Computer Graphics! LECTURE 4 HIERARCHICAL MODELING INTRODUCTION TO 3D CONCEPTS. Doç. Dr. Mehmet Gokturk Gebze Institute of Technology!

Size: px
Start display at page:

Download "Computer Graphics! LECTURE 4 HIERARCHICAL MODELING INTRODUCTION TO 3D CONCEPTS. Doç. Dr. Mehmet Gokturk Gebze Institute of Technology!"

Transcription

1 Computer Graphics! LECTURE 4 HIERARCHICAL MODELING INTRODUCTION TO 3D CONCEPTS Doç. Dr. Mehmet Gokturk Gebze Institute of Technology!

2 Structure Concept! In many graphics applications, it is necessary to be able to modify parts of the whole model/picture. Therefore hierachical structures are used. All labeled set of output primitives are called structure: glbegin(gl_polygon); glvertex3f (0.25, 0.25, 0.0); glvertex3f (0.75, 0.25, 0.0); glvertex3f (0.75, 0.75, 0.0); glvertex3f (0.25, 0.75, 0.0); glend();! M. Gokturk 2

3 Structure Concept! Editing advantages Structure attributes can be set within structure Applying transformations Labeling structures! M. Gokturk 3

4 Example (opengl)! /* Draw the field lines */! r1 = 12;! r2 = 16;! for (j=0;j<360;j+=20) {! glpushmatrix();! glrotatef((double)j,0.0,1.0,0.0);! glbegin(gl_line_strip);! glcolor3f(grey.r,grey.g,grey.b);! for (i=-140;i<140;i++) {! x = r1 + r1 * cos(i*dtor);! y = r2 * sin(i*dtor);! z = 0;! glvertex3f(x,y,z);! }! glend();! glpopmatrix();! }! M. Gokturk 4

5 Basic Modeling Concepts! Engineering Architecture Design Economic and Social The creation and manipulation of a system representation is called modeling Any single representation is called a model of the system (can be descriptive or graphical) Graphical models are often called as geometric models! M. Gokturk 5

6 Symbols and Instances! Component parts of the system are displayed as geometric structures, called symbols Each occurrence of a symbol within a model is called an instance of that symbol! Model of a logic circuit M. Gokturk 6

7 Symbol Hieracrchies! Many models can be organized as a hierarchy of symbols The basic building blocks for the model are defined as simple geometric shapes appropriate to the type of model under consideration The basic symols can be used to form composite objects, called modules They can be grouped to form higher-level modules! M. Gokturk 7

8 Symbol Hierarchies - Example! Logic circuit AND NOR OR AND One level hierarchical description of a circuit formed with logic gates M. Gokturk 8

9 Symbol Hierarchies Example 2! FACILITY workarea1 workarea2... TABLE CHAIR Cabinet TABLE Shelves Cabinet Desk... A two-level hierarchical description of a facility layout M. Gokturk 9

10 3D Concepts! 3D display methods! M. Gokturk 10

11 Three Dimensional Space! The real space is three dimensional Human eye expects a 3D picture Do not confuse 3D with StereoVision Positioning of objects are done in 3D space! M. Gokturk 11

12 Three Dimensional Display Methods! Screen is a 2D flat surface 3D coordinates must be tranformed into 2D viewport coordinates in display plane PROJECTION! M. Gokturk 12

13 Camera View! Reorient the entire scene so the the camera is located and aligned at the origin We need to perform rotations and translations so that the camera is aligned with the coordinate frames M. Gokturk 13

14 Parallel Projection! Project Points on the object surface along the paralle lines onto the display plane Used in CAD and technical drawing! M. Gokturk 14

15 Mapping to Pixel Coordinates! This process is often called the viewport transformation M. Gokturk 15

16 Perspective Transformation! Artists (Donatello,Brunelleschi and Da Vinci) during renaissance discovered the importance of perspective for making images appear realistic. Perspective causes objects nearer to the viewer to appear larger than the same object would appear farther away. M. Gokturk 16

17 Perspective Projection! Project points to display plane along converging paths Objects farther from the viewing poisition appear smaller Parallel lines are projected as non-parallel lines, converging at some distant point Vanishing point Perspective projection is more realistic Human eye perceives the world with perspective projection! M. Gokturk 17

18 Depth Cueing! Distant objects are dimmed slightly Effect of haze, air and scattering Color can be changed slightly as well! M. Gokturk 18

