, n C 5 re isplye elow Definition 4. We otin wheel W n when we n itionl vertex to yle C n, for n 3, n onnet this new vertex to eh of the n verties in C n, y new eges. Exmple 4. The wheels W 3, W 4, W 5, n W 6 re isplye elow. Exmple 5. An n-imensionl hyperue, or n-ue, enote y Q n, is grph tht hs verties representing the 2 n it strings of length n. Two verties re jent if n only if the it strings tht they represent iffer in extly one it position. We isply Q 1, Q 2, Q 3, n Q 4 elow. Note tht you n onstrut the (n + 1)-ue Q n+1 from the n-ue Q n y mking two opies of Q n, prefing the lels on the verties with 0 in one opy of Q n n with 1 in the other opy of Q n, n ing eges onneting two verties tht hve lels iffering only in the first it. In the figure ove, Q 3 is onstrute from Q 2 y rwing two opies of Q 2 s the front n k fes of Q 3, ing 0 t the 3

4 eginning of the lel of eh vertex in the k fe n 1 t the eginning of the lel of eh vertex in the front fe. (Here, y fe we men fe of ue in three-imensionl spe. Think of rwing the grph Q 3 in three-imensionl spe with opies of Q 2 s the front n k fes of ue n then rwing the projetion of the resulting epition in the plne.) Definition 5. A simple grph G is lle iprtite if its vertex set V n e prtitione into two isjoint sets V 1 n V 2 suh tht every ege in the grph onnets vertex in V 1 n vertex in V 2 (so tht no ege in G onnets either two verties in V 1 or two verties in V 2 ). When this onition hols, we ll the pir (V 1, V 2 ) iprtition of the vertex set V of G. Exmple 6. C 6 is iprtite, euse its vertex set n e prtitione into the two sets V 1 = {v 1, v 3, v 5 } n V 2 = {v 2, v 4, v 6 }, n every ege of C 6 onnets vertex in V 1 n vertex in V 2. Some grphs re lle omplete in the sense tht ll pirs of verties re onnete y eges. Definition 6. Let n e positive integer. A omplete grph on n verties, enote K n, is simple grph with n verties n extly one ege onneting eh pir of istint verties. Exmple 7. We my rw the omplete grphs K 1, K 2, K 3, K 4, K 5, n K 6 s follows: Exmple 8. K 3 is not iprtite. To verify this, note tht if we ivie the vertex set of K 3 into two isjoint sets, one of the two sets must ontin two verties. If the grph were iprtite, these two verties oul not e onnete y n ege, ut in K 3 eh vertex is onnete to every other vertex y n ege. Theorem 2. A simple grph is iprtite if n only if it is possile to ssign one of two ifferent olors to eh vertex of the grph so tht no two jent verties re ssigne the sme olor. In nother lss of grphs, the vertex set n e seprte into two susets: Eh vertex in one of the susets is onnete y extly one ege to eh vertex in the other suset, ut not to ny verties in its own suset. Suh grph is lle omplete iprtite. Definition 7. Let m n n e positive integers. A omplete iprtite grph on (m, n) verties, enote K m,n, is simple grph with istint verties v 1, v 2,..., v m n w 1, w 2,..., w n tht stisfies the following properties: For ll i, k = 1, 2,..., m n for ll j, l = 1, 2,..., n, 1. There is n ege from eh vertex v i to eh vertex w j. 2. There is no ege from ny vertex v i to ny other vertex v k. 3. There is no ege from ny vertex w j to ny other vertex w l. 4

5 Exmple 9. The omplete iprtite grphs K 3,2 n K 3,3 re illustrte elow. v 1 v 1 w 1 w 1 v 2 v 2 w 2 w 2 v 3 v 3 w 3 5

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V)

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V) Definitions G = (V, E) V = set of verties (vertex / noe) E = set of eges (v, w) (v, w in V) (v, w) orere => irete grph (igrph) (v, w) non-orere => unirete grph igrph: w is jent to v if there is n ege from

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler CS5 Fll 04Leture (lmost there) /6 Seven Bridges of Königserg Grphs Prof. Tny Berger-Wolf Leonrd Euler 707-783 Is it possile to wlk with route tht rosses eh ridge e Seven Bridges of Königserg Forget unimportnt

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

Bayesian Networks: Directed Markov Properties (Cont d) and Markov Equivalent DAGs

Bayesian Networks: Directed Markov Properties (Cont d) and Markov Equivalent DAGs Byesin Networks: Direte Mrkov Properties (Cont ) n Mrkov Equivlent DAGs Huizhen Yu jney.yu@s.helsinki.fi Dept. Computer Siene, Univ. of Helsinki Proilisti Moels, Spring, 2010 Huizhen Yu (U.H.) Byesin Networks:

More information

5 ANGLES AND POLYGONS

5 ANGLES AND POLYGONS 5 GLES POLYGOS urling rige looks like onventionl rige when it is extene. However, it urls up to form n otgon to llow ots through. This Rolling rige is in Pington sin in Lonon, n urls up every Friy t miy.

