Video Acquisition between USB 2.0 CMOS Camera and Embedded FPGA system

Size: px
Start display at page:

Download "Video Acquisition between USB 2.0 CMOS Camera and Embedded FPGA system"

Transcription

1 Video Acquisition between USB 2.0 CMOS Camera and Embedded FPGA system A. Abdaoui, K. Gurram, M. Singh, A. Errandani, E. Châtelet, A. Doumar and T. Elfouly Computer science department, College of Ingineering, Qatar University, P. O. Box 2713, Doha, Qatar Institue Charles Delaunay (ICD), STMR, UMR CNRS 6279 Université de Technologie de Troyes (UTT) 12, rue Marie-Curie, 10010, Troyes Cedex, France Indian Institute of Technology, Rajasthan (Old) Residency Road Ratanada, Jodhpur , Rajasthan, India Abstract In this paper, we introduce the hardware implementation of video acquisition in a sensor node of wireless sensor network with the help of USB 2.0 interface. The USB 2.0 video acquisition is based on the CY7C67300 controller and the DCC1545M image sensor. In this paper, we detail the hardware architecture and the application program design in a sensor node using field-programmable gate array (FPGA) board and USB 2.0 interface. The CY7C67300 controller is the suitable choice for FPGA Virtex 4 and 5 based USB peripherals. A simple interface module capable of transferring data rates above 400 Mbits/s is implemented to communicate with the CY7C67300 controller. In order to use the developed module, in Xilinx embedded design, we provide a custom peripheral which includes the CY interface as its core and additional logic for the connection to the external peripheral controller (EPC) and then the processor local bus (). Index Terms Embedded systems, FPGA, video acquisition, VHDL, wireless sensor network. PowerPC 405 Processor Fig. 1. DDR G P I O External Peripheral Cypress CY7C67300 USB Interrupt Bus Architecture of the Sensor node. U A R T I. INTRODUCTION Nowadays, wireless sensor network (WSN) is in great growth regarding its potential application such as detecting the relevant quantities, monitoring, assessing and evaluating information and performing decision-making and alarm functions. Hardware implementation of a sensor node, with respect to the small size requirements, low power consumption and flexible programmable treatment is considered as an important challenge. Hardware implementation, either on applicationspecific integrated circuits (ASICs) or on field programmable gate arrays (FPGAs) platform, has definitely its place especially with low-power wireless devices running ZigBee [1]. However, the use of a reconfigurable FPGA as a flexible platform to implement a sensor node is considered as the cheapest and easiest solution [2][3]. The FPGA platform based on the intellectuel property (IP) hard core implementation and embedded processing is of great importance. For these purposes, Xilinx has developed several FPGA embedded boards: Virtex 2 Pro, Virtex 4 FXT and Virtex-5 FXT families. Considering the new features of the hardware gates with embedded processor, researchers and engineers are interested on the use of USB 2.0 interfacing to connect a physical sensor with the main board of the sensor node. To the best of our knowledge, there is no work that gives the architecture of the video acquisition based on the FPGA virtex 5 with embedded processor and the USB 2.0 Cypress controller CY7C67300 for sensor node. In this paper, we present the hardware implementation and the software setup of an intelligent sensor node targeted for the video acquisition. In the sensor node, a local data processing is applied and only a partial information or decision is submitted to another centralized system of the sensor network. Finally, we use a USB protocol analyzer to record the packets exchanged between the sensor node and the camera. The remainder of the paper is organized as follows. In Section II, we present the architecture of the intelligent video sensor. An overview of the image sensor DCC1545M, employed to capture the image, is given in Section III. The next Section is dedicated to the main contribution of this paper: /11/$ IEEE

2 XPS USB2 Device Core USB 2.0 PHY ULPI USB 2.0 interface SIE Port A DPRAM Port B DMA U S B B u s Master 32 bit Register and Control Logic Slave Fig. 2. XPS USB2 Device with and ULPI interfaces. implementation of the video acquisition using the USB 2.0 protocol based on the Cypress CY7C67300 and the CMOS digital image sensor DCC1545M. Finally, we conclude the paper in Section V. II. ARCHITECTURE OF THE SENSOR INTERFACE A sensor node is a part of a wireless sensor network where each node is capable of transmitting the image or the decision regarding the captured image. For example, the position of a target, personal identification, identification of a violent environment, etc. In this architecture, we propose the use of an image sensor based on the MT9M001 chip managed by a local micro-controller and USB2.0 interface for the connection with the FPGA Board. In the following, we apply the USB2.0 protocol with the FPGA board without any operating system with the help of embedded design kit EDK. In virtex FXT board, there exist two ways to employ USB device. The first one is based on the use of the IP XPS universal serial bus 2.0 and the other one interfaces the external peripheral controller to the USB device and the. A. IP universal bus protocol solution The USB 2.0 protocol multiplexes several devices over a single in half-duplex and serial bus. The bus can run at 480 Mbps or at 12 Mbit/s and is designed to be plug-and-play. The host controls the bus and sends tokens to each device for a specific action. Each device has an address on the bus and has one or more endpoints which are sources or sinks of data. The XPS USB 2.0 Device has eight endpoints - one control endpoint (endpoint 0) and seven user endpoints. Endpoint 0 of the USB device has different requirements than the seven user endpoints. Endpoint 0 concerns the control transactions only and start with an 8-byte setup packet and then followed by the data packets. The setup packet is stored in a dedicated location in the dual port random access memory (DPRAM). When a setup packet is received, the SETUP bit of the interrupt status register (ISR) is set. s are a maximum of 64 bytes. These data packets are stored in a single bidirectional data buffer set up by the configuration memory of endpoint 0. When a data packet is transmitted or received successfully, the data buffer free and data buffer ready bits of the interrupt status register (ISR) are set respectively. The seven user endpoints of the USB 2.0 device are configured as bulk, interrupt or isochronous. In addition, endpoints can be configured as INPUT (to the host) or OUTPUT (from the host). Each of these endpoints has 2 ping-pong buffers of the same size for endpoint data. The user endpoints data buffers are unidirectional, and are configured by the Endpoint Configuration and Status register of the respective endpoint. The XPS USB2.0 device core with the is shown in (Fig. 2) B. External peripheral controller (EPC) solution The EPC is used to control peripherals that are connected externally to Xilinx FPGAs. The most commonly used external devices are LAN controllers, USB controllers, and IEEE 1394 (Fire Wire) controllers. The EPC is an slave only device. It does not support any DMA operations from the external devices. The EPC supports both multiplexed and nonmultiplexed address and data buses where the bus width can be 8, 16, or 32 bits. The standalone software application provided with this reference system is executed from the cacheable region of the external DDR memory. The Cypress CY7C67300 USB controller is interfaced to the EPC through the Host Peripheral (HPI). The reference system has the PowerPC 405 processor with the caches enabled to use the instruction cache (I-cache) and the data cache (D-cache) from the external DDR memory. The UART Lite core with interrupts, the Interrupt ( INTC) and GPIO cores are also used in the reference system. III. VIDEO SENSOR DCC 1545M Fig. 3 shows the architecture of the sensor DCC1545M with its USB 2.0 inner interface. In the following, we describe the signal exchanges data between the image sensor MT9M001 and the micro-controller inside the Thorlabs camera DCC 1545M.