19 Visible Line and Surface Identification! Depth relationship in a wireframe display is enhanced Highlight visible lines Use dashed lines for nonvisible Removing altogether sometimes is not good Visible Surface: Hidden surfaces are obscured Various algorithms are present and still developing! M. Gokturk 19

20 Surface Rendering! Setting surface intensity of objects according to the lighting condition Polygon rendering and Surface rendering (OpenGL) using scan line methods Ray tracing pixel by pixel Radiosity techniques by volume! M. Gokturk 20

21 Exploded and Cutaway Views! Used in CAD and technical drawing Relationships between parts of the objects are clearer Engine parts! M. Gokturk 21

22 3D and Stereoscopic Views! 2 Different viewing positions are displayed to each eye separately! HOLOVIDEO (holographic autostereo display) M. Gokturk 22

23 Caves and Fishbowls! M. Gokturk 23

24 3D Object Representations! Objects in 3D world must be modeled and recorded to the computer memory in order to be processed Representing complex objects is usually a challenge Performance considerations! M. Gokturk 24

25 Polygon Surfaces! Enclose object within the polygon surfaces Not a unique model for the object Simple and fast Lots of polygons Polygon Mesh Easy to display in wireframe during design stage! M. Gokturk 25

26 V1 Polygon Tables! Vertex Table E1 E3 E6 Edge Table Surface Table! V2 E2 E4 V3 E5 V5 V4 V1 V2 V3 VERTEX TABLE x1,y1,z1 x2,y2,z2 x3,y3,z3 E1 E2 E3 EDGE TABLE V1,V2 V2,V3 V3,V1 POLYGON-SURFACE TABLE S1 S2 E1,E2,E3 E3,E4,E5,E6 V4 x4,y4,z4 E4 V3,V4 V5 x5,y5,z5 E5 V4,V5 E6 V5,V1 M. Gokturk 26

27 Wireframe representation! Represent as set of points and lines with limited topological information (a graph) Can be ambiguous - Non-unique Question: Are there other objects with this wireframe? Not used for internal representation Used often for fast display in interactive systems! M. Gokturk 27

28 Plane Equations! Ax+By+Cz+D=0 where x,y,z is any point on a plane Three noncollinear points can determine A,B,C,D Select (x 1,y 1,z 1 ),(x 2,y 2,z 2 ),(x 3,y 3,z 3 )! M. Gokturk 28

29 Plane Equations! A=y 1 (z 2 -z 3 )+y 2 (z 3 -z 1 )+y 3 (z 1 -z 2 ) B=z 1 (x 2 -x 3 )+z 2 (x 3 -x 1 )+z 3 (x 1 -x 2 ) C=x 1 (y 2 -y 3 )+x 2 (y 3 -y 1 )+x 3 (y 1 -y 2 ) D= -x 1 (y 2 z 3 -y 3 z 2 )-x 2 (y 3 z 1 -y 1 z 3 )-x 3 (y 1 z 2 -y 2 z 1 ) As vertex values and other information are entered into the polygon data structure, values for A, B,C and D are computed for each polygon and then can be stored with other polygon data.! M. Gokturk 29

30 Normal Vector! N=(A,B,C)! N M. Gokturk 30

31 Normal Vector! 3 vertex calculation! V 3 N V 1 V 2 N= (V 2 -V 1 )X(V 3 -V 2 ) N= (V 2 -V 1 )X(V 3 -V 1 ) N.P = - D M. Gokturk 31

32 Inside - Outside! If Ax + By + Cz + D < 0 point is inside If Ax + By + Cz + D > 0 point is outside If Ax + By + Cz + D = 0 point is on the plane! N M. Gokturk 32

33 Polygon Meshes! Construct the object from triangles or quadrilaterals by tiling Most models are constructed this way Easy to work with Easy to render Rates about 300 million triangles/sec available with ordinary graphics cards for PC computers! M. Gokturk 33

34 Polygon Meshes -triangular meshes-! Free form/boolean disadvantages: complexity of description & algorithms Representing a model as closed triangular mesh is EASY Operations & Description format very simple Base representation for scanned data Most popular web representation! M. Gokturk 34

35 Why triangular meshes?! Rasterizing triangles Interpolating parameters Post-triangle rendering Data structure 3 vertices Can approximate arbitrary shapes! M. Gokturk 35