More information

Graph theory Route problems

Graph theory Route problems Bhelors thesis Grph theory Route prolems Author: Aolphe Nikwigize Dte: 986 - -5 Sujet: Mthemtis Level: First level (Bhelor) Course oe: MAE Astrt In this thesis we will review some route prolems whih re

More information

Section 2.3 Functions. Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f :A B, is a subset of A B such that

Section 2.3 Functions. Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f :A B, is a subset of A B such that Setion 2.3 Funtions Definition: Let n e sets. funtion (mpping, mp) f from to, enote f :, is suset of suh tht x[x y[y < x, y > f ]] n [< x, y 1 > f < x, y 2 > f ] y 1 = y 2 Note: f ssoites with eh x in

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chpter 9 Greey Tehnique Copyright 2007 Person Aison-Wesley. All rights reserve. Greey Tehnique Construts solution to n optimiztion prolem piee y piee through sequene of hoies tht re: fesile lolly optiml

More information

Lesson 4.4. Euler Circuits and Paths. Explore This

Lesson 4.4. Euler Circuits and Paths. Explore This Lesson 4.4 Euler Ciruits nd Pths Now tht you re fmilir with some of the onepts of grphs nd the wy grphs onvey onnetions nd reltionships, it s time to egin exploring how they n e used to model mny different

More information

Lecture 12 : Topological Spaces

Lecture 12 : Topological Spaces Leture 12 : Topologil Spes 1 Topologil Spes Topology generlizes notion of distne nd loseness et. Definition 1.1. A topology on set X is olletion T of susets of X hving the following properties. 1. nd X

More information

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam Cmrige, Msshusetts Introution to Mtrois n Applitions Srikumr Rmlingm MERL mm//yy Liner Alger (,0,0) (0,,0) Liner inepenene in vetors: v, v2,..., For ll non-trivil we hve s v s v n s, s2,..., s n 2v2...

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

Final Exam Review F 06 M 236 Be sure to look over all of your tests, as well as over the activities you did in the activity book

Final Exam Review F 06 M 236 Be sure to look over all of your tests, as well as over the activities you did in the activity book inl xm Review 06 M 236 e sure to loo over ll of your tests, s well s over the tivities you did in the tivity oo 1 1. ind the mesures of the numered ngles nd justify your wor. Line j is prllel to line.

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Solids. Solids. Curriculum Ready.

Solids. Solids. Curriculum Ready. Curriulum Rey www.mthletis.om This ooklet is ll out ientifying, rwing n mesuring solis n prisms. SOM CUES The Som Cue ws invente y Dnish sientist who went y the nme of Piet Hein. It is simple 3 # 3 #

More information

Chapter 4 Fuzzy Graph and Relation

Chapter 4 Fuzzy Graph and Relation Chpter 4 Fuzzy Grph nd Reltion Grph nd Fuzzy Grph! Grph n G = (V, E) n V : Set of verties(node or element) n E : Set of edges An edge is pir (x, y) of verties in V.! Fuzzy Grph ~ n ( ~ G = V, E) n V :

More information

Lecture 13: Graphs I: Breadth First Search

Lecture 13: Graphs I: Breadth First Search Leture 13 Grphs I: BFS 6.006 Fll 2011 Leture 13: Grphs I: Bredth First Serh Leture Overview Applitions of Grph Serh Grph Representtions Bredth-First Serh Rell: Grph G = (V, E) V = set of verties (ritrry

More information

Outline. CS38 Introduction to Algorithms. Graphs. Graphs. Graphs. Graph traversals

Outline. CS38 Introduction to Algorithms. Graphs. Graphs. Graphs. Graph traversals Outline CS38 Introution to Algorithms Leture 2 April 3, 2014 grph trversls (BFS, DFS) onnetivity topologil sort strongly onnete omponents heps n hepsort greey lgorithms April 3, 2014 CS38 Leture 2 2 Grphs

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grph Theory Prudene Wong http://www.s.liv..uk/~pwong/tehing/omp108/201617 How to Mesure 4L? 3L 5L 3L ontiner & 5L ontiner (without mrk) infinite supply of wter You n pour wter from one ontiner to nother

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chpter 14 Grph Contrtion n Connetivity So fr we hve mostly overe tehniques for solving problems on grphs tht were evelope in the ontext of sequentil lgorithms. Some of them re esy to prllelize while others

More information

Adjacency. Adjacency Two vertices u and v are adjacent if there is an edge connecting them. This is sometimes written as u v.

