E 332L Microprocessors Lab (Fall 2007) Week 3

Size: px
Start display at page:

Download "E 332L Microprocessors Lab (Fall 2007) Week 3"

Transcription

1 E 332L Microprocessors Lab (Fall 2007) Week 3 Objective: In this lab, you will learn how to interface to LEDs, Seven Segment LEDs, and switches. You will also learn how to write assembly suoutines. Note 1: We are using a different Nios II processor configuration and setup - please follow the following instructions to download the attached FPGA programming file (lab2.sof) and new processor description file (lab2.ptf) for Altera Debug Client Note 2: Do not use the example.sof and system.ptf files from weeks 1 & 2. Note 3: Download lab2.sof and lab2.ptf to your name folder (without spaces in folder name) in D drive. Part 1: Download lab2.sof to Altera DE 2 Double click on Quartus II 7.1 ( ) on the desktop. If the icon is not available, you can access Quartus 7.1 from Start All Programs Altera Quartus II 7.1 Quartus II 7.1 (32-bit). It is time to power-up the DE2 board and connect the USB Blaster cable from the DE2 board to the computer USB port. Now click on the FPGA download button ( ) (should be the third button from the right). You should get the following screen. If you don t, please get help from the lab instructor. Now click on Hardware Setup button, At Currently selected hardware, select USB Blaster [USB-?]. Click Close. The message next to the Hardware Setup button should change from No Hardware to USB-Blaster [USB-?]. Now click on the Add File button, follow the screen to select lab2.sof file you downloaded to D drive. Check the Program/Configure box and click the Start button to program the FPGA. Page 1 of 6

2 Part 2: Generate the Nios II Processor System Description File (system.h) Once you have configured the Altera DE2 board with lab2.sof, start Altera Debug Client using lab2.ptf. At the Nios II System Configure screen, use the following setup: section: Start offset in device 0.data section: Start offset in device 0 Enter the following program (eak.s) using a text editor. The purpose for this program is to cause the Altera Debug Client to produce a file (system.h)for us. Just compiling this program will cause the following file to be created.\app_software\include\. lab2.ptf describes the Nios II processor configuration (the processor features, type, and what devices are available) from a hardware perspective. Using lab2.ptf, Altera Debug Client generates system.h, which is a software perspective of what s in the Nios II processor. The software (in this case, assembly programming language) will know how to interface to the hardware. eak.s # new code goes here : eak Now start a new assembly file with filename lab2_config.s and copy the following into the newly created assembly file. Using system.h, find the device address and complete lab2_config. This file contains the addresses of processor interfaces. It will be used by other assembly programs that you will write for this lab. By including and referencing to this file, you don t have to type these into every program. This means that we have only one location to change if any changes are necessary..equ MEMORY_START,???.equ MEMORY_SIZE,???.equ STACK,MEMORY_START+MEMORY_SIZE.equ LEDS_GREEN,???.equ LEDS_RED,???.equ BUTTONS,???.equ SWITCHES,???.equ SEVEN_SEG,???.equ SYSID,???.equ JTAG_UART,??? Page 2 of 6

3 Part 3: Template File The following is the assembly template file for this lab. # file: lab2_v1.s # author: Your Name # date: 9/8/2007 # this is where your program logic goes : eak Part 4: Suoutines Compare Code 1 and Code 2 below. Note that suoutine modules do not need all of the startup code as the main routine. Observe that values are passed to suoutine via r4 and values are urned via r2. Now, try to send the data from switches to seven segment LEDs. # file: lab2_dev1.s loop: mov SWITCHES_Get r4,r2 LEDR_Set loop_end: loop : eak SWITCHES_Get: ldwio LEDR_Set: stwio Code 1 r3,switches r2,0(r3) r3,leds_red r4,0(r3) Page 3 of 6

4 # file: lab2_dev2.s loop: mov loop_end: : eak Code 2 SWITCHES_Get r4,r2 LEDR_Set loop # file: SWITCHES.s.global SWITCHES_Get SWITCHES_Get: r3,switches ldwio r2,0(r3) # file: LEDR.s.global LEDR_Set LEDR_Set: r3,leds_red stwio r4,0(r3) You are to learn how suoutines work from Code 1 and Code 2. What the main differences between Code 1 and Code 2? Once you have done so, you need to create a new assembly suoutine to interface to the green LEDs and tie in to the main assembly program. Run and observe Code 3. sp,stack /* Setup the stack and frame pointer */ mov fp,sp /* registers. */ movi r4,6 lab2_sum_init loop: beq addi loop_end: r4,r0,loop_end lab2_sum_add r4,r4,-1 loop : eak lab2_sum_get Code 3: lab2_main.s Page 4 of 6