36 Curved Lines and Surfaces! Quadric Surfaces Sphere Ellipsoid Torus Superquadrics (play with mode parameters) Superellipse Superellipsoid! M. Gokturk 36

37 Sphere! z P(x,y,z) φ y x θ M. Gokturk 37

38 Ellipsoid rz rx ry z P(x,y,z) φ y x θ M. Gokturk 38

39 Blobby Objects! Blobbiness Molecular shapes Gravitational, proximity conditions Field conditions Gaussian density functions! M. Gokturk 39

40 Blobby Objects (example-metaballs)! M. Gokturk 40

41 Blobby Objects - Example! M. Gokturk 41

42 Polynomials! Good candidates for freeform shape representation! M. Gokturk 42

43 Splines! Original spline device used in technical drawing Spline surfaces Control points Interpolation (Bezier) Approximation (Cubic)! M. Gokturk 43

44 Splines: Interpolation! When polynomial sections are fitted so that the curve passes through each control point, the resulting curve is said to interpolate the set of control points. Interpolation curves are commonly used to digitize drawings or to specify animation paths! M. Gokturk 44

45 Splines: Approximation When the polynomials are fitted to the general control point path without necessarily passing through any control point, the resulting curve is said to approximate the set of control points. Used as design tools to structure object surfaces M. Gokturk 45

46 Parametric Continuity Conditions! Non continuous C -1 Zero order C 0 First order C 1 Second order C 2 Nth order C n! nth DERIVATIVES ARE EQUAL FROM BOTH SIDES M. Gokturk 46

47 Spline Specifications! X(u) = a x u 3 + b x u 2 + c x u + d x, 0<= u <= 1! p0 p1 u=0 p u=1 constraints Basis matrix M. Gokturk 47

48 Hermite Interpolation! 4 Equations requires 4 known boundary conditions 2 endpoints with 2 coordinates and 2 derivatives! p k p k+1 M. Gokturk 48

49 Hermite Interpolation! p k p k+1 M. Gokturk 49

50 Hermite Interpolation! M H M. Gokturk 50

51 Hermite Interpolation! We use the following formula to calculate points on the curve as u goes from 0 to 1 (for all x,y and z):! M. Gokturk 51

52 Other Types of Splines! Lagrange (Interpolation Scheme) Kochanek-Bartel (Interpolation Scheme) Catmull-Rom (Interpolation Scheme) Bézier (Approximation Scheme) B-spline (Approximation Scheme) Beta Splines (Interpolation Scheme) Cardinal Splines (Interpolation Scheme) Rational Splines (Approximation Scheme) These will be studied in COMP304! M. Gokturk 52

53 Sweep Representations! Useful for objects that possess translational, rotational, or other symmetries Specify a 2D shape and a swepp that moves the shape through a reion of space! Helix tube created by sweeping circle along helix Horn created by adding scaling to the sweep. M. Gokturk 53

54 Constructive Solid Geometry - CSG! Regular set of BOOLEAN operations - union, intersection, subtraction, and complement:! M. Gokturk 54

55 CSG Trees! To construct complex objects Perform boolean operations re-cursively! M. Gokturk 55

56 Octrees! Used to subdivide space recursively Hieracrhical tree structure representing solid objects Each node corresponds to a space in 3D space Convenient way to store large object information in 3D EXAMPLE: Medical imaging data 2D version is called Quadtree! M. Gokturk 56

57 Octrees!? M. Gokturk 57

58 Octrees M. Gokturk 58

59 Octrees M. Gokturk 59

60 Octrees M. Gokturk 60

61 Octrees - numbering! Construct the tree hierarchically Question: why is boolean operatins among voxels is easy? M. Gokturk 61

62 Quadtrees! Data structure for storage of 2D data by successive subdivision of regions into quadrants Leaf quadrants contain uniform data (full/empty) Non-uniform quadrants are subdivided further! M. Gokturk 62

63 Fractal Based Modeling! Self Similarity Function Randomized Fractals Simple Example Start with a simple line! M. Gokturk 63

64 Fractal based modeling! Insert a triangle in the midpoint! M. Gokturk 64

65 Fractal based modeling Do the same for new lines M. Gokturk 65

66 Fractal based modeling Continue until you rech max resolution point or until you exhaust! Endless posibilities! M. Gokturk 66