Adjacency. Adjacency Two vertices u and v are adjacent if there is an edge connecting them. This is sometimes written as u v. Terminology Adjeny Adjeny Two verties u nd v re djent if there is n edge onneting them. This is sometimes written s u v. v v is djent to nd ut not to. 2 / 27 Neighourhood Neighourhood The open neighourhood

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Tight triangulations: a link between combinatorics and topology

Tight triangulations: a link between combinatorics and topology Tight tringultions: link between ombintoris nd topology Jonthn Spreer Melbourne, August 15, 2016 Topologil mnifolds (Geometri) Topology is study of mnifolds (surfes) up to ontinuous deformtion Complited

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

CS 340, Fall 2016 Sep 29th Exam 1 Note: in all questions, the special symbol ɛ (epsilon) is used to indicate the empty string.

CS 340, Fall 2016 Sep 29th Exam 1 Note: in all questions, the special symbol ɛ (epsilon) is used to indicate the empty string. CS 340, Fll 2016 Sep 29th Exm 1 Nme: Note: in ll questions, the speil symol ɛ (epsilon) is used to indite the empty string. Question 1. [10 points] Speify regulr expression tht genertes the lnguge over

More information

3D convex hulls. Convex Hull in 3D. convex polyhedron. convex polyhedron. The problem: Given a set P of points in 3D, compute their convex hull

3D convex hulls. Convex Hull in 3D. convex polyhedron. convex polyhedron. The problem: Given a set P of points in 3D, compute their convex hull Convex Hull in The rolem: Given set P of oints in, omute their onvex hull onvex hulls Comuttionl Geometry [si 3250] Lur Tom Bowoin College onvex olyheron 1 2 3 olygon olyheron onvex olyheron 4 5 6 Polyheron

More information

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS 1 COMPUTATION & LOGIC INSTRUCTIONS TO CANDIDATES

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS 1 COMPUTATION & LOGIC INSTRUCTIONS TO CANDIDATES UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS COMPUTATION & LOGIC Sturdy st April 7 : to : INSTRUCTIONS TO CANDIDATES This is tke-home exercise. It will not

More information

Distance vector protocol

Distance vector protocol istne vetor protool Irene Finohi finohi@i.unirom.it Routing Routing protool Gol: etermine goo pth (sequene of routers) thru network from soure to Grph strtion for routing lgorithms: grph noes re routers

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to djcent tht do not overlp shre n rm from the sme vertex point re clled djcent ngles. me the djcent cute ngles in this digrm rm is shred y + + me vertex point for + + + is djcent to + djcent simply mens

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

Introduction to Algebra

Introduction to Algebra INTRODUCTORY ALGEBRA Mini-Leture 1.1 Introdution to Alger Evlute lgeri expressions y sustitution. Trnslte phrses to lgeri expressions. 1. Evlute the expressions when =, =, nd = 6. ) d) 5 10. Trnslte eh

More information

GENG2140 Modelling and Computer Analysis for Engineers

GENG2140 Modelling and Computer Analysis for Engineers GENG4 Moelling n Computer Anlysis or Engineers Letures 9 & : Gussin qurture Crete y Grn Romn Joles, PhD Shool o Mehnil Engineering, UWA GENG4 Content Deinition o Gussin qurture Computtion o weights n points

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

Tiling Triangular Meshes

Tiling Triangular Meshes Tiling Tringulr Meshes Ming-Yee Iu EPFL I&C 1 Introdution Astrt When modelling lrge grphis senes, rtists re not epeted to model minute nd repetitive fetures suh s grss or snd with individul piees of geometry

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator.