5 .global lab2_sum_init lab2_sum_init: r2,lab2_sum stw r0,0(r2).global lab2_sum_add lab2_sum_add: r2,lab2_sum ldw r3,0(r2) add r3,r3,r4 stw r3,0(r2).global lab2_sum_get lab2_sum_get: r2,lab2_sum ldw r2,0(r2).data lab2_sum:.word 0 Code 3: lab2_sub.s Think about lab2_sum variable and the scope of access (can lab2_sum modifiable directly from lab2_main.s?). Part 5: Macros Insert the given assembly code into the template in Part 3. This assembly programs sets up a 32-bit number using the instruction. The next two instructions shift the 32-bit register and mask with 0b1111 (same as 0xf). This gets 4-bit ( 6 ) out of the 32-bit number. r4,0x srli r2, r4, 8 andi r2, r2, 0b1111 The following assembly code sets up a 32-bit number using insruction again, then replace 6 with b. movi r2,0x r4,0xab andi r4, r4, 0b1111 slli r4, r4, 8 movi r3, 0b1111 slli r3, r3, 8 nor r3, zero, r3 and r2, r2, r3 or r2, r2, r4 Now copy the following assembly code into the template again. Run and observe. Now get and replace different bits. The macros needed to be inserted before the directive in the template. Page 5 of 6

6 .macro getbits rego, regi, offset, mask srli \rego, \regi, \offset andi \rego, \rego, \mask m.macro putbits rego, regi, regw, offset,mask andi \regi, \regi, \mask slli \regi,\regi,\offset movi \regw,\mask slli \regw, \regw, \offset nor \regw, zero, \regw and \rego,\rego,\regw or \rego,\rego,\regi m r4,0x getbits r2,r4,8,0xf movi r3,0xa putbits r4,r3,r5,8,0xf Assignment Due (11:59:59 pm of September 17, 2007): Create a new assembly file (using filename mymacros.s) and copy the previous two macros into this newly created file. Your job is to create three other macros: increment, decrement, and divide with remainder (for divide with remainder, the result should be in r2 and remainder in r3). Hint: for divide and remainder, refer to Nios II Processor Reference Handbook The macro templates are:.macro incr reg,.macro decr reg, and.macro divr number, divisor Note: number and divisor are registers Page 6 of 6

1 Address space with memory mapped devices

1 Address space with memory mapped devices 1 Address space with memory mapped devices In systems with memory mapped devices, the devices appear as regions of memory. The addresses that these devices occupy are determined by the system designer.

More information

Part 1: Start up. Part 2: Add Instruction. Part 3: Another way to get data into a register

Part 1: Start up. Part 2: Add Instruction. Part 3: Another way to get data into a register Part 1: Start up Power on the DE2 (Lab 0 showed you how), and begin the project by doing the following: Create new project directory Copy lab1sof and lab1ptf to the new directory Copy code provided (lab01?s)

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercise 6 Using C code with the Nios II Processor This is an exercise in using C code with the Nios II processor in a DE-Series computer system. We will use the Intel FPGA Monitor Program software

More information

Last Name (in case pages get detached): UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, MARCH 2011

Last Name (in case pages get detached): UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, MARCH 2011 Page 1 of 13 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, MARCH 2011 ECE243H1 S COMPUTER ORGANIZATION Exam Type: D Duration: 2 Hours Prof.s Anderson, Enright Jerger,

More information

Detailed Nios II Exception Process

Detailed Nios II Exception Process Detailed Nios II Exception Process When an exception is triggered, the CPU does the following steps automatically: 1. Copy the contents of status to estatus to save pre-exception state 2. Clear (0) PIE

More information

1. Number Conversions [8 marks]

1. Number Conversions [8 marks] 1. Number Conversions [8 marks] a. convert the decimal number 42 to a 16-bit signed integer in binary 0b0000 0000 0010 1010 b. convert the 8-bit number 0x42 to a 16-bit signed integer in binary 0b0000

More information

Basic Computer System for the Altera DE1 Board. 1 Introduction. 2 DE1 Basic Computer Contents. 2.1 Nios II Processor.

Basic Computer System for the Altera DE1 Board. 1 Introduction. 2 DE1 Basic Computer Contents. 2.1 Nios II Processor. Basic Computer System for the Altera DE1 Board For Quartus II 8 1 Introduction This document describes a simple computer system that can be implemented on the Altera DE1 development and education board.

More information

Debugging of Application Programs on Altera s DE-Series Boards. 1 Introduction

Debugging of Application Programs on Altera s DE-Series Boards. 1 Introduction Debugging of Application Programs on Altera s DE-Series Boards 1 Introduction This tutorial presents some basic concepts that can be helpful in debugging of application programs written in the Nios II

More information

Basic Computer System for the Altera DE0-Nano Board. 1 Introduction. 2 DE0-Nano Basic Computer Contents. 2.1 Nios II Processor. For Quartus II 13.