67 Fractal Based Modeling - Examples! x = y = Zero(12000); for i = 2 to do x[i] = y[i-1]*(1 + Sin(0.7*x[i-1]/Rad)) - 1.2*Sqrt(Abs(x[i-1])); y[i] = x[i-1]; enddo plot('equal', x, y, 'dots'); M. Gokturk 67

68 Fractal Based Modeling! Nature has a lot of fractal structures! Real picture of a califlower (Karnıbahar in Turkish) M. Gokturk 68

69 Other methods! Particle Systems Physically Based Modeling Data visualization modeling - These will be studied in future courses! M. Gokturk 69

70 Questions?! Homeworks? You must read the book! Get a good grade, not a passing grade.! M. Gokturk 70

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Second degree equations - quadratics. nonparametric: x 2 + y 2 + z 2 = r 2

Second degree equations - quadratics. nonparametric: x 2 + y 2 + z 2 = r 2 walters@buffalo.edu CSE 480/580 Lecture 20 Slide 1 Three Dimensional Representations Quadric Surfaces Superquadrics Sweep Representations Constructive Solid Geometry Octrees Quadric Surfaces Second degree

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

SAZ4C COMPUTER GRAPHICS. Unit : 1-5. SAZ4C Computer Graphics

SAZ4C COMPUTER GRAPHICS. Unit : 1-5. SAZ4C Computer Graphics SAZ4C COMPUTER GRAPHICS Unit : 1-5 1 UNIT :1 SYLLABUS Introduction to computer Graphics Video display devices Raster scan Systems Random Scan Systems Interactive input devices Hard copy devices Graphics

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Surface and Solid Geometry. 3D Polygons

Surface and Solid Geometry. 3D Polygons Surface and Solid Geometry D olygons Once we know our plane equation: Ax + By + Cz + D = 0, we still need to manage the truncation which leads to the polygon itself Functionally, we will need to do this

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

3.2 THREE DIMENSIONAL OBJECT REPRESENTATIONS

3.2 THREE DIMENSIONAL OBJECT REPRESENTATIONS 3.1 THREE DIMENSIONAL CONCEPTS We can rotate an object about an axis with any spatial orientation in threedimensional space. Two-dimensional rotations, on the other hand, are always around an axis that

More information

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming

L1 - Introduction. Contents. Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming L1 - Introduction Contents Introduction of CAD/CAM system Components of CAD/CAM systems Basic concepts of graphics programming 1 Definitions Computer-Aided Design (CAD) The technology concerned with the

More information

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK

CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401 Computer Graphics CS2401 COMPUTER GRAPHICS ANNA UNIV QUESTION BANK CS2401- COMPUTER GRAPHICS UNIT 1-2D PRIMITIVES 1. Define Computer Graphics. 2. Explain any 3 uses of computer graphics applications.

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING LIST OF QUESTIONS YEAR/SEM.: III/V STAFF NAME: T.ELANGOVAN SUBJECT NAME: Computer Graphics SUB. CODE:

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics James D. Foley Georgia Institute of Technology Andries van Dam Brown University Steven K. Feiner Columbia University John F. Hughes Brown University Richard L. Phillips

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Models and Architectures

More information

3D Object Representation

3D Object Representation 3D Object Representation Object Representation So far we have used the notion of expressing 3D data as points(or vertices) in a Cartesian or Homogeneous coordinate system. We have simplified the representation

More information

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

End-Term Examination

End-Term Examination Paper Code: MCA-108 Paper ID : 44108 Second Semester [MCA] MAY-JUNE 2006 Q. 1 Describe the following in brief :- (3 x 5 = 15) (a) QUADRATIC SURFACES (b) RGB Color Models. (c) BSP Tree (d) Solid Modeling

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Computer Graphics. Prof. Feng Liu. Fall /21/2016

Computer Graphics. Prof. Feng Liu. Fall /21/2016 Computer Graphics Prof. Feng Liu Fall 2016 http://www.cs.pdx.edu/~fliu/courses/cs447/ 11/21/2016 Last time Polygon Mesh and Modeling 2 Today Modeling Technologies Final Exam: 12:30-2:00, December 7, 2016

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY CS2401 COMPUTER GRAPHICS QUESTION BANK CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS2401 COMPUTER GRAPHICS QUESTION BANK PART A UNIT I-2D PRIMITIVES 1. Define Computer graphics. 2. Define refresh