3 Sensor Device Descriptors image Sensor EEPROM SDATA SCLK USB Micro EEPROM CLK (PLL) USB bus FPGA Board SETUP Transaction Setup packet IN Transaction Thorlabs Camera trigger programable I/O IN packet Fig. 3. DCC 1545M sensor architecture with USB2.0 interface. OUT Transaction A. Serial Bus Description the registers are written to and read from the MT9M001 through the two-wire serial interface bus. The sensor consists of two-wire slave serial interfaces and is controlled by the serial clock (SCLK), which is driven by the master serial interface. Data is transferred into and out of the MT9M001 through the serial data (SDATA) line. The SDATA line is pulledupto3.3voff-chipbya1.5kωresistor. Either the slave or master device can pull the SDATA line down-the serial interface protocol determines which device is allowed to pull the SDATA line down at any given time. B. Data acquisition inside the camera 1) A typical read or write sequence begins by the master sending a start bit. After the start bit, the master sends the slave device s eight-bit address. The last bit of the address determines if the request will be a read or a write, where a "0" indicates a write and a "1" indicates a read. The slave device acknowledges its address by sending an acknowledge bit back to the master. 2) If the request was a write, the master then transfers the 8-bit register address to which a write should take place. The slave sends an acknowledge bit to indicate that the register address has been received. The master then transfers the data 8-bits at a time, with the slave sending an acknowledge bit after each 8-bits. The MT9M001 uses 16-bit data for its internal registers, thus requiring two 8-bit transfers to write to one register. After 16 bits are transferred, the register address is automatically incremented, so that the next 16 bits are written to the next register address. The master stops writing by sending a start or stop bit. 3) A typical read sequence is executed as follows. First the master sends the write-mode slave address and 8-bit register address, just as in the write request. The master then sends a start bit and the read-mode slave address. The master then clocks out the register data 8-bits at a time. The master sends an acknowledge bit after each 8- Fig. 4. OUT packet USB2.0 Protocol implemented in the XC5VFX70T FPGA Board. bit transfer. The register address is auto-incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit. The main functions of the USB 2.0 protocol are summarized in Fig. 4. IV. USB 2.0 INTERFACING USING THE CYPRESS CY7C67300 AND THE DCC1545M This design is implemented on the FPGA board which mounts a Xilinx Virtex 5 XC5VFX70T device connected to the Cypress CY7C67300 USB controller. We have also used the existent CMOS DCC1545M camera based on the USB interfacing and on the chip MT9M001 (image sensor). The camera is capable of transferring digitized video over USB to the FPGA board. the overall interfacing between the USB 2.0 controller (CY7C67300) and the FPGA ship is detailed in Fig. 6. Analyzing the connections pin by pin, the 16 data bits (USB D0 to USB D15) of the FPGA chip are connected to data pins (GPIO D0 to GPIO D15) of the Cypress CY7C The other pins are used to control and to interface the USB controller with the physical connections of the four USB 2.0 ports. EZ-Host (CY7C67300) is Cypress Semiconductor s first full speed, low cost multi-port host/peripheral controller. EZ- Host is designed to easily interface to most high-performance CPUs to add USB host functionality. EZ-Host has its own 16-bit RISC processor to act as a co processor or operate in standalone mode. EZ-Host also has a programmable I/O interface block allowing a wide range of interface options. Fig. 5 shows the block diagram of the usb control Cypress Cy7C67300 used in the Virtex 5 FXT FPGA board. Fig. 7 gives a photo of the FPGA Virtex5 Board with the USB camera.