Basic Computer System for the Altera DE0-Nano Board. 1 Introduction. 2 DE0-Nano Basic Computer Contents. 2.1 Nios II Processor. For Quartus II 13. Basic Computer System for the Altera DE0-Nano Board For Quartus II 13.0 1 Introduction This document describes a simple computer system that can be implemented on the Altera DE0-Nano development and education

More information

9. Cache and Tightly-Coupled Memory

9. Cache and Tightly-Coupled Memory 9. Cache and Tightly-Coupled Memory February 2011 NII52007-10.1.0 NII52007-10.1.0 Introduction Nios II processor cores can contain instruction and data caches. This chapter discusses cache-related issues

More information

I expect you to understand everything discussed prior to this page. In particular:

I expect you to understand everything discussed prior to this page. In particular: A NOTE TO 259 STUDENTS: Interrupts involve a lot of details. The details presented after this page provide further background on exactly what happens at the CPU logic and assembly code levels. This may

More information

DE2-115 Computer System. 1 Introduction. 2 DE2-115 Computer Contents. 2.1 Nios II Processor. For Quartus Prime 16.1

DE2-115 Computer System. 1 Introduction. 2 DE2-115 Computer Contents. 2.1 Nios II Processor. For Quartus Prime 16.1 DE2-115 Computer System For Quartus Prime 16.1 1 Introduction This document describes a computer system that can be implemented on the Intel DE2-115 development and education board. This system, called

More information

University of Toronto Faculty of Applied Science and Engineering Department of Electrical and Computer Engineering Final Examination

University of Toronto Faculty of Applied Science and Engineering Department of Electrical and Computer Engineering Final Examination University of Toronto Faculty of Applied Science and Engineering Department of Electrical and Computer Engineering Final Examination ECE 253F - Digital and Computer Systems Friday December 10, 2010 Duration:

More information

Debugging Nios II Systems with the SignalTap II Logic Analyzer

Debugging Nios II Systems with the SignalTap II Logic Analyzer Debugging Nios II Systems with the SignalTap II Logic Analyzer May 2007, ver. 1.0 Application Note 446 Introduction As FPGA system designs become more sophisticated and system focused, with increasing

More information

NIOS CPU Based Embedded Computer System on Programmable Chip

NIOS CPU Based Embedded Computer System on Programmable Chip NIOS CPU Based Embedded Computer System on Programmable Chip EE8205: Embedded Computer Systems NIOS-II SoPC: PART-II 1 Introduction This lab has been constructed to introduce the development of dedicated

More information

Disassemble the machine code present in any memory region. Single step through each assembly language instruction in the Nios II application.

Disassemble the machine code present in any memory region. Single step through each assembly language instruction in the Nios II application. Nios II Debug Client This tutorial presents an introduction to the Nios II Debug Client, which is used to compile, assemble, download and debug programs for Altera s Nios II processor. This tutorial presents

More information

Laboratory Exercise 3 Comparative Analysis of Hardware and Emulation Forms of Signed 32-Bit Multiplication

Laboratory Exercise 3 Comparative Analysis of Hardware and Emulation Forms of Signed 32-Bit Multiplication Laboratory Exercise 3 Comparative Analysis of Hardware and Emulation Forms of Signed 32-Bit Multiplication Introduction All processors offer some form of instructions to add, subtract, and manipulate data.

More information

Using NIOS 2 Embedded Design Suite 10

Using NIOS 2 Embedded Design Suite 10 Quick Start Guide Embedded System Course LAP IC EPFL 2010 Version 0.1 (Preliminary) Cagri Onal, René Beuchat 1 Installation and documentation Main information in this document has been found on: http:\\www.altera.com

More information

ECE332, Week 2, Lecture 3. September 5, 2007

ECE332, Week 2, Lecture 3. September 5, 2007 ECE332, Week 2, Lecture 3 September 5, 2007 1 Topics Introduction to embedded system Design metrics Definitions of general-purpose, single-purpose, and application-specific processors Introduction to Nios

More information

ECE332, Week 2, Lecture 3

ECE332, Week 2, Lecture 3 ECE332, Week 2, Lecture 3 September 5, 2007 1 Topics Introduction to embedded system Design metrics Definitions of general-purpose, single-purpose, and application-specific processors Introduction to Nios

More information

Guidelines for Developing a Nios II HAL Device Driver

Guidelines for Developing a Nios II HAL Device Driver Guidelines for Developing a Nios II HAL Device Driver August 2007, ver. 1.0 Application Note 459 Introduction This application note explains the process of developing and debugging a hardware abstraction

More information

8. Instruction Set Reference

8. Instruction Set Reference 8. Instruction Set Reference NII51017-7.1.0 Introduction This section introduces the Nios II instruction-word format and provides a detailed reference of the Nios II instruction set. This chapter contains

More information

Task 8: Extending the DLX Pipeline to Decrease Execution Time

Task 8: Extending the DLX Pipeline to Decrease Execution Time FB Elektrotechnik und Informationstechnik AG Entwurf mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn Vertieferlabor Mikroelektronik Modelling the DLX RISC Architecture in VHDL Task 8: Extending the

More information

Embedded Systems. 2. Software Development. Lothar Thiele. Computer Engineering and Networks Laboratory

Embedded Systems. 2. Software Development. Lothar Thiele. Computer Engineering and Networks Laboratory Embedded Systems 2. Software Development Lothar Thiele Computer Engineering and Networks Laboratory Remember: Computer Engineering I Compilation of a C program to machine language program: textual representation