More information

3D Modeling: Solid Models

3D Modeling: Solid Models CS 430/536 Computer Graphics I 3D Modeling: Solid Models Week 9, Lecture 18 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

Introduction to Geometry. Computer Graphics CMU /15-662

Introduction to Geometry. Computer Graphics CMU /15-662 Introduction to Geometry Computer Graphics CMU 15-462/15-662 Assignment 2: 3D Modeling You will be able to create your own models (This mesh was created in Scotty3D in about 5 minutes... you can do much

More information

Computer Graphics and Visualization. Graphics Systems and Models

Computer Graphics and Visualization. Graphics Systems and Models UNIT -1 Graphics Systems and Models 1.1 Applications of computer graphics: Display Of Information Design Simulation & Animation User Interfaces 1.2 Graphics systems A Graphics system has 5 main elements:

More information

COMPUTER GRAPHICS, MULTIMEDIA AND ANIMATION, Second Edition (with CD-ROM) Malay K. Pakhira

COMPUTER GRAPHICS, MULTIMEDIA AND ANIMATION, Second Edition (with CD-ROM) Malay K. Pakhira Computer Graphics, Multimedia and Animation SECOND EDITION Malay K. Pakhira Assistant Professor Department of Computer Science and Engineering Kalyani Government Engineering College Kalyani New Delhi-110001

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionally left blank. Interactive Computer Graphics with WebGL, Global

More information

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes

11/1/13. Polygon Meshes and Implicit Surfaces. Shape Representations. Polygon Models in OpenGL. Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 7 and Constructive Solid Geometry [Angel Ch. 12.1-12.3] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible,

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Modeling 3D Objects: Part 2

Modeling 3D Objects: Part 2 Modeling 3D Objects: Part 2 Patches, NURBS, Solids Modeling, Spatial Subdivisioning, and Implicit Functions 3D Computer Graphics by Alan Watt Third Edition, Pearson Education Limited, 2000 General Modeling

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

CEng 477 Introduction to Computer Graphics Fall 2007

CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection Visible surface detection or hidden surface removal. Realistic scenes: closer objects occludes the

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Shape modeling Modeling technique Shape representation! 3D Graphics Modeling Techniques

Shape modeling Modeling technique Shape representation! 3D Graphics   Modeling Techniques D Graphics http://chamilo2.grenet.fr/inp/courses/ensimag4mmgd6/ Shape Modeling technique Shape representation! Part : Basic techniques. Projective rendering pipeline 2. Procedural Modeling techniques Shape

More information

COURSE DELIVERY PLAN - THEORY Page 1 of 6

COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : Department of Computer Science and Engineering Regulation : 2013 Sub. Code

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

Modeling. Simulating the Everyday World

Modeling. Simulating the Everyday World Modeling Simulating the Everyday World Three broad areas: Modeling (Geometric) = Shape Animation = Motion/Behavior Rendering = Appearance Page 1 Geometric Modeling 1. How to represent 3d shapes Polygonal

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Object representation

Object representation Object representation Geri s Game Pixar 1997 Subdivision surfaces Polhemus 3d scan Over 700 controls 2 Computer Graphics Quick test #1 Describe the picture Graphical systems, visualization and multimedia

More information

Review. Stephen J. Guy

Review. Stephen J. Guy Review Stephen J. Guy Overview Pixar short Review last class Review course Area of Graphics Image Processing Rendering Modeling Animation Misc Area of Graphics Image Processing Rendering Modeling Animation

More information

Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

More information

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Tables We specify a polygon surface with a set of vertex coordinates and associated attribute

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A. Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CG-IDC slides for this course were created by Toky & Hagit Hel-Or 1 CG-IDC 2 Exercise and Homework The exercise

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information

3D Modeling: Surfaces

3D Modeling: Surfaces CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM NAME: Login name: Computer Science 46 Midterm 3//4, :3PM-:5PM This test is 5 questions, of equal weight. Do all of your work on these pages (use the back for scratch space), giving the answer in the space

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 Polygon Meshes and Implicit Surfaces Polygon Meshes Implicit Surfaces Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California 1 Modeling

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 and Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible, but how

More information

Werner Purgathofer

Werner Purgathofer Einführung in Visual Computing 186.822 Visible Surface Detection Werner Purgathofer Visibility in the Rendering Pipeline scene objects in object space object capture/creation ti modeling viewing projection