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator. COMMON FRACTIONS BASIC DEFINITIONS * A frtion is n inite ivision. or / * In the frtion is lle the numertor n is lle the enomintor. * The whole is seprte into "" equl prts n we re onsiering "" of those

More information

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms

Paradigm 5. Data Structure. Suffix trees. What is a suffix tree? Suffix tree. Simple applications. Simple applications. Algorithms Prdigm. Dt Struture Known exmples: link tble, hep, Our leture: suffix tree Will involve mortize method tht will be stressed shortly in this ourse Suffix trees Wht is suffix tree? Simple pplitions History

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2: Solutions. Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2: Solutions. Please write your name in the upper corner of each page. 6045J/18400J: Automt, Computbility nd Complexity Mrh 30, 2005 Quiz 2: Solutions Prof Nny Lynh Vinod Vikuntnthn Plese write your nme in the upper orner of eh pge Problem Sore 1 2 3 4 5 6 Totl Q2-1 Problem

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Line The set of points extending in two directions without end uniquely determined by two points. The set of points on a line between two points

Line The set of points extending in two directions without end uniquely determined by two points. The set of points on a line between two points Lines Line Line segment Perpendiulr Lines Prllel Lines Opposite Angles The set of points extending in two diretions without end uniquely determined by two points. The set of points on line between two

More information

Introduction. Example

Introduction. Example OMS0 Introution isjoint sets n minimum spnning trees In this leture we will strt by isussing t struture use for mintining isjoint subsets of some bigger set. This hs number of pplitions, inluing to mintining

More information

Width and Bounding Box of Imprecise Points

Width and Bounding Box of Imprecise Points Width nd Bounding Box of Impreise Points Vhideh Keikh Mrten Löffler Ali Mohdes Zhed Rhmti Astrt In this pper we study the following prolem: we re given set L = {l 1,..., l n } of prllel line segments,

More information

Table-driven look-ahead lexical analysis

Table-driven look-ahead lexical analysis Tle-riven look-he lexil nlysis WUU YANG Computer n Informtion Siene Deprtment Ntionl Chio-Tung University, HsinChu, Tiwn, R.O.C. Astrt. Moern progrmming lnguges use regulr expressions to efine vli tokens.

More information

Journal of Combinatorial Theory, Series A

Journal of Combinatorial Theory, Series A Journl of Comintoril Theory, Series A 0 (0) Contents lists ville t SiVerse SieneDiret Journl of Comintoril Theory, Series A www.elsevier.om/lote/jt Spheril tiling y ongruent pentgons Hongho Go, Nn Shi,

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 CMPUT Introdution to Computing - Summer 22 %XLOGLQJ&RPSXWHU&LUFXLWV Chpter 4.4 3XUSRVH We hve looked t so fr how to uild logi gtes from trnsistors. Next we will look t how to uild iruits from logi gtes,

More information

Typing with Weird Keyboards Notes

Typing with Weird Keyboards Notes Typing with Weird Keyords Notes Ykov Berchenko-Kogn August 25, 2012 Astrct Consider lnguge with n lphet consisting of just four letters,,,, nd. There is spelling rule tht sys tht whenever you see n next

More information

CS 551 Computer Graphics. Hidden Surface Elimination. Z-Buffering. Basic idea: Hidden Surface Removal

CS 551 Computer Graphics. Hidden Surface Elimination. Z-Buffering. Basic idea: Hidden Surface Removal CS 55 Computer Grphis Hidden Surfe Removl Hidden Surfe Elimintion Ojet preision lgorithms: determine whih ojets re in front of others Uses the Pinter s lgorithm drw visile surfes from k (frthest) to front

More information

Measurement and geometry

Measurement and geometry Mesurement nd geometry 4 Geometry Geometry is everywhere. Angles, prllel lines, tringles nd qudrilterls n e found ll round us, in our homes, on trnsport, in onstrution, rt nd nture. This sene from Munih

More information

CS553 Lecture Introduction to Data-flow Analysis 1

CS553 Lecture Introduction to Data-flow Analysis 1 ! Ide Introdution to Dt-flow nlysis!lst Time! Implementing Mrk nd Sweep GC!Tody! Control flow grphs! Liveness nlysis! Register llotion CS553 Leture Introdution to Dt-flow Anlysis 1 Dt-flow Anlysis! Dt-flow

More information

Chapter 16. Shortest Paths Shortest Weighted Paths

Chapter 16. Shortest Paths Shortest Weighted Paths Chpter 6 Shortet Pth Given grph where ege re lle with weight (or itne) n oure vertex, wht i the hortet pth etween the oure n ome other vertex? Prolem requiring u to nwer uh querie re roly known hortet-pth