4 Fig. 5. Block diagram of the Cypress CY7C V. CONCLUSION Throughout this paper, a new architecture of an intelligent image sensor node is detailed. The feature of the proposed sensor is the reconfigurability. In this paper, we present a stand-alone hardware implementation of the image acquisition in a sensor node using the USB 2.0 interface. Since this circuit uses the USB 2.0 interface, we can transmit video stream to an FPGA board at high speed. Finally, if we need specific image processing algorithms, we can easily implement them through hardware description language (HDL) and C ANSI on the embedded processor located inside the FPGA. USB Periph. D N USB peri D D P CY7C67300 USB Host USB host D N D P GPIO0 D0 GPIO0 D1 GPIO0 D2 GPIO0 D3 GPIO0 D4 GPIO0 D5 GPIO0 D6 GPIO0 D7 RESET USB D0 USB D1 USB D2 USB D3 USB D4 USB D5 USB D6 USB D7 USB RESET Virtex 5 FPGA XC5VFX70T REFERENCES [1] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y. Hu, Wireless sensor networks: A survey on the state of the art and the and ZigBee standards, Computer Communications, vol. 30, no. 7, pp , [2] G. Chalivendra, R. Srinivasan, and N. Murthy, FPGA based reconfigurable wireless sensor network protocol, in International Conference on Electronic Design, ICED 2008, 2008, pp [3] J. Patra, H. Lee, P. Meher, and E. Ang, Field Programmable Gate Array Implementation of a Neural Network-based Intelligent Sensor System, in 9th International Conference on Control, Automation, Robotics and Vision, ICARCV 06, 2006, pp [4] S. Dulman and P. Havinga, Introduction to Wireless Sensor Networks, 2nd ed., ser. Industrial information technology series, Boca Raton, Florida, USA, 2009, vol. 2, ch. 3, pp [5] Y. Hai-qiang, X. Hong-hai, and L. Juan, Design of a USB in the Data Acquisition System Based on CY7C68001, Mechanical & Electrical Engineering Technology, [6] C. YUNDONG, J. JIE, and Z. GUANGJUN, High speed CMOS image acquisition and transmission system based on USB, in Proceedings of SPIE, the International Society for Optical Engineering. Society of Photo-Optical Instrumentation Engineers, [7] W. Gang, Design of image acquisition system based on USB2. 0, Foretgn Electronig Measurement Technology, GPIO0 D8 GPIO0 D9 GPIO0 D10 GPIO0 D11 GPIO0 D12 GPIO0 D13 GPIO0 D14 GPIO0 D15 USB D8 USB D9 USB D10 USB D11 USB D12 USB D13 USB D14 USB D15 Fig. 6. Hardware connections of the USB controler with FPGA Virtex 5 Chip. [8] N. Bartzoudis and K. McDonald-Maier, An embedded sensor validation system for adaptive condition monitoring of a wind farms, pp. 5 8, 2007.

5 Thorlab Image Sensor Fig. 7. A photo of the FPGA Virtex5 Board with the USB camera

OPB Universal Serial Bus 2.0 Device (v1.00a)

OPB Universal Serial Bus 2.0 Device (v1.00a) OPB Universal Serial Bus 2. Device (v1.a) DS591 May 1, 27 Introduction The Xilinx Universal Serial Bus 2. High Speed Device with On-chip Peripheral Bus (OPB) enables USB connectivity to the user s design

More information

ORION USB3 Evaluation Kit

ORION USB3 Evaluation Kit ORION USB3 Evaluation Kit Table of Contents 1 General Description...4 2 System Overview...5 3 Operating Instructions...7 3.1 Recommended Equipment...7 3.2 Resolution / Fame rate and ADC gain settings...7

More information

Embedded Real-Time Video Processing System on FPGA

Embedded Real-Time Video Processing System on FPGA Embedded Real-Time Video Processing System on FPGA Yahia Said 1, Taoufik Saidani 1, Fethi Smach 2, Mohamed Atri 1, and Hichem Snoussi 3 1 Laboratory of Electronics and Microelectronics (EμE), Faculty of

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Design Development and Implementation of SPI

Design Development and Implementation of SPI MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 65 69 65 Design Development and Implementation of SPI A. Sirisha Kurnool (DT), A.P, INDIA M. Sravanthi

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Assertion Based Verification of I2C Master Bus Controller with RTC Sagar T. D. M.Tech Student, VLSI Design and Embedded Systems BGS Institute of Technology,

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

Vertex Detector Electronics: ODE to ECS Interface

Vertex Detector Electronics: ODE to ECS Interface Vertex Detector Electronics: ODE to ECS Interface LHCb Technical Note Issue: 1 Revision: 0 Reference: LHCb 2000-012 VELO Created: 1 February 2000 Last modified: 20 March 2000 Prepared By: Yuri Ermoline

More information

Raspberry Pi - I/O Interfaces

Raspberry Pi - I/O Interfaces ECE 1160/2160 Embedded Systems Design Raspberry Pi - I/O Interfaces Wei Gao ECE 1160/2160 Embedded Systems Design 1 I/O Interfaces Parallel I/O and Serial I/O Parallel I/O: multiple input/output simultaneously

More information

Getting Started Guide with AXM-A30

Getting Started Guide with AXM-A30 Series PMC-VFX70 Virtex-5 Based FPGA PMC Module Getting Started Guide with AXM-A30 ACROMAG INCORPORATED Tel: (248) 295-0310 30765 South Wixom Road Fax: (248) 624-9234 P.O. BOX 437 Wixom, MI 48393-7037

More information

More on IO: The Universal Serial Bus (USB)

More on IO: The Universal Serial Bus (USB) ecture 37 Computer Science 61C Spring 2017 April 21st, 2017 More on IO: The Universal Serial Bus (USB) 1 Administrivia Project 5 is: USB Programming (read from a mouse) Optional (helps you to catch up

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 135 Serial Communication Simplex Half-Duplex Duplex 136 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

SERIAL BUS COMMUNICATION PROTOCOLS USB

SERIAL BUS COMMUNICATION PROTOCOLS USB DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK Lesson-20: SERIAL BUS COMMUNICATION PROTOCOLS USB 1 USB Host Applications Connecting flash memory cards, pen-like memory devices, digital camera, printer,

More information

LogiCORE IP AXI Video Direct Memory Access v4.00.a

LogiCORE IP AXI Video Direct Memory Access v4.00.a LogiCORE IP AXI Video Direct Memory Access v4.00.a Product Guide Table of Contents Chapter 1: Overview Feature Summary............................................................ 9 Applications................................................................

