1.5 Extrema and the Mean Value Theorem

Size: px
Start display at page:

Download "1.5 Extrema and the Mean Value Theorem"

Transcription

1 .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue f(c) is clled the mximum vlue of f on D. Definition.5. (Glol Minimum). Let f : D! R e function with domin D. Then f hs n glol minimum vlue t point c, iff(c) pple f(x) for ll x D. The vlue f(c) is clled the minimum vlue of f on D. Definition.5.3 (Glol Extreme Vlues). Let f : D! R. The glol mximum nd glol minimum vlues of f re clled the glol extreme vlues of f on D. In this section we will develop tools for finding the extreme vlues of function. The first such tool is the concept of locl mximum or minimum vlues. Definition.5.4 (Locl Mximum). Let f : D! R e function with domin D. Then f hs locl mximum vlue t point c, iff(c) f(x) for ll x close to c. The vlue f(c) is clled locl mximum vlue of f. Definition.5.5 (Locl Minimum). Let f : D! R e function with domin D. Then f hs locl minimum vlue t point c, iff(c) pple f(x) for ll x close to c. The vlue f(c) is clled the locl minimum vlue of f. Definition.5.6 (Locl Extreme Vlues). Let f : D! R e function. The locl mximum nd minimum vlues of f re clled the locl extreme vlues of f on D. Remrk. The term locl is pplied ecuse they re the highest or lowest vlues s compred with vlues nery. Remrk. Not ll functions hve glol mximum vlues or glol minimum vlues. Here re two exmples:. Consider the function f :(0, )! R defined y f(x) =.Bygrphingf, showtht x f hs no glol mximum vlue nd hs no glol minimum vlue.. Consider the function f :(0, )! R defined y f(x) =.Bygrphingf, showthtf x hs no glol mximum vlue nd hs no glol minimum vlue. Theorem.5.7 (Extreme Vlue Theorem). Let f :[, ]! R e continuous function with domin [, ]. Then the following hold:. There is c in [, ] such tht f(c) is the glol mximum vlue.. There is d in [, ] such tht f(d) is the glol minimum vlue. Question. How cn one find the glol extreme vlues of function? See section.5.3. Theorem.5.8. If f hs locl mximum or minimum t c, thenf 0 (c) =0. 5

2 Prolem 30. Consider the function f(x) =x +5x +6. Use Theorem.5.8 s tool for finding locl extreme vlues, if ny exist. Prolem 3. Consider the function f(x) =x 3. Use Theorem.5.8 s tool for finding locl extreme vlues, if ny exist. Prolem 3. Consider the function f(x) = x. Lookingtthegrphofthisfunction, we see tht for c =we hve tht f() is locl minimum vlue. However, Theorem.5.8 will not help us to find it y using the derivtive, ecuse f 0 () is undefined. Remrk. Theorem.5.8 provides tool for finding locl extreme vlues. However, there is no gurntee tht it will lwys work. Definition.5.9. Let f : D! R e function. A point c in D is clled criticl point if one of the following holds:. f 0 (c) =0,or. f 0 (c) is undefined. Theorem.5.0. If function f ttins locl mximum or minimum vlue t point c, thenc is criticl point..5. Finding the Criticl Points Procedure. Given function f, inordertofindthecriticlpointsoff do the following:. Find f 0 (x).. Set f 0 (x) =0ndsolveforx. Iff(x) is defined t ny such solution x, thenyouhve criticlpoint. 3. Determine the vlues of x where f 0 (x) is undefined. If f(x) is defined t ny such vlue of x, thenyouhvecriticlpoint. Prolem 33. Find ll the criticl points of of the following functions. f(x) =x 3 5 (4 x).. f(x) =x 3 +3x 4x f(x) = 3p x. 53