More information

EECS 487, Fall 2005 Exam 2

EECS 487, Fall 2005 Exam 2 EECS 487, Fall 2005 Exam 2 December 21, 2005 This is a closed book exam. Notes are not permitted. Basic calculators are permitted, but not needed. Explain or show your work for each question. Name: uniqname:

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Ray Tracing. CS334 Fall Daniel G. Aliaga Department of Computer Science Purdue University Ray Tracing CS334 Fall 2013 Daniel G. Aliaga Department of Computer Science Purdue University Ray Casting and Ray Tracing Ray Casting Arthur Appel, started around 1968 Ray Tracing Turner Whitted, started

More information

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 Computer graphics Assignment 5 1 Overview Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 In this assignment you will implement the camera and several primitive objects for a ray tracer. We

More information

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation.

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation. Code No: R05221201 Set No. 1 1. (a) List and explain the applications of Computer Graphics. (b) With a neat cross- sectional view explain the functioning of CRT devices. 2. (a) Write the modified version

More information

Chapter 4-3D Modeling

Chapter 4-3D Modeling Chapter 4-3D Modeling Polygon Meshes Geometric Primitives Interpolation Curves Levels Of Detail (LOD) Constructive Solid Geometry (CSG) Extrusion & Rotation Volume- and Point-based Graphics 1 The 3D rendering

More information

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation CS 352: Computer Graphics Hierarchical Graphics, Modeling, And Animation Chapter 9-2 Overview Modeling Animation Data structures for interactive graphics CSG-tree BSP-tree Quadtrees and Octrees Visibility

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 HAND OUT 1 : INTRODUCTION TO 3D

COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 HAND OUT 1 : INTRODUCTION TO 3D COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 INSTRUCTORS E-MAIL ADDRESS OFFICE HOURS Özgür Genca ozgurgenca@gmail.com part time Tuba Doğu tubadogu@gmail.com part time Şebnem Yanç Demirkan sebnem.demirkan@gmail.com

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

CS 465 Program 4: Modeller

CS 465 Program 4: Modeller CS 465 Program 4: Modeller out: 30 October 2004 due: 16 November 2004 1 Introduction In this assignment you will work on a simple 3D modelling system that uses simple primitives and curved surfaces organized

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Computer Graphics Instructor: Brian Curless CSEP 557 Autumn 2016 Homework #2 Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Assigned: Wednesday, Nov 16 th Due: Wednesday, Nov 30

More information

Ray Tracing Basics I. Computer Graphics as Virtual Photography. camera (captures light) real scene. photo. Photographic print. Photography: processing

Ray Tracing Basics I. Computer Graphics as Virtual Photography. camera (captures light) real scene. photo. Photographic print. Photography: processing Ray Tracing Basics I Computer Graphics as Virtual Photography Photography: real scene camera (captures light) photo processing Photographic print processing Computer Graphics: 3D models camera model (focuses

More information

AutoCAD DWG Drawing Limitations in SAP 3D Visual Enterprise 9.0 FP03

AutoCAD DWG Drawing Limitations in SAP 3D Visual Enterprise 9.0 FP03 AutoCAD DWG Drawing Limitations in SAP 3D Visual Enterprise 9.0 FP03 AutoCAD Import Limitations The following is a list of AutoCAD features that will not give an expected viewable when using SAP 3D Visual

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

2D Drawing Primitives

2D Drawing Primitives THE SIERPINSKI GASKET We use as a sample problem the drawing of the Sierpinski gasket an interesting shape that has a long history and is of interest in areas such as fractal geometry. The Sierpinski gasket

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches: Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

Computer Graphics Fundamentals. Jon Macey

Computer Graphics Fundamentals. Jon Macey Computer Graphics Fundamentals Jon Macey jmacey@bournemouth.ac.uk http://nccastaff.bournemouth.ac.uk/jmacey/ 1 1 What is CG Fundamentals Looking at how Images (and Animations) are actually produced in

More information

4.5 VISIBLE SURFACE DETECTION METHODES

4.5 VISIBLE SURFACE DETECTION METHODES 4.5 VISIBLE SURFACE DETECTION METHODES A major consideration in the generation of realistic graphics displays is identifying those parts of a scene that are visible from a chosen viewing position. There

More information