More information

SMT943 APPLICATION NOTE 1 APPLICATION NOTE 1. Application Note - SMT372T and SMT943.doc SMT943 SUNDANCE MULTIPROCESSOR TECHNOLOGY LTD.

SMT943 APPLICATION NOTE 1 APPLICATION NOTE 1. Application Note - SMT372T and SMT943.doc SMT943 SUNDANCE MULTIPROCESSOR TECHNOLOGY LTD. APPLICATION NOTE 1 Application Note - SMT372T + SMT943 SMT943 SUNDANCE MULTIPROCESSOR TECHNOLOGY LTD. Date Comments / Changes Author Revision 07/07/10 Original Document completed CHG 1 Date 13/05/2010

More information

An Universal USB 3.0 FIFO Interface For Data Acquisition

An Universal USB 3.0 FIFO Interface For Data Acquisition 434 Measurement Automation Monitoring, Dec. 2016, no. 12, vol. 62, ISSN 2450-2855 Krzysztof MROCZEK INSTITUTE OF RADIOELECTRONICS AND MULTIMEDIA TECHNOLOGY, WARSAW UNIVERSITY OF TECHNOLOGY Warsaw, Nowowiejska

More information

Health monitoring of an power amplifier using an ethernet controller

Health monitoring of an power amplifier using an ethernet controller Health monitoring of an power amplifier using an ethernet controller 1 Sharadha N, 2 J Pushpanjali 1 Student, 2 Assistant Professor Bangalore institute of technology Bangalore, India Abstract the computer

More information

S2C K7 Prodigy Logic Module Series

S2C K7 Prodigy Logic Module Series S2C K7 Prodigy Logic Module Series Low-Cost Fifth Generation Rapid FPGA-based Prototyping Hardware The S2C K7 Prodigy Logic Module is equipped with one Xilinx Kintex-7 XC7K410T or XC7K325T FPGA device

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 128 Serial Communication Simplex Half-Duplex Duplex 129 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

FPGA-BASED DATA ACQUISITION SYSTEM WITH RS 232 INTERFACE

FPGA-BASED DATA ACQUISITION SYSTEM WITH RS 232 INTERFACE FPGA-BASED DATA ACQUISITION SYSTEM WITH RS 232 INTERFACE 1 Thirunavukkarasu.T, 2 Kirthika.N 1 PG Student: Department of ECE (PG), Sri Ramakrishna Engineering College, Coimbatore, India 2 Assistant Professor,

More information

Module Introduction. Purpose This training module covers 68K/ColdFire Ethernet and USB

Module Introduction. Purpose This training module covers 68K/ColdFire Ethernet and USB Module Introduction Purpose This training module covers 68K/ColdFire Ethernet and USB Objectives Describe the features of the 10/100 Fast Ethernet Controller module Explain the USB device controllers available

More information

LogiCORE IP AXI Video Direct Memory Access v5.00.a

LogiCORE IP AXI Video Direct Memory Access v5.00.a LogiCORE IP AXI Video Direct Memory Access v5.00.a Product Guide Table of Contents Chapter 1: Overview Feature Summary............................................................ 9 Applications................................................................

More information

LogiCORE IP AXI DMA (v3.00a)

LogiCORE IP AXI DMA (v3.00a) DS781 March 1, 2011 Introduction The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core for use with the Xilinx Embedded Development Kit (EDK). The AXI DMA engine provides high-bandwidth

More information

PS2 VGA Peripheral Based Arithmetic Application Using Micro Blaze Processor

PS2 VGA Peripheral Based Arithmetic Application Using Micro Blaze Processor PS2 VGA Peripheral Based Arithmetic Application Using Micro Blaze Processor K.Rani Rudramma 1, B.Murali Krihna 2 1 Assosiate Professor,Dept of E.C.E, Lakireddy Bali Reddy Engineering College, Mylavaram

More information

Implementation of Ethernet, Aurora and their Integrated module for High Speed Serial Data Transmission using Xilinx EDK on Virtex-5 FPGA

Implementation of Ethernet, Aurora and their Integrated module for High Speed Serial Data Transmission using Xilinx EDK on Virtex-5 FPGA Implementation of Ethernet, Aurora and their Integrated module for High Speed Serial Data Transmission using Xilinx EDK on Virtex-5 FPGA Chaitanya Kumar N.V.N.S 1, Mir Mohammed Ali 2 1, 2 Mahaveer Institute

More information

Basics of UART Communication

Basics of UART Communication Basics of UART Communication From: Circuit Basics UART stands for Universal Asynchronous Receiver/Transmitter. It s not a communication protocol like SPI and I2C, but a physical circuit in a microcontroller,

More information

LEON4: Fourth Generation of the LEON Processor

LEON4: Fourth Generation of the LEON Processor LEON4: Fourth Generation of the LEON Processor Magnus Själander, Sandi Habinc, and Jiri Gaisler Aeroflex Gaisler, Kungsgatan 12, SE-411 19 Göteborg, Sweden Tel +46 31 775 8650, Email: {magnus, sandi, jiri}@gaisler.com

More information

FPQ6 - MPC8313E implementation

FPQ6 - MPC8313E implementation Formation MPC8313E implementation: This course covers PowerQUICC II Pro MPC8313 - Processeurs PowerPC: NXP Power CPUs FPQ6 - MPC8313E implementation This course covers PowerQUICC II Pro MPC8313 Objectives

More information

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006 Product Technical Brief Rev 2.2, Apr. 2006 Overview SAMSUNG's is a Derivative product of S3C2410A. is designed to provide hand-held devices and general applications with cost-effective, low-power, and

More information

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang,

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang, Network Embedded Systems Sensor Networks Fall 2013 Hardware Marcus Chang, mchang@cs.jhu.edu 1 Embedded Systems Designed to do one or a few dedicated and/or specific functions Embedded as part of a complete