3 .5.3 Finding the Glol Extreme Vlues Procedure (Four Step Method). To find the glol extreme vlues of continuous function f on closed intervl [, ], do the following:. Find the criticl points of f in the open intervl (, ).. Mke tle contining ll the criticl points in the first column nd the vles of f t the corresponding criticl points in the second column. 3. Put the endpoints nd in the ottom of the first column nd the vlues of f t the endpoints in the second column. 4. Locte the mximum vlue in the second column. This is the lrgest vlue of the function f on [, ]. Locte the minimum vlue in the second column. This is the smllest vlue of the function f on [, ]. Prolem 34. Find the glol extreme vlues of the following functions:. f(x) =x 3 3x +on the closed intervl [, 4].. f(x) =(x + x) /3 on the closed intervl [, 3]. Solution. We present solution for item. Let f(x) =x 3 3x +. We will find the extreme vlues of f on the closed intervl [, 4] y following the ove procedure.. Find the criticl points of f in the open intervl (, 4). Since f 0 (x) =3x 6x, we first find the solutions, in the intervl (, 4), totheeqution3x 6x =3x(x ) = 0, which re x =0nd x =. As oth of these roots re in the intervl (, 4), they re criticl points. Since f 0 (x) is defined for ll numers in the intervl (, 4), we conclude tht x =0nd x =re ll of the criticl points.. Mke tle contining ll the criticl points in the first column nd the vles of f t the corresponding criticl points in the second column. Since f(0) = nd f() = 3, we otin the tle Put the endpoints nd 4 in the ottom of the first column nd the vlues of f t the endpoints in the second column. Since f( )= nd f(4) = 7, weotinthe tle Locte the mximum vlue in the second column. Thus, 7 is the lrgest vlue of the function f on [, 4]. Locte the minimum vlue in the second column. Thus, 3 is the smllest vlue of the function f on [, 4]. 54

4 .5.4 The Men Vlue Theorem The Men-Vlue Theorem is key ingredient in the proof of the Fundmentl Theorem of Clculus, which gives connection etween the derivtive nd the re prolem. The Fundmentl Theorem of Clculus nd integrtion re the mjor topics of Clculus II. Theorem.5. (Rolle s Theorem). Let f e differentile on (, ) nd continuous t the endpoints nd. Iff() =f() =0,thenthereistlestonepointc in the intervl (, ) such tht f 0 (c) =0. f (c) = 0 c Figure 3: Illustrtion for Theorem.5. Theorem.5. (Men Vlue Theorem). Let f e differentile on (, ) nd continuous t the endpoints nd. Then there is t lest one point c in the intervl (, ) such tht f 0 (c) = f() f(). f (c) = f() f() f() f() c Figure 4: Illustrtion for Theorem.5. Theorem.5.3. If f 0 (x) =0for ll x in n intervl, then f is constnt on the intervl. Corollry.5.4. If f 0 (x) =g 0 (x) for ll x in n intervl, then f(x) the intervl, where k is some constnt. g(x) =k for ll x on Prolem 35. The following Figure 5 shows the grph of the function f(x) =x 3 + together with the grph of the line y =x +. The men vlue theorem sttes tht there is tngent line to the function f which is prllel to the given line. Find the points,, c such tht f 0 (c) = f() f() is equl to the slope of the line y =x +. 55

5 4 3 y =x + f(x) =x Figure 5: Wht is the slope of the secnt line y =x +?.5.5 Incresing nd Decresing Functions Definition. Let f : I! R e function where I is n intervl. We sy tht f is incresing on I when the following holds: For ll x,x I if x pple x,thenf(x ) pple f(x ). We sy tht f is strictly incresing on I when the following holds: For ll x,x I if x <x,thenf(x ) <f(x ). We sy tht f is decresing on I when the following holds: For ll x,x I if x pple x,thenf(x ) f(x ). We sy tht f is strictly decresing on I when the following holds: For ll x,x I if x <x,thenf(x ) >f(x ). Definition. Let f : I! R e function where I is n intervl. f is monotonic on I if f is either incresing or decresing on I. f is strictly monotonic on I if f is either strictly incresing or strictly decresing on I. Theorem.5.5 (Incresing/Decresing Test). Let f e function which is differentile on the open intervl (c, d): (i) If f 0 (x) 0 for ll x in (c, d), thenf is incresing on the intervl (c, d). (ii) If f 0 (x) > 0 for ll x in (c, d), thenf is strictly incresing on the intervl (c, d). (iii) If f 0 (x) pple 0 for ll x in (c, d), thenf is decresing on the intervl (c, d). (v) If f 0 (x) < 0 for ll x in (c, d), thenf is strictly decresing on the intervl (c, d). Prolem 36. Let f e the function defined y f(x) =x 8x +7. Find the intervls where the function f is strictly incresing nd where it is strictly decresing. Solution. We pply Theorem.5.5. Since f 0 (x) =x 8=(x 4) hs root 4, wefirst focus our ttention of the intervls (, 4) nd (4, ). If x (, 4), thenx<4 nd f 0 (x) =(x 4) < 0. So,f is strictly decresing on (, 4). Ifx (4, ), then4 <xnd f 0 (x) =(x 4) > 0. So,f is strictly incresing on (4, ). Prolem 37. Let T e the temperture function defined y T (x) = 3x +60x +70 were x is the time in seconds. T (x) is the temperture of metl try t time x. Determine when (time intervl) the metl is cooling. 56