More information

Lesson6: Modeling the Web as a graph Unit5: Linear Algebra for graphs

Lesson6: Modeling the Web as a graph Unit5: Linear Algebra for graphs Lesson6: Modeling the We s grph Unit5: Liner Alger for grphs Rene Pikhrdt Introdution to We Siene Prt 2 Emerging We Properties Rene Pikhrdt Institute CC-BY-SA-3. for We Siene nd Tehnologies Modeling the

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas Pge 1 of 8 Ojective: Students will understnd wht it mens to descrie, grph nd write the eqution of prol. Prols Prol: collection of ll points P in plne tht re the sme distnce from fixed point, the focus

More information

Honors Thesis: Investigating the Algebraic Properties of Cayley Digraphs

Honors Thesis: Investigating the Algebraic Properties of Cayley Digraphs Honors Thesis: Investigting the Algebri Properties of Cyley Digrphs Alexis Byers, Wittenberg University Mthemtis Deprtment April 30, 2014 This pper utilizes Grph Theory to gin insight into the lgebri struture

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Convex Hull Algorithms. Convex hull: basic facts

Convex Hull Algorithms. Convex hull: basic facts CG Leture D Conve Hull Algorithms Bsi fts Algorithms: Nïve, Gift wrpping, Grhm sn, Quik hull, Divide-nd-onquer Lower ound 3D Bsi fts Algorithms: Gift wrpping, Divide nd onquer, inrementl Conve hulls in

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

Chapter44. Polygons and solids. Contents: A Polygons B Triangles C Quadrilaterals D Solids E Constructing solids

Chapter44. Polygons and solids. Contents: A Polygons B Triangles C Quadrilaterals D Solids E Constructing solids Chpter44 Polygons nd solids Contents: A Polygons B Tringles C Qudrilterls D Solids E Constructing solids 74 POLYGONS AND SOLIDS (Chpter 4) Opening prolem Things to think out: c Wht different shpes cn you

More information

TOPIC 10 THREE DIMENSIONAL GEOMETRY

TOPIC 10 THREE DIMENSIONAL GEOMETRY TOPIC THREE DIMENSIONAL GEOMETRY SCHEMATIC DIAGRAM Topi Conept Degree of importne Three Dimensionl Geometr (i Diretion Rtios n Diretion Cosines (iicrtesin n Vetor eqution of line in spe & onversion of

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Class Overview. Database Design. Database Design Process. Database Design. Introduction to Data Management CSE 414

Class Overview. Database Design. Database Design Process. Database Design. Introduction to Data Management CSE 414 Introution to Dt Mngement CSE 44 Unit 6: Coneptul Design E/R Digrms Integrity Constrints BCNF Introution to Dt Mngement CSE 44 E/R Digrms ( letures) CSE 44 Autumn 08 Clss Overview Dtse Design Unit : Intro

More information

Math 227 Problem Set V Solutions. f ds =

Math 227 Problem Set V Solutions. f ds = Mth 7 Problem Set V Solutions If is urve with prmetriztion r(t), t b, then we define the line integrl f ds b f ( r(t) ) dr dt (t) dt. Evlute the line integrl f(x,y,z)ds for () f(x,y,z) xosz, the urve with

More information

Notes for Graph Theory

Notes for Graph Theory Notes for Grph Theory These re notes I wrote up for my grph theory clss in 06. They contin most of the topics typiclly found in grph theory course. There re proofs of lot of the results, ut not of everything.

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Can Pythagoras Swim?

Can Pythagoras Swim? Overview Ativity ID: 8939 Mth Conepts Mterils Students will investigte reltionships etween sides of right tringles to understnd the Pythgoren theorem nd then use it to solve prolems. Students will simplify

More information

UNCORRECTED SAMPLE PAGES. Angle relationships and properties of 6geometrical figures 1. Online resources. What you will learn

UNCORRECTED SAMPLE PAGES. Angle relationships and properties of 6geometrical figures 1. Online resources. What you will learn Online resoures uto-mrked hpter pre-test Video demonstrtions of ll worked exmples Intertive widgets Intertive wlkthroughs Downlodle HOTsheets ess to ll HOTmths ustrlin urriulum ourses ess to the HOTmths

More information

Graphs with at most two trees in a forest building process

Graphs with at most two trees in a forest building process Grphs with t most two trees in forest uilding process rxiv:802.0533v [mth.co] 4 Fe 208 Steve Butler Mis Hmnk Mrie Hrdt Astrct Given grph, we cn form spnning forest y first sorting the edges in some order,