More information

Serial Communications

Serial Communications Serial Communications p. 1/2 Serial Communications CSEE W4840 Prof. Stephen A. Edwards Columbia University Early Serial Communication Serial Communications p. 2/2 Data Terminal Equipment Serial Communications

More information

Universal Serial Bus Host Interface on an FPGA

Universal Serial Bus Host Interface on an FPGA Universal Serial Bus Host Interface on an FPGA Application Note For many years, designers have yearned for a general-purpose, high-performance serial communication protocol. The RS-232 and its derivatives

More information

Smart cards and smart objects communication protocols: Looking to the future. ABSTRACT KEYWORDS

Smart cards and smart objects communication protocols: Looking to the future. ABSTRACT KEYWORDS Smart cards and smart objects communication protocols: Looking to the future. Denis PRACA Hardware research manager, Gemplus research Lab, France Anne-Marie PRADEN Silicon design program manager, Gemplus

More information

Keywords: Soft Core Processor, Arithmetic and Logical Unit, Back End Implementation and Front End Implementation.

Keywords: Soft Core Processor, Arithmetic and Logical Unit, Back End Implementation and Front End Implementation. ISSN 2319-8885 Vol.03,Issue.32 October-2014, Pages:6436-6440 www.ijsetr.com Design and Modeling of Arithmetic and Logical Unit with the Platform of VLSI N. AMRUTHA BINDU 1, M. SAILAJA 2 1 Dept of ECE,

More information

DESIGN AND IMPLEMENTATION OF AN AVIONICS FULL DUPLEX ETHERNET (A664) DATA ACQUISITION SYSTEM

DESIGN AND IMPLEMENTATION OF AN AVIONICS FULL DUPLEX ETHERNET (A664) DATA ACQUISITION SYSTEM DESIGN AND IMPLEMENTATION OF AN AVIONICS FULL DUPLEX ETHERNET (A664) DATA ACQUISITION SYSTEM Alberto Perez, Technical Manager, Test & Integration John Hildin, Director of Network s John Roach, Vice President

More information

Unlocking the Potential of Your Microcontroller

Unlocking the Potential of Your Microcontroller Unlocking the Potential of Your Microcontroller Ethan Wu Storming Robots, Branchburg NJ, USA Abstract. Many useful hardware features of advanced microcontrollers are often not utilized to their fullest

More information

Designing Embedded AXI Based Direct Memory Access System

Designing Embedded AXI Based Direct Memory Access System Designing Embedded AXI Based Direct Memory Access System Mazin Rejab Khalil 1, Rafal Taha Mahmood 2 1 Assistant Professor, Computer Engineering, Technical College, Mosul, Iraq 2 MA Student Research Stage,

More information

CY7C Errata Revision: *A. June 25, 2004 Errata Document for CY7C Part Numbers Affected. CY7C67200 Qualification Status

CY7C Errata Revision: *A. June 25, 2004 Errata Document for CY7C Part Numbers Affected. CY7C67200 Qualification Status Errata Revision: *A June 25, 2004 for This document describes the errata for the. Details include errata trigger conditions, available workarounds, and silicon revision applicability. This document should

More information

LogiCORE IP AXI DMA (v4.00.a)

LogiCORE IP AXI DMA (v4.00.a) DS781 June 22, 2011 Introduction The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core for use with the Xilinx Embedded Development Kit (EDK). The AXI DMA engine provides high-bandwidth

More information

SoCWire: a SpaceWire inspired fault tolerant Network on Chip approach for reconfigurable System-on-Chip in Space applications

SoCWire: a SpaceWire inspired fault tolerant Network on Chip approach for reconfigurable System-on-Chip in Space applications SoCWire: a SpaceWire inspired fault tolerant Network on Chip approach for reconfigurable System-on-Chip in Space applications Björn Osterloh Institute of Computer and Network Engineering TU Braunschweig,

More information

Copyright 2016 Xilinx

Copyright 2016 Xilinx Zynq Architecture Zynq Vivado 2015.4 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Identify the basic building

More information

Product Technical Brief S3C2412 Rev 2.2, Apr. 2006

Product Technical Brief S3C2412 Rev 2.2, Apr. 2006 Product Technical Brief S3C2412 Rev 2.2, Apr. 2006 Overview SAMSUNG's S3C2412 is a Derivative product of S3C2410A. S3C2412 is designed to provide hand-held devices and general applications with cost-effective,

More information

ARDUINO MEGA INTRODUCTION

ARDUINO MEGA INTRODUCTION ARDUINO MEGA INTRODUCTION The Arduino MEGA 2560 is designed for projects that require more I/O llines, more sketch memory and more RAM. With 54 digital I/O pins, 16 analog inputs so it is suitable for

More information

New! New! New! New! New!

New! New! New! New! New! New! New! New! New! New! Models 72664, Model 74664 Model 73664 General Information Models 72664, are members of the Cobalt family of high-performance CompactPCI s based on the Xilinx Virtex-6 FPGA. They

More information

Chapter 11: Input/Output Organisation. Lesson 17: Standard I/O buses USB (Universal Serial Bus) and IEEE1394 FireWire Buses

Chapter 11: Input/Output Organisation. Lesson 17: Standard I/O buses USB (Universal Serial Bus) and IEEE1394 FireWire Buses Chapter 11: Input/Output Organisation Lesson 17: Standard I/O buses USB (Universal Serial Bus) and IEEE1394 FireWire Buses Objective Familiarize with a standard I/O interface synchronous serial buses USB

More information

Universität Dortmund. IO and Peripheral Interfaces

Universität Dortmund. IO and Peripheral Interfaces IO and Peripheral Interfaces Microcontroller System Architecture Each MCU (micro-controller unit) is characterized by: Microprocessor 8,16,32 bit architecture Usually simple in-order microarchitecture,