6 .5.6 First Derivtive Test We cn use the ove Incresing/Decresing Test to determine if criticl point is locl mximum or locl minimum. Theorem.5.6 (First Derivtive Test). Suppose f is continuous t criticl point c.. f ttins locl mximum vlue t c (see first grph in Figure 6) if () f 0 (x) > 0 ner to the left of c nd () f 0 (x) < 0 ner to the right of c.. f ttins locl minimum vlue t c (see second grph in Figure 6) if () f 0 (x) < 0 ner to the left of c nd () f 0 (x) > 0 ner to the right of c. 3. c is not locl extremum of f if f 0 (x) hs the sme sign ner to the left of c s the sign ner to the right of c. f (c) = 0 f (l) > 0 f (r) < 0 f (l) < 0 f (c) = 0 f (r) > 0 A Locl minimum A Locl mximum Figure 6: First Derivtive Test Prolem 38. Let f e the function defined y f (x) = x3 mximum nd locl minimum vlues of f. Solution. First we find the criticl points of f (x) = x3 f 0 (x) = 3x 6x = 3x(x 3x +. Find ll the locl 3x +. Since ), we hve criticl points 0 nd. We now pply the first derivtive test to ech of these criticl points.. Note tht f 0 (x) = 3x(x ) > 0 ner to the left of 0 nd f 0 (x) = 3x(x ) < 0 ner to the right of 0. So, y Theorem.5.6, f (0) = is locl mximum vlue of f.. Note tht f 0 (x) = 3x(x ) < 0 ner to the left of nd f 0 (x) = 3x(x ) > 0 ner to the right of. So, y Theorem.5.6, f () = 3 is locl minimum vlue of f. 57

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas

Objective: Students will understand what it means to describe, graph and write the equation of a parabola. Parabolas Pge 1 of 8 Ojective: Students will understnd wht it mens to descrie, grph nd write the eqution of prol. Prols Prol: collection of ll points P in plne tht re the sme distnce from fixed point, the focus

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral Lesson - FTC PART 2 Review! We hve seen definition/formul for definite integrl s n b A() = lim f ( i )Δ = f ()d = F() = F(b) F() n i=! where F () = f() (or F() is the ntiderivtive of f() b! And hve seen

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Introduction. Chapter 4: Complex Integration. Introduction (Cont d)

Introduction. Chapter 4: Complex Integration. Introduction (Cont d) Introduction Chpter 4: Complex Integrtion Li, Yongzho Stte Key Lbortory of Integrted Services Networks, Xidin University October 10, 2010 The two-dimensionl nture of the complex plne required us to generlize

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

Section 5.3 : Finding Area Between Curves

Section 5.3 : Finding Area Between Curves MATH 9 Section 5. : Finding Are Between Curves Importnt: In this section we will lern just how to set up the integrls to find re etween curves. The finl nswer for ech emple in this hndout is given for

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

CSCE 531, Spring 2017, Midterm Exam Answer Key

CSCE 531, Spring 2017, Midterm Exam Answer Key CCE 531, pring 2017, Midterm Exm Answer Key 1. (15 points) Using the method descried in the ook or in clss, convert the following regulr expression into n equivlent (nondeterministic) finite utomton: (

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials Product of polynomils Introduction to Progrmming (in C++) Numericl lgorithms Jordi Cortdell, Ricrd Gvldà, Fernndo Orejs Dept. of Computer Science, UPC Given two polynomils on one vrile nd rel coefficients,