More information

Internet Routing. Reminder: Routing. CPSC Network Programming

Internet Routing. Reminder: Routing. CPSC Network Programming PS 360 - Network Progrmming Internet Routing Mihele Weigle eprtment of omputer Siene lemson University mweigle@s.lemson.eu pril, 00 http://www.s.lemson.eu/~mweigle/ourses/ps360 Reminer: Routing Internet

More information

CS453 INTRODUCTION TO DATAFLOW ANALYSIS

CS453 INTRODUCTION TO DATAFLOW ANALYSIS CS453 INTRODUCTION TO DATAFLOW ANALYSIS CS453 Leture Register llotion using liveness nlysis 1 Introdution to Dt-flow nlysis Lst Time Register llotion for expression trees nd lol nd prm vrs Tody Register

More information

UTMC APPLICATION NOTE UT1553B BCRT TO INTERFACE PSEUDO-DUAL-PORT RAM ARCHITECTURE INTRODUCTION ARBITRATION DETAILS DESIGN SELECTIONS

UTMC APPLICATION NOTE UT1553B BCRT TO INTERFACE PSEUDO-DUAL-PORT RAM ARCHITECTURE INTRODUCTION ARBITRATION DETAILS DESIGN SELECTIONS UTMC APPLICATION NOTE UT1553B BCRT TO 80186 INTERFACE INTRODUCTION The UTMC UT1553B BCRT is monolithi CMOS integrte iruit tht provies omprehensive Bus Controller n Remote Terminl funtions for MIL-STD-

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Error Numbers of the Standard Function Block

Error Numbers of the Standard Function Block A.2.2 Numers of the Stndrd Funtion Blok evlution The result of the logi opertion RLO is set if n error ours while the stndrd funtion lok is eing proessed. This llows you to rnh to your own error evlution

More information

Enumerating pseudo-triangulations in the plane

Enumerating pseudo-triangulations in the plane Enumerating pseuo-triangulations in the plane Sergey Bereg Astrat A pseuo-triangle is a simple polygon with exatly three onvex verties. A pseuo-triangulation of a finite point set S in the plane is a partition

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems

Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems Distriuted Systems Priniples nd Prdigms Mrten vn Steen VU Amsterdm, Dept. Computer Siene steen@s.vu.nl Chpter 11: Distriuted File Systems Version: Deemer 10, 2012 2 / 14 Distriuted File Systems Distriuted

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Solutions to Tutorial 2 (Week 9)

Solutions to Tutorial 2 (Week 9) The University of Syney Shool of Mathematis an Statistis Solutions to Tutorial (Week 9) MATH09/99: Disrete Mathematis an Graph Theory Semester, 0. Determine whether eah of the following sequenes is the

More information

Graph Searching & Perfect Graphs

Graph Searching & Perfect Graphs Grph Serhing & Perfet Grphs Lll Moutdid University of Toronto Astrt Perfet grphs, y definition, hve nie struture, tht grph serhing seems to extrt in, often non-inexpensive, mnner. We srth the surfe of

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

s 1 t 4 s 2 4 t 2 a b r 2 r 8 r10 g 4

s 1 t 4 s 2 4 t 2 a b r 2 r 8 r10 g 4 k-pirs Non-Crossing Shortest Pths in Simple Polgon Evnthi Ppdopoulou Northwestern Universit, Evnston, Illinois 60208, USA Astrt. This pper presents n O(n + k) time lgorithm to ompute the set of k non-rossing

More information

Tracking Hidden Agents Through Shadow Information Spaces

Tracking Hidden Agents Through Shadow Information Spaces Trking Hidden Agents Through Shdow Informtion Spes Jingjin Yu Steven M. LVlle jyu@uiu.edu lvlle@uiu.edu Deprtment of Computer Siene University of Illinois Urn, IL 601 USA Astrt This pper ddresses prolems

More information

Problem Final Exam Set 2 Solutions

Problem Final Exam Set 2 Solutions CSE 5 5 Algoritms nd nd Progrms Prolem Finl Exm Set Solutions Jontn Turner Exm - //05 0/8/0. (5 points) Suppose you re implementing grp lgoritm tt uses ep s one of its primry dt strutures. Te lgoritm does

More information

Doubts about how to use azimuth values from a Coordinate Object. Juan Antonio Breña Moral

Doubts about how to use azimuth values from a Coordinate Object. Juan Antonio Breña Moral Douts out how to use zimuth vlues from Coordinte Ojet Jun Antonio Breñ Morl # Definition An Azimuth is the ngle from referene vetor in referene plne to seond vetor in the sme plne, pointing towrd, (ut

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information