More information

NS9750B-0. Use in conjunction with: Errata , Rev G. Release date: May Phone: Web:

NS9750B-0. Use in conjunction with: Errata , Rev G. Release date: May Phone: Web: NS9750B-0 Errata 90000530, Rev G Release date: May 2006 Use in conjunction with: NS9750 Hardware Reference, Rev. E Part number: 90000624_E Released: April 2006 SPI slave data output high impedance control

More information

NS9360. Errata _F. Release date: March 2008

NS9360. Errata _F. Release date: March 2008 NS9360 Unused USB module can cause failures SPI boot fails intermittently - updated SPI slave data output high impedance control UART gap timer UART CTS-related transmit data errors Ethernet receive data

More information

D Demonstration of disturbance recording functions for PQ monitoring

D Demonstration of disturbance recording functions for PQ monitoring D6.3.7. Demonstration of disturbance recording functions for PQ monitoring Final Report March, 2013 M.Sc. Bashir Ahmed Siddiqui Dr. Pertti Pakonen 1. Introduction The OMAP-L138 C6-Integra DSP+ARM processor

More information

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses Today Comments about assignment 3-43 Comments about assignment 3 ASICs and Programmable logic Others courses octor Per should show up in the end of the lecture Mealy machines can not be coded in a single

More information

Implications of USB 3.0 Technology for Machine Vision. Sean Wood: OEM Sales Manager Stand Number: D02

Implications of USB 3.0 Technology for Machine Vision. Sean Wood: OEM Sales Manager Stand Number: D02 Implications of USB 3.0 Technology for Machine Vision Sean Wood: OEM Sales Manager sean.wood@clearviewimaging.co.uk Stand Number: D02 Introduction Brief overview of the USB 3.0 interface and some key differences

More information

Development of Monitoring Unit for Data Acquisition from Avionic Bus 1 Anjana, 2 Dr. N. Satyanarayan, 3 M.Vedachary

Development of Monitoring Unit for Data Acquisition from Avionic Bus 1 Anjana, 2 Dr. N. Satyanarayan, 3 M.Vedachary Development of Monitoring Unit for Data Acquisition from Avionic Bus 1 Anjana, 2 Dr. N. Satyanarayan, 3 M.Vedachary Abstract 1553 bus is a military avionic bus that describes the mechanical, electrical

More information

High Speed SPI Slave Implementation in FPGA using Verilog HDL

High Speed SPI Slave Implementation in FPGA using Verilog HDL High Speed SPI Slave Implementation in FPGA using Verilog HDL Mr. Akshay K. Shah Abstract SPI (Serial Peripheral Interface) is a synchronous serial communication interface for short distance communication.

More information

Designing a Low-Cost USB Interface for an Uninterruptable Power Supply with the Cypress Semiconductor CY7C63001 USB Controller

Designing a Low-Cost USB Interface for an Uninterruptable Power Supply with the Cypress Semiconductor CY7C63001 USB Controller fax id: 3456 Designing a Low-Cost USB Interface for an Uninterruptable Power Supply with the Cypress Semiconductor C7C63001 USB Controller Introduction The Universal Serial Bus (USB) is an industrial standard

More information

DRPM architecture overview

DRPM architecture overview DRPM architecture overview Jens Hagemeyer, Dirk Jungewelter, Dario Cozzi, Sebastian Korf, Mario Porrmann Center of Excellence Cognitive action Technology, Bielefeld University, Germany Project partners:

More information

IMAGE COMPRESSION ON FPGA AND TRANSFER USING ZIGBEE/I2C PROTOCOL

IMAGE COMPRESSION ON FPGA AND TRANSFER USING ZIGBEE/I2C PROTOCOL IMAGE COMPRESSION ON FPGA AND TRANSFER USING ZIGBEE/I2C PROTOCOL D.Bindu Tushara 1, P.A.Harsha Vardhini 2, J.V. Rao 3 1 Department of ECE, V.I.T.S., Deshmukhi, Hyderabad, India 2 Department of ECE, V.I.T.S.,

More information

Environmental Data Acquisition Using (ENC28J60)

Environmental Data Acquisition Using (ENC28J60) Environmental Data Acquisition Using (ENC28J60) Joshi Vaibhav Abstract -- Ethernet is a local area technology, which is used for reliable and efficient transfer and access of information across the devices

More information

Input/Output Problems. External Devices. Input/Output Module. I/O Steps. I/O Module Function Computer Architecture

Input/Output Problems. External Devices. Input/Output Module. I/O Steps. I/O Module Function Computer Architecture 168 420 Computer Architecture Chapter 6 Input/Output Input/Output Problems Wide variety of peripherals Delivering different amounts of data At different speeds In different formats All slower than CPU

More information

HCTL Open Int. J. of Technology Innovations and Research HCTL Open IJTIR, Volume 4, July 2013 e-issn: ISBN (Print):

HCTL Open Int. J. of Technology Innovations and Research HCTL Open IJTIR, Volume 4, July 2013 e-issn: ISBN (Print): Design, Implementation and Functional Verification of Serial Communication Protocols (SPI and I2C) on FPGAs Amit Kumar Shrivastava and Himanshu Joshi amit0404@gmail.com Abstract Today, at the low end of

More information

Subject: Jumper, DIP and optional resistor settings for ROACH rev Location of jumpers, switches and resistors on hardware

Subject: Jumper, DIP and optional resistor settings for ROACH rev Location of jumpers, switches and resistors on hardware Technical Memo Number: NRF-KAT7-5.0-MEM-008 To : DBE Team From : Jason Manley, Francois Kapp, David George Date : 20 May 2009 Subject: Jumper, DIP and optional resistor settings for ROACH rev 1.02 Location