More information

Advanced Assembly, Branching, and Monitor Utilities

Advanced Assembly, Branching, and Monitor Utilities 2 Advanced Assembly, Branching, and Monitor Utilities 2.1 Objectives: There are several different ways for an instruction to form effective addresses to acquire data, called addressing modes. One of these

More information

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 7: VHDL and DE2 Board. Name: Date:

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 7: VHDL and DE2 Board. Name: Date: EXPERIMENT # 7: VHDL and DE2 Board Name: Date: Equipment/Parts Needed: Quartus II R Web Edition V9.1 SP2 software by Altera Corporation USB drive to save your files Objective: Learn how to create and modify

More information

Last Name (in case pages get detached): UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, APRIL 2011

Last Name (in case pages get detached): UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, APRIL 2011 Page 1 of 17 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, APRIL 2011 ECE243H1 S COMPUTER ORGANIZATION Exam Type: D Duration: 2.5 Hours Prof.s Anderson, Enright Jerger,

More information

FPGA Introductory Tutorial: Part 1

FPGA Introductory Tutorial: Part 1 FPGA Introductory Tutorial: Part 1 This tutorial is designed to assist in learning the basics of the Altera Quartus II v9.0 software. Part 1 of the tutorial will cover the basics of creating a Project,

More information

Laboratory Exercise 7

Laboratory Exercise 7 Laboratory Exercise 7 Using Interrupts with C code The purpose of this exercise is to investigate the use of interrupts for the Nios II processor, using C code. To do this exercise you need to have a good

More information

Embedded Computing Platform. Architecture and Instruction Set

Embedded Computing Platform. Architecture and Instruction Set Embedded Computing Platform Microprocessor: Architecture and Instruction Set Ingo Sander ingo@kth.se Microprocessor A central part of the embedded platform A platform is the basic hardware and software

More information

University of Massachusetts Amherst Computer Systems Lab 1 (ECE 354) LAB 1 Reference Manual

University of Massachusetts Amherst Computer Systems Lab 1 (ECE 354) LAB 1 Reference Manual University of Massachusetts Amherst Computer Systems Lab 1 (ECE 354) LAB 1 Reference Manual Lab 1: Using NIOS II processor for code execution on FPGA Objectives: 1. Understand the typical design flow in

More information

Designing with Nios II Processor for Hardware Engineers

Designing with Nios II Processor for Hardware Engineers Designing with Nios II Processor for Hardware Engineers Course Description This course provides all theoretical and practical know-how to design ALTERA SoC FPGAs based on the Nios II soft processor under

More information

Guidelines for Developing a Nios II HAL Device Driver

Guidelines for Developing a Nios II HAL Device Driver Guidelines for Developing a Nios II HAL Device Driver AN-459-4.0 Application Note This application note explains the process of creating and debugging a hardware abstraction layer (HAL) software device

More information

Experiment 18 Full Adder and Parallel Binary Adder

Experiment 18 Full Adder and Parallel Binary Adder Objectives Experiment 18 Full Adder and Parallel Binary Adder Upon completion of this laboratory exercise, you should be able to: Create and simulate a full adder in VHDL, assign pins to the design, and

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

ECE 3610 Microprocessing Systems Lab #1 Verilog Design of the TOC Using Quartus II

ECE 3610 Microprocessing Systems Lab #1 Verilog Design of the TOC Using Quartus II ECE 3610 Microprocessing Systems Lab #1 Verilog Design of the TOC Using Quartus II This lab manual presents an introduction to the Quartus II Computer Aided Design (CAD) system. This manual gives step-by-step

More information

1 Do not confuse the MPU with the Nios II memory management unit (MMU). The MPU does not provide memory mapping or management.

1 Do not confuse the MPU with the Nios II memory management unit (MMU). The MPU does not provide memory mapping or management. Nios II MPU Usage March 2010 AN-540-1.0 Introduction This application note covers the basic features of the Nios II processor s optional memory protection unit (MPU), describing how to use it without the

More information

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 6: Quartus II Tutorial and Practice. Name: Date:

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 6: Quartus II Tutorial and Practice. Name: Date: EXPERIMENT # 6: Quartus II Tutorial and Practice Name: Date: Equipment/Parts Needed: Quartus II R Web Edition V9.1 SP2 software by Altera Corporation USB drive to save your files Objective: Learn how to

More information

Hardware-Accelerated Dynamic Binary Translation

Hardware-Accelerated Dynamic Binary Translation Hardware-Accelerated Dynamic Binary Translation Rokicki Simon - Irisa / Université de Rennes 1 Steven Derrien - Irisa / Université de Rennes 1 Erven Rohou - Inria Embedded Systems Tight constraints in

More information

8. Instruction Set Reference

8. Instruction Set Reference 8. NII51017-10.0.0 Introduction This section introduces the Nios II instruction word format and provides a detailed reference of the Nios II instruction set. This chapter contains the following sections:

More information

DKAN0011A Setting Up a Nios II System with SDRAM on the DE2

DKAN0011A Setting Up a Nios II System with SDRAM on the DE2 DKAN0011A Setting Up a Nios II System with SDRAM on the DE2 04 November 2009 Introduction This tutorial details how to set up and instantiate a Nios II system on Terasic Technologies, Inc. s DE2 Altera

More information

Synaptic Labs. HyperFlash Programmer for the Nios II Ecosystem. Introduction

Synaptic Labs. HyperFlash Programmer for the Nios II Ecosystem. Introduction Synaptic Labs HyperFlash Programmer for the Nios II Ecosystem User Manual An easy to use solution for programming the HyperFlash memory with Nios II based projects. Introduction Synaptic Labs HyperFlash

More information

GPIO Application Note for Altera DE2 Development and Education Board

GPIO Application Note for Altera DE2 Development and Education Board GPIO Application Note for Altera DE2 Development and Education Board Robert Miller ECE 492 University of Alberta 21 March, 2013 Robert Miller email: rnmiller@ualberta.ca University of Alberta 1 GPIO Application

More information

University of California, Davis Department of Electrical and Computer Engineering. Lab 1: Implementing Combinational Logic in the MAX10 FPGA

University of California, Davis Department of Electrical and Computer Engineering. Lab 1: Implementing Combinational Logic in the MAX10 FPGA 1 University of California, Davis Department of Electrical and Computer Engineering EEC180B DIGITAL SYSTEMS II Winter Quarter 2018 Lab 1: Implementing Combinational Logic in the MAX10 FPGA Objective: This

More information

add R1,x add R1,500 add R1,[x] The answer is: all of these instructions implement adding operation on R1 and all of them have two addresses.

add R1,x add R1,500 add R1,[x] The answer is: all of these instructions implement adding operation on R1 and all of them have two addresses. 6.1 Addressing Modes: introduction Addressing modes are an aspect of the instruction set architecture in most CPU designs. The various addressing mode helps to identify the type of operands in the instruction.

More information

ECE 473 Computer Architecture and Organization Project: Design of a Five Stage Pipelined MIPS-like Processor Project Team TWO Objectives

ECE 473 Computer Architecture and Organization Project: Design of a Five Stage Pipelined MIPS-like Processor Project Team TWO Objectives ECE 473 Computer Architecture and Organization Project: Design of a Five Stage Pipelined MIPS-like Processor Due: December 8, 2011 Instructor: Dr. Yifeng Zhu Project Team This is a team project. All teams

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 4: Logic Operations and Introduction to Conditionals Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Previously examined

More information

Embedded System Design

Embedded System Design csee 4840 Embedded System Design Lab 1: Using the fpga Stephen A. Edwards Columbia University 2015 This shows how to compile and download an fpga-only project to the SoCKit board. Your assignment is to

More information

8. Instruction Set Reference

8. Instruction Set Reference 8. May 2011 NII51017-11.0.0 NII51017-11.0.0 This section introduces the Nios II instruction word format and provides a detailed reference of the Nios II instruction set. This chapter contains the following

More information

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont )

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont ) Chapter 2 Computer Abstractions and Technology Lesson 4: MIPS (cont ) Logical Operations Instructions for bitwise manipulation Operation C Java MIPS Shift left >>> srl Bitwise

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Simple benchmarks. Arithmetic Lessons

Simple benchmarks. Arithmetic Lessons Goals Like Writing English Low-Level C Programming CSEE W4840 Prof. Stephen A. Edwards Columbia University Spring 2007 Function is correct Source code is concise, readable, maintainable Time-critical sections

More information

Simulating Nios II Embedded Processor Designs

Simulating Nios II Embedded Processor Designs Simulating Nios II Embedded Processor Designs May 2004, ver.1.0 Application Note 351 Introduction The increasing pressure to deliver robust products to market in a timely manner has amplified the importance

More information

ece4750-tinyrv-isa.txt

ece4750-tinyrv-isa.txt ========================================================================== Tiny RISC-V Instruction Set Architecture ========================================================================== # Author :

More information

CSEE W4840 Embedded System Design Lab 1

CSEE W4840 Embedded System Design Lab 1 CSEE W4840 Embedded System Design Lab 1 Stephen A. Edwards Due January 31, 2008 Abstract Learn to use the Altera Quartus development envrionment and the DE2 boards by implementing a small hardware design

More information

Topic Notes: MIPS Instruction Set Architecture

Topic Notes: MIPS Instruction Set Architecture Computer Science 220 Assembly Language & Comp. Architecture Siena College Fall 2011 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture.

More information

openpowerlink FPGA Slave Reference Design Author: Zelenka Joerg Version: V1.0 Date: 27/10/2009 User Guide.doc

openpowerlink FPGA Slave Reference Design Author: Zelenka Joerg Version: V1.0 Date: 27/10/2009 User Guide.doc User Guide openpowerlink FPGA Slave Reference Design Author: Zelenka Joerg Version: V1.0 Date: 27/10/2009 File: INDEX 1 Document Overview... 3 2 Design Features... 3 3 Performance Restriction... 3 4 Requirements...