More information

ONU Calculus I Math 1631

ONU Calculus I Math 1631 ONU Clculus I Mth 1631 2013-2014 Syllus Mrs. Trudy Thompson tthompson@lcchs.edu Text: Clculus 8 th Edition, Anton, Bivens nd Dvis Prerequisites: C or etter in Pre-Clc nd techer s permission This course

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information

WebAssign Lesson 1-3a Substitution Part 1 (Homework)

WebAssign Lesson 1-3a Substitution Part 1 (Homework) WeAssign Lesson -3 Sustitution Prt (Homework) Current Score : / 3 Due : Fridy, June 7 04 :00 AM MDT Jimos Skriletz Mth 75, section 3, Summer 04 Instructor: Jimos Skriletz. /.5 points Suppose you hve the

More information

4.4. Vertical Differentiation Vertical Differentiation

4.4. Vertical Differentiation Vertical Differentiation Mtilde Mchdo Industril Orgniztion- Mtilde Mchdo Verticl Differentition 4.4. Verticl Differentition The Hotelling model studies situtions of horizontl differentition since for equl prices there re lwys

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

10.2 Graph Terminology and Special Types of Graphs

10.2 Graph Terminology and Special Types of Graphs 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example:

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example: cisc1110 fll 2010 lecture VI.2 cll y vlue function prmeters more on functions more on cll y vlue nd cll y reference pssing strings to functions returning strings from functions vrile scope glol vriles

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY Joe McBride/Stone/Gett Imges Air resistnce prevents the velocit of skdiver from incresing indefinitel. The velocit pproches it, clled the terminl velocit. The development of clculus

More information

Study Sheet ( )

Study Sheet ( ) Key Terms prol circle Ellipse hyperol directrix focus focl length xis of symmetry vertex Study Sheet (11.1-11.4) Conic Section A conic section is section of cone. The ellipse, prol, nd hyperol, long with

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

Name Date Class. cot. tan. cos. 1 cot 2 csc 2

Name Date Class. cot. tan. cos. 1 cot 2 csc 2 Fundmentl Trigonometric Identities To prove trigonometric identit, use the fundmentl identities to mke one side of the eqution resemle the other side. Reciprocl nd Rtio Identities csc sec sin cos Negtive-Angle

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

ASTs, Regex, Parsing, and Pretty Printing

ASTs, Regex, Parsing, and Pretty Printing ASTs, Regex, Prsing, nd Pretty Printing CS 2112 Fll 2016 1 Algeric Expressions To strt, consider integer rithmetic. Suppose we hve the following 1. The lphet we will use is the digits {0, 1, 2, 3, 4, 5,

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

Compilers Spring 2013 PRACTICE Midterm Exam

Compilers Spring 2013 PRACTICE Midterm Exam Compilers Spring 2013 PRACTICE Midterm Exm This is full length prctice midterm exm. If you wnt to tke it t exm pce, give yourself 7 minutes to tke the entire test. Just like the rel exm, ech question hs

More information

Chapter Spline Method of Interpolation More Examples Electrical Engineering

Chapter Spline Method of Interpolation More Examples Electrical Engineering Chpter. Spline Method of Interpoltion More Exmples Electricl Engineering Exmple Thermistors re used to mesure the temperture of bodies. Thermistors re bsed on mterils chnge in resistnce with temperture.

More information

The notation y = f(x) gives a way to denote specific values of a function. The value of f at a can be written as f( a ), read f of a.

The notation y = f(x) gives a way to denote specific values of a function. The value of f at a can be written as f( a ), read f of a. Chpter Prerequisites for Clculus. Functions nd Grphs Wht ou will lern out... Functions Domins nd Rnges Viewing nd Interpreting Grphs Even Functions nd Odd Functions Smmetr Functions Defined in Pieces Asolute

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

LR Parsing, Part 2. Constructing Parse Tables. Need to Automatically Construct LR Parse Tables: Action and GOTO Table