More information

A design of real-time image processing platform based on TMS320C6678

A design of real-time image processing platform based on TMS320C6678 Advanced Materials Research Online: 2014-06-25 ISSN: 1662-8985, Vols. 971-973, pp 1454-1458 doi:10.4028/www.scientific.net/amr.971-973.1454 2014 Trans Tech Publications, Switzerland A design of real-time

More information

DESIGN OF WISHBONE INTERFACED I2CMASTER CORE CONTROLLER USING VERILOG

DESIGN OF WISHBONE INTERFACED I2CMASTER CORE CONTROLLER USING VERILOG DESIGN OF WISHBONE INTERFACED I2CMASTER CORE CONTROLLER USING VERILOG Ramesh Babu Dasara 1, Y. Chandra Sekhar Reddy 2 1 Pursuing M.tech, 2 Assistant Professor, from Nalanda Institute of Engineering and

More information

EMBEDDED HARDWARE. Core Board. ARM7 Development board. ARM7 Evaluation Board. Page 1 of 5

EMBEDDED HARDWARE. Core Board. ARM7 Development board. ARM7 Evaluation Board. Page 1 of 5 Core Board * Size: 71.2mm *50.8mm * Industrial grade 32-bit RISC micro-controller * Mass storage device support * Industrial grade 16C550 Serial Interface * 10/100M Industrial Ethernet interface * USB

More information

AT90SO36 Summary Datasheet

AT90SO36 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 S3C2440X is a derivative product of Samsung s S3C24XXX family of microprocessors for mobile communication market. The S3C2440X s main enhancement

More information

Controller IP for a Low Cost FPGA Based USB Device Core

Controller IP for a Low Cost FPGA Based USB Device Core National Conference on Emerging Trends in VLSI, Embedded and Communication Systems-2013 17 Controller IP for a Low Cost FPGA Based USB Device Core N.V. Indrasena and Anitta Thomas Abstract--- In this paper

More information

Computer and Hardware Architecture II. Benny Thörnberg Associate Professor in Electronics

Computer and Hardware Architecture II. Benny Thörnberg Associate Professor in Electronics Computer and Hardware Architecture II Benny Thörnberg Associate Professor in Electronics Parallelism Microscopic vs Macroscopic Microscopic parallelism hardware solutions inside system components providing

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

An Ethernet Based Control and Monitoring System Using ARM Processor

An Ethernet Based Control and Monitoring System Using ARM Processor An Ethernet Based Control and Monitoring System Using ARM Processor Pingale Vaishali S, Nikalje komal M, Chavan Snehal S, Prof. B.C.Kulkarni Department of Electronics And Telecommunication Engineering

More information

STANDARD I/O INTERFACES

STANDARD I/O INTERFACES STANDARD I/O INTERFACES The processor bus is the bus defied by the signals on the processor chip itself. Devices that require a very high-speed connection to the processor, such as the main memory, may

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

Introduction to Zynq

Introduction to Zynq Introduction to Zynq Lab 2 PS Config Part 1 Hello World October 2012 Version 02 Copyright 2012 Avnet Inc. All rights reserved Table of Contents Table of Contents... 2 Lab 2 Objectives... 3 Experiment 1:

More information

LogiCORE IP AXI DMA v6.01.a

LogiCORE IP AXI DMA v6.01.a LogiCORE IP AXI DMA v6.01.a Product Guide Table of Contents SECTION I: SUMMARY IP Facts Chapter 1: Overview Typical System Interconnect......................................................... 8 Operating

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a) DS799 June 22, 2011 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx Embedded

More information

A Design of Remote Monitoring System based on 3G and Internet Technology

A Design of Remote Monitoring System based on 3G and Internet Technology National Conference on Information Technology and Computer Science (CITCS 2012) A Design of Remote Monitoring System based on 3G and Internet Technology Shouxian WEN Lei XU Xingguo SUN Xiaohui LI* Abstract

More information

AC : INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT

AC : INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT AC 2007-1527: INFRARED COMMUNICATIONS FOR CONTROLLING A ROBOT Ahad Nasab, Middle Tennessee State University SANTOSH KAPARTHI, Middle Tennessee State University American Society for Engineering Education,

More information

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA 18-545: FALL 2014 2 Admin stuff Project Proposals happen on Monday Be prepared to give an in-class presentation Lab 1 is

More information

A Reconfigurable Smart Sensor Interface for Industrial WSN in IOT Environment

A Reconfigurable Smart Sensor Interface for Industrial WSN in IOT Environment A Reconfigurable Smart Sensor Interface for Industrial WSN in IOT Environment 1 R N S Sunil Veda ; 2 N.Veeraih & 3 S.Neelima 1 M.Tech (VLSI & Embedded System), 2 Asst.Professor, 3 HOD, Assoc.Proffesor,

More information

XMEGA Series Of AVR Processor. Presented by: Manisha Biyani ( ) Shashank Bolia (

XMEGA Series Of AVR Processor. Presented by: Manisha Biyani ( ) Shashank Bolia ( XMEGA Series Of AVR Processor Presented by: Manisha Biyani (200601217) Shashank Bolia (200601200 Existing Microcontrollers Problems with 8/16 bit microcontrollers: Old and inefficient architecture. Most

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a) DS799 March 1, 2011 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx Embedded

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

LogiCORE IP AXI DMA v6.02a

LogiCORE IP AXI DMA v6.02a LogiCORE IP AXI DMA v6.02a Product Guide Table of Contents SECTION I: SUMMARY IP Facts Chapter 1: Overview Operating System Requirements..................................................... 8 Feature Summary..................................................................

More information

USB-to-I2C. Ultra Hardware User s Manual.