More information

Resource 2 Embedded computer and development environment

Resource 2 Embedded computer and development environment Resource 2 Embedded computer and development environment subsystem The development system is a powerful and convenient tool for embedded computing applications. As shown below, the development system consists

More information

AN 825: Partially Reconfiguring a Design on Intel Stratix 10 GX FPGA Development Board

AN 825: Partially Reconfiguring a Design on Intel Stratix 10 GX FPGA Development Board AN 825: Partially Reconfiguring a Design on Intel Stratix 10 GX FPGA Development Board Updated for Intel Quartus Prime Design Suite: 17.1 Subscribe Send Feedback Latest document on the web: PDF HTML Contents

More information

Laboratory Exercise 4

Laboratory Exercise 4 Laboratory Exercise Input/Output in an Embedded System The purpose of this exercise is to investigate the use of devices that provide input and output capabilities for a processor. There are two basic

More information

Lab Objectives. 2. Preparations. 3. Signing in. 4. Examining the Host Environment. 5. Part A: Introduction to AVR Studio. 5.

Lab Objectives. 2. Preparations. 3. Signing in. 4. Examining the Host Environment. 5. Part A: Introduction to AVR Studio. 5. Lab 0 1. Objectives Learn how to use AVR studio, an Integrated Development Environment (IDE) for developing AVR applications in Windows environments, to debug and run an AVR assembly program. Understand

More information

AN 797: Partially Reconfiguring a Design on Intel Arria 10 GX FPGA Development Board

AN 797: Partially Reconfiguring a Design on Intel Arria 10 GX FPGA Development Board AN 797: Partially Reconfiguring a Design on Intel Arria 10 GX FPGA Updated for Intel Quartus Prime Design Suite: 18.1 Subscribe Latest document on the web: PDF HTML Contents Contents Partially Reconfiguring

More information

Assembly Language Programming

Assembly Language Programming Assembly Language Programming ECE 362 https://engineering.purdue.edu/ee362/ Rick Reading and writing arrays Consider this C code again: int array1[100]; int array2[100]; for(n=0; n

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

LAB 3: Programming in Assembly Language

LAB 3: Programming in Assembly Language INTERNATIONAL ISLAMIC UNIVERSITY OF MALAYSIA Kulliyyah Of Engineering Department Of Electrical Engineering ELECTRICAL AND COMPUTER ENGINEERING LAB II (ECE 2202) Name: Matric Number: Group: Section: Date:

More information

IS1200/IS1500 Computer Engineering

IS1200/IS1500 Computer Engineering IS1200/IS1500 Computer Engineering Laboratory Exercise nios2int Interrupts and Traps Incomplete work is only valid until 2015-05-31 Student's name in permanent ink: Latest update: 2014-11-06 Date: Demonstrations

More information

University of Toronto Faculty of Applied Science and Engineering

University of Toronto Faculty of Applied Science and Engineering Print: First Name:............................. Last Name:............................. Student Number:............................................... University of Toronto Faculty of Applied Science and

More information

University of Florida EEL 3701 Dr. Eric M. Schwartz Department of Electrical & Computer Engineering Revision 0 12-Jun-16

University of Florida EEL 3701 Dr. Eric M. Schwartz Department of Electrical & Computer Engineering Revision 0 12-Jun-16 Page 1/14 Quartus Tutorial with Basic Graphical Gate Entry and Simulation Example Problem Given the logic equation Y = A*/B + /C, implement this equation using a two input AND gate, a two input OR gate

More information

NIOS CPU Based Embedded Computer System on Programmable Chip

NIOS CPU Based Embedded Computer System on Programmable Chip 1 Objectives NIOS CPU Based Embedded Computer System on Programmable Chip EE8205: Embedded Computer Systems This lab has been constructed to introduce the development of dedicated embedded system based

More information

Board Update Portal based on Nios II Processor with EPCQ (Arria 10 GX FPGA Development Kit)

Board Update Portal based on Nios II Processor with EPCQ (Arria 10 GX FPGA Development Kit) Board Update Portal based on Nios II Processor with EPCQ (Arria 10 GX FPGA Development Kit) Date: 1 December 2016 Revision:1.0 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY,

More information

Laboratory Exercise 5

Laboratory Exercise 5 Laboratory Exercise 5 Bus Communication The purpose of this exercise is to learn how to communicate using a bus. In the designs generated by using Altera s SOPC Builder, the Nios II processor connects

More information

CE1921: COMPUTER ARCHITECTURE SINGLE CYCLE PROCESSOR DESIGN WEEK 2

CE1921: COMPUTER ARCHITECTURE SINGLE CYCLE PROCESSOR DESIGN WEEK 2 SUMMARY Instruction set architecture describes the programmer s view of the machine. This level of computer blueprinting allows design engineers to discover expected features of the circuit including:

More information

(a) Implement processor with the following instructions: addi, sw, lw, add, sub, and, andi, or, ori, nor, sll, srl, mul

(a) Implement processor with the following instructions: addi, sw, lw, add, sub, and, andi, or, ori, nor, sll, srl, mul Brown University School of Engineering EN1640 Design of Computing Systems Professor Sherief Reda LAB 04 (200 points) Final report due on April 4th (Milestones on March 21 st ) In this lab you are required

More information

2 nd Year Laboratory. Experiment: FPGA Design with Verilog. Department of Electrical & Electronic Engineering. Imperial College London.