LR Parsing, Part 2. Constructing Parse Tables. Need to Automatically Construct LR Parse Tables: Action and GOTO Table TDDD55 Compilers nd Interpreters TDDB44 Compiler Construction LR Prsing, Prt 2 Constructing Prse Tles Prse tle construction Grmmr conflict hndling Ctegories of LR Grmmrs nd Prsers Peter Fritzson, Christoph

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

Topics in Analytic Geometry

Topics in Analytic Geometry Nme Chpter 10 Topics in Anltic Geometr Section 10.1 Lines Objective: In this lesson ou lerned how to find the inclintion of line, the ngle between two lines, nd the distnce between point nd line. Importnt

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Calculus Differentiation

Calculus Differentiation //007 Clulus Differentition Jeffrey Seguritn person in rowot miles from the nerest point on strit shoreline wishes to reh house 6 miles frther down the shore. The person n row t rte of mi/hr nd wlk t rte

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Network Interconnection: Bridging CS 571 Fall Kenneth L. Calvert All rights reserved

Network Interconnection: Bridging CS 571 Fall Kenneth L. Calvert All rights reserved Network Interconnection: Bridging CS 57 Fll 6 6 Kenneth L. Clvert All rights reserved The Prolem We know how to uild (rodcst) LANs Wnt to connect severl LANs together to overcome scling limits Recll: speed

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

MENSURATION-IV

MENSURATION-IV MENSURATION-IV Theory: A solid is figure bounded by one or more surfce. Hence solid hs length, bredth nd height. The plne surfces tht bind solid re clled its fces. The fundmentl difference between plne

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Companion Mathematica Notebook for "What is The 'Equal Weight View'?"

Companion Mathematica Notebook for What is The 'Equal Weight View'? Compnion Mthemtic Notebook for "Wht is The 'Equl Weight View'?" Dvid Jehle & Brnden Fitelson July 9 The methods used in this notebook re specil cses of more generl decision procedure

More information

Section 2.3 Functions. Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f :A B, is a subset of A B such that

Section 2.3 Functions. Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f :A B, is a subset of A B such that Setion 2.3 Funtions Definition: Let n e sets. funtion (mpping, mp) f from to, enote f :, is suset of suh tht x[x y[y < x, y > f ]] n [< x, y 1 > f < x, y 2 > f ] y 1 = y 2 Note: f ssoites with eh x in

More information

On the Detection of Step Edges in Algorithms Based on Gradient Vector Analysis

On the Detection of Step Edges in Algorithms Based on Gradient Vector Analysis On the Detection of Step Edges in Algorithms Bsed on Grdient Vector Anlysis A. Lrr6, E. Montseny Computer Engineering Dept. Universitt Rovir i Virgili Crreter de Slou sin 43006 Trrgon, Spin Emil: lrre@etse.urv.es

More information

LU Decomposition. Mechanical Engineering Majors. Authors: Autar Kaw

LU Decomposition. Mechanical Engineering Majors. Authors: Autar Kaw LU Decomposition Mechnicl Engineering Mjors Authors: Autr Kw Trnsforming Numericl Methods Eduction for STEM Undergrdutes // LU Decomposition LU Decomposition LU Decomposition is nother method to solve

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example:

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example: Boxes nd Arrows There re two kinds of vriles in Jv: those tht store primitive vlues nd those tht store references. Primitive vlues re vlues of type long, int, short, chr, yte, oolen, doule, nd flot. References

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

Lesson 11 MA Nick Egbert

Lesson 11 MA Nick Egbert Lesson MA 62 Nick Eert Overview In this lesson we return to stndrd Clculus II mteril with res etween curves. Recll rom irst semester clculus tht the deinite interl hd eometric menin, nmel the re under

More information

CHAPTER 5 Spline Approximation of Functions and Data

CHAPTER 5 Spline Approximation of Functions and Data CHAPTER 5 Spline Approximtion of Functions nd Dt This chpter introduces number of methods for obtining spline pproximtions to given functions, or more precisely, to dt obtined by smpling function. In Section

More information

Algorithm Design (5) Text Search

Algorithm Design (5) Text Search Algorithm Design (5) Text Serch Tkshi Chikym School of Engineering The University of Tokyo Text Serch Find sustring tht mtches the given key string in text dt of lrge mount Key string: chr x[m] Text Dt:

More information