USB-to-I2C. Ultra Hardware User s Manual. USB-to-I2C Ultra Hardware User s Manual https://www.i2ctools.com/ Information provided in this document is solely for use with the USB-to-I2C Ultra product from SB Solutions, Inc. SB Solutions, Inc. reserves

More information

High-Performance 32-bit

High-Performance 32-bit High-Performance 32-bit Microcontroller with Built-in 11-Channel Serial Interface and Two High-Speed A/D Converter Units A 32-bit microcontroller optimal for digital home appliances that integrates various

More information

High Speed Data Transfer Using FPGA

High Speed Data Transfer Using FPGA High Speed Data Transfer Using FPGA Anjali S S, Rejani Krishna P, Aparna Devi P S M.Tech Student, VLSI & Embedded Systems, Department of Electronics, Govt. Model Engineering College, Thrikkakkara anjaliss.mec@gmail.com

More information

Sample Copy. Not For Distribution.

Sample Copy. Not For Distribution. Microprocessor 8085 i Publishing-in-support-of, EDUCREATION PUBLISHING RZ 94, Sector - 6, Dwarka, New Delhi - 110075 Shubham Vihar, Mangla, Bilaspur, Chhattisgarh - 495001 Website: www.educreation.in Copyright,

More information

Welcome to this presentation of the STM32 direct memory access controller (DMA). It covers the main features of this module, which is widely used to

Welcome to this presentation of the STM32 direct memory access controller (DMA). It covers the main features of this module, which is widely used to Welcome to this presentation of the STM32 direct memory access controller (DMA). It covers the main features of this module, which is widely used to handle the STM32 peripheral data transfers. 1 The Direct

More information

ACC, a Next Generation CAN Controller

ACC, a Next Generation CAN Controller ACC, a Next Generation CAN Controller Reinhard Arlt, esd electronic system design gmbh Andreas Block, esd electronic system design gmbh Tobias Höger, esd electronic system design gmbh Most standalone CAN

More information

Design and Implementation of Buffer Loan Algorithm for BiNoC Router

Design and Implementation of Buffer Loan Algorithm for BiNoC Router Design and Implementation of Buffer Loan Algorithm for BiNoC Router Deepa S Dev Student, Department of Electronics and Communication, Sree Buddha College of Engineering, University of Kerala, Kerala, India

More information

Design of Embedded Hardware and Firmware

Design of Embedded Hardware and Firmware Design of Embedded Hardware and Firmware Introduction on "System On Programmable Chip" NIOS II Avalon Bus - DMA Andres Upegui Laboratoire de Systèmes Numériques hepia/hes-so Geneva, Switzerland Embedded

More information

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner RiceNIC Prototyping Network Interfaces Jeffrey Shafer Scott Rixner RiceNIC Overview Gigabit Ethernet Network Interface Card RiceNIC - Prototyping Network Interfaces 2 RiceNIC Overview Reconfigurable and

More information

Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT

Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT 1 Lecture 5: Computing Platforms Asbjørn Djupdal ARM Norway, IDI NTNU 2013 2 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug

More information

THE MICROCOMPUTER SYSTEM CHAPTER - 2

THE MICROCOMPUTER SYSTEM CHAPTER - 2 THE MICROCOMPUTER SYSTEM CHAPTER - 2 20 2.1 GENERAL ASPECTS The first computer was developed using vacuum tubes. The computers thus developed were clumsy and dissipating more power. After the invention

More information

AN6010. Using the Host Port Interface (HPI) in Cypress OTG-Host. Application Note Abstract. Introduction. HPI Overview

AN6010. Using the Host Port Interface (HPI) in Cypress OTG-Host. Application Note Abstract. Introduction. HPI Overview Using the Host Port Interface (HPI) in Cypress OTG-Host Application Note Abstract AN6010 Author: Scott Swanbeck Associated Project: No Associated Part Family: CY7C67200/CY7C67300 Software Version: None

More information

Working with Quad and Other SPI Protocols Testing and Debugging (Quad-) SPI-based ASIC, FPGA, SoC and Embedded Systems

Working with Quad and Other SPI Protocols Testing and Debugging (Quad-) SPI-based ASIC, FPGA, SoC and Embedded Systems Working with Quad and Other SPI Protocols Testing and Debugging (Quad-) SPI-based ASIC, FPGA, SoC and Embedded Systems By Alan Lowne, CEO, SaeligCo., Inc. and Frédéric Leens, sales and marketing manager,

More information

RECONFIGURABLE SPI DRIVER FOR MIPS SOFT-CORE PROCESSOR USING FPGA

RECONFIGURABLE SPI DRIVER FOR MIPS SOFT-CORE PROCESSOR USING FPGA RECONFIGURABLE SPI DRIVER FOR MIPS SOFT-CORE PROCESSOR USING FPGA 1 HESHAM ALOBAISI, 2 SAIM MOHAMMED, 3 MOHAMMAD AWEDH 1,2,3 Department of Electrical and Computer Engineering, King Abdulaziz University

More information

AT90SO72 Summary Datasheet

AT90SO72 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

FPGA Implementation Of SPI To I2C Bridge

FPGA Implementation Of SPI To I2C Bridge FPGA Implementation Of SPI To I2C Bridge Abhilash S.Warrier Akshay S.Belvadi Dhiraj R.Gawhane Babu Ravi Teja K Abstract Today s electronic system is not a standalone unit instead working in a group, where

More information

Field Programmable Gate Array

Field Programmable Gate Array Field Programmable Gate Array System Arch 27 (Fire Tom Wada) What is FPGA? System Arch 27 (Fire Tom Wada) 2 FPGA Programmable (= reconfigurable) Digital System Component Basic components Combinational

More information

Pin Description, Status & Control Signals of 8085 Microprocessor

Pin Description, Status & Control Signals of 8085 Microprocessor Pin Description, Status & Control Signals of 8085 Microprocessor 1 Intel 8085 CPU Block Diagram 2 The 8085 Block Diagram Registers hold temporary data. Instruction register (IR) holds the currently executing

More information