2 nd Year Laboratory. Experiment: FPGA Design with Verilog. Department of Electrical & Electronic Engineering. Imperial College London. Department of Electrical & Electronic Engineering 2 nd Year Laboratory Experiment: FPGA Design with Verilog Objectives By the end of this experiment, you should know: How to design digital circuits using

More information

University of Massachusetts Amherst Computer Systems Lab 2 (ECE 354) Spring Lab 1: Using Nios 2 processor for code execution on FPGA

University of Massachusetts Amherst Computer Systems Lab 2 (ECE 354) Spring Lab 1: Using Nios 2 processor for code execution on FPGA University of Massachusetts Amherst Computer Systems Lab 2 (ECE 354) Spring 2007 Lab 1: Using Nios 2 processor for code execution on FPGA Objectives: After the completion of this lab: 1. You will understand

More information

Generic Serial Flash Interface Intel FPGA IP Core User Guide

Generic Serial Flash Interface Intel FPGA IP Core User Guide Generic Serial Flash Interface Intel FPGA IP Core User Guide Updated for Intel Quartus Prime Design Suite: 18.0 Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents 1. Generic

More information

AN 825: Partially Reconfiguring a Design on Intel Stratix 10 GX FPGA Development Board

AN 825: Partially Reconfiguring a Design on Intel Stratix 10 GX FPGA Development Board AN 825: Partially Reconfiguring a Design on Intel Stratix 10 GX FPGA Updated for Intel Quartus Prime Design Suite: 18.1 Subscribe Latest document on the web: PDF HTML Contents Contents Partially Reconfiguring

More information

DE0-Nano-SoC Computer System with ARM Cortex-A9. 1 Introduction. 2 DE0-Nano-SoC Computer Contents. 2.1 Hard Processor System. For Quartus Prime 16.

DE0-Nano-SoC Computer System with ARM Cortex-A9. 1 Introduction. 2 DE0-Nano-SoC Computer Contents. 2.1 Hard Processor System. For Quartus Prime 16. DE0-Nano-SoC Computer System with ARM Cortex-A9 For Quartus Prime 16.0 1 Introduction This document describes a computer system that can be implemented on the Altera DE0-Nano-SoC development and education

More information

Introduction to the Altera SOPC Builder Using Verilog Designs. 1 Introduction

Introduction to the Altera SOPC Builder Using Verilog Designs. 1 Introduction Introduction to the Altera SOPC Builder Using Verilog Designs 1 Introduction This tutorial presents an introduction to Altera s SOPC Builder software, which is used to implement a system that uses the

More information

Non-Volatile Configuration Scheme for the Stratix II EP2S60 DSP Development Board

Non-Volatile Configuration Scheme for the Stratix II EP2S60 DSP Development Board Non-Volatile Configuration Scheme for the Stratix II EP2S60 DSP Development Board Qian Liu and S.W. Ellingson October 21, 2008 The Stratix II DSP development board (DSP board) has provided a non-volatile

More information

MIPS Instruction Set Architecture (2)

MIPS Instruction Set Architecture (2) MIPS Instruction Set Architecture (2) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu

More information

COMPSCI 313 S Computer Organization. 7 MIPS Instruction Set

COMPSCI 313 S Computer Organization. 7 MIPS Instruction Set COMPSCI 313 S2 2018 Computer Organization 7 MIPS Instruction Set Agenda & Reading MIPS instruction set MIPS I-format instructions MIPS R-format instructions 2 7.1 MIPS Instruction Set MIPS Instruction

More information

SOPC LAB1. I. Introduction. II. Lab contents. 4-bit count up counter. Advanced VLSI Due Wednesday, 01/08/2003

SOPC LAB1. I. Introduction. II. Lab contents. 4-bit count up counter. Advanced VLSI Due Wednesday, 01/08/2003 SOPC LAB1 I. Introduction The purpose of this lab is to familiarize you with all the items in the kit. This tutorial tells you how to develop FPGA system in Quartus II. You are ready to begin using the

More information

EECE 340 Introduction to Microprocessors w/lab Section A. Term Project Parking Visitor Counter

EECE 340 Introduction to Microprocessors w/lab Section A. Term Project Parking Visitor Counter Section A Term Project Parking Visitor Counter Group Members: Instructor: Dr. Jinane Biri Due date: Sunday, Dec. 16, 2012 1 Table of Contents 1. Objective... 2 2. Introduction and Problem Description...

More information

CSCE 313: Embedded Systems. Performance Analysis and Tuning. Instructor: Jason D. Bakos

CSCE 313: Embedded Systems. Performance Analysis and Tuning. Instructor: Jason D. Bakos CSCE 313: Embedded Systems Performance Analysis and Tuning Instructor: Jason D. Bakos Performance Considerations time per frame = (number of pixels) * (time per pixel) (constant) (variable) time per pixel

More information

Lecture 4 (part 2): Data Transfer Instructions

Lecture 4 (part 2): Data Transfer Instructions Lecture 4 (part 2): Data Transfer Instructions CSE 30: Computer Organization and Systems Programming Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego Assembly Operands:

More information

University of Florida EEL 3701 Dr. Eric M. Schwartz Madison Emas, TA Department of Electrical & Computer Engineering Revision 1 5-Jun-17

University of Florida EEL 3701 Dr. Eric M. Schwartz Madison Emas, TA Department of Electrical & Computer Engineering Revision 1 5-Jun-17 Page 1/14 Example Problem Given the logic equation Y = A*/B + /C, implement this equation using a two input AND gate, a two input OR gate and two inverters under the Quartus environment. Upon completion

More information

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function

Module 8: Atmega32 Stack & Subroutine. Stack Pointer Subroutine Call function Module 8: Atmega32 Stack & Subroutine Stack Pointer Subroutine Call function Stack Stack o Stack is a section of RAM used by the CPU to store information temporarily (i.e. data or address). o The CPU needs

More information

CPE 200L LABORATORY 4: INTRODUCTION TO DE2 BOARD UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND:

CPE 200L LABORATORY 4: INTRODUCTION TO DE2 BOARD UNIVERSITY OF NEVADA, LAS VEGAS GOALS: BACKGROUND: CPE 200L LABORATORY 4: INTRODUCTION TO DE2 BOARD DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOALS: Getting familiar with DE2 board installation, properties, usage.

More information

Shift and Rotate Instructions

Shift and Rotate Instructions Shift and Rotate Instructions Shift and rotate instructions facilitate manipulations of data (that is, modifying part of a 32-bit data word). Such operations might include: Re-arrangement of bytes in a

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 4: Arithmetic and Data Transfer Instructions Agenda Review of last lecture Logic and shift instructions Load/store instructionsi

More information

Introduction to the Intel Nios II Soft Processor. 1 Introduction. For Quartus Prime 17.0

Introduction to the Intel Nios II Soft Processor. 1 Introduction. For Quartus Prime 17.0 Introduction to the Intel Nios II Soft Processor For Quartus Prime 17.0 1 Introduction This tutorial presents an introduction to Intel s Nios II processor, which is a soft processor that can be instantiated

More information

DE2 Board & Quartus II Software

DE2 Board & Quartus II Software January 23, 2015 Contact and Office Hours Teaching Assistant (TA) Sergio Contreras Office Office Hours Email SEB 3259 Tuesday & Thursday 12:30-2:00 PM Wednesday 1:30-3:30 PM contre47@nevada.unlv.edu Syllabus

More information

BLDEA S V.P. DR. P.G. HALAKATTI COLLEGE OF ENGINEERING & TECHNOLOGY, VIJAYAPURA

BLDEA S V.P. DR. P.G. HALAKATTI COLLEGE OF ENGINEERING & TECHNOLOGY, VIJAYAPURA EXPERIMENT NO.:- 1. BINARY SEARCH Work Space: Register Used Memory Address Data DI 10000H 11H 10001H 11H 10002H 22H 10003H 22H BX 10004H 33H 10005H 33H 10006H 44H 10007H 44H CX 10008H 55H 10009H 55H 24

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

Computer Organization and Components

Computer Organization and Components 2 Course Structure Computer Organization and Components Module 4: Memory Hierarchy Module 1: Logic Design IS1500, fall 2014 Lecture 4: and F1 DC Ö1 F2 DC Ö2 F7b Lab: dicom F8 Module 2: C and Associate

More information

Introduction to Keil-MDK-ARM. Updated:Monday, January 22, 2018

Introduction to Keil-MDK-ARM. Updated:Monday, January 22, 2018 Introduction to Keil-MDK-ARM Updated:Monday, January 22, 2018 Outline What are ARM tools What is Keil What are Keil Components Installing Keil Lite Create a new project using Keil Stepping through a simple

More information

Engineering 303 Digital Logic Design Spring 2017

Engineering 303 Digital Logic Design Spring 2017 Engineering 303 Digital Logic Design Spring 2017 LAB 1 Introduction to Combo Logic and Quartus Deliverables: 0) A Simple Verilog Combinatorial Circuit 1) A Simple Block Diagram Combinatorial Circuit 2)

More information

EECS150 - Digital Design Lecture 9 Project Introduction (I), Serial I/O. Announcements

EECS150 - Digital Design Lecture 9 Project Introduction (I), Serial I/O. Announcements EECS150 - Digital Design Lecture 9 Project Introduction (I), Serial I/O September 22, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150

More information

ECE251: Thursday September 13

ECE251: Thursday September 13 ECE251: Thursday September 13 Lab 9: Some Details Stack and Subroutines, continued--chapter 8 Stack Example SUBROUTINES More Details Initializing the Stack/Pointer Passing Parameters to Subroutines via

More information