DESIGN AND DEVELOPMENT OF MEMORY MANAGEMENT UNIT FOR MIL- STD-1750 PROCESSOR

Size: px
Start display at page:

Download "DESIGN AND DEVELOPMENT OF MEMORY MANAGEMENT UNIT FOR MIL- STD-1750 PROCESSOR"

Transcription

1 International Journal of Electronics and Communication Engineering & Technology (IJECET) Volume 7, Issue 3, May June 2016, pp , Article ID: IJECET_07_03_006 Available online at Journal Impact Factor (2016): (Calculated by GISI) ISSN Print: and ISSN Online: IAEME Publication DESIGN AND DEVELOPMENT OF MEMORY MANAGEMENT UNIT FOR MIL- STD-1750 PROCESSOR Prasad. S. and Dr Siva Yellampalli VTU Extension Centre, UTL Technologies Limited, Bangalore, Karnataka, India Naveen. V Control and Digital Electronics Group, ISAC, Department of Space, Bangalore, Karnataka, India ABSTRACT Processor Interface ASIC (PI ASIC) was widely used to provide processor interface logics for MAR31750 Processor along with MA31751 Memory Management Unit (MMU) chip. However with the diminishing availability of MA31750 processors, use of the Mil-Std processor of Honeywell make HX1750 as a replacement for the obsolete MAR Since HX-1750 processor does not have a compatible COTS MMU chip available, it was decided to functionality of the existing MMU chip (MA31751) onto an FPGA The remaining regular processor interface logics, similar to those in PI ASIC are also housed inside the Processor Interface FPGA. Considering the voluminous size of requirements, RTAX-1000S FPGA was chosen to implement the processor interface logics. With a system clock of 24MHz and an internal MMU inside the FPGA the cycle time for memory accesses has considerably been reduced. The embedded SRAM blocks of the RTAX-1000S FPGA are used as shared RAM between CPU and the 1553 device. Key words: MMU, FPGA, ASIC, BPU Cite this Article: Prasad. S. G, Dr Siva Yellampalli and Naveen. V, Design and Development of Memory Management Unit for MIL-STD-1750 Processor, International Journal of Electronics and Communication Engineering & Technology, 7(3), 2016, pp editor@iaeme.com

2 Design and Development of Memory Management Unit for MIL-STD-1750 Processor INTRODUCTION A memory management unit (MMU), sometimes called (PMMU) paged memory management unit. It is a computer hardware component for using accesses to memory requested by the CPU. First performing the translation of virtual memory addresses to physical addresses (i.e., virtual memory management), it is implemented as part of the central processing unit, but it can also be in the form of a separate integrated circuit. MMU is clearly performing the virtual memory management, bus arbitration, memory protection, cache control and bank switchin. ASIC VS FPGA Table 1 PI ASIC versus PI FPGA Processor Interface ASIC Designed for 12 MHz MMU external to ASIC Interface for Both Internal and External Shared RAMs Employs existing EDAC for RAMs Nature of Internal RAM : DP SRAM with 8K word of Memory I/O Decoding for some addresses not present EEPROM Interface logics absent Processor Interface FPGA Designed for 24 MHz MMU to address up to 1M locations Interface for Internal Shared RAM only Employs Core EDAC IP Core for Internal RAM and existing EDAC for External RAM Nature of Internal RAM : SRAM with single port, 8K word memory I/O Decoding for all I/O addresses present EEPROM Interface Logics provided NEED FOR MMU The HX-1750 processor can address a maximum of 64kB of memory through its address lines which falls short of 1MB of memory observed on onboard. Thus, the MMU caters to this need by providing extended addressing and making it possible for the processor address 1 MB of memory. DESIGN OF MMU Memory Management Unit is implemented in RTAX-1000 FPGA. The design of MMU is similar to that of the existing MA MMU chip [8]. The principal function of memory management unit is to provide extended addressing to the processor by means of address translation. The BPU of MA is not implemented in the memory management unit design. The MMU module is designed only to increase the memory addressing capability of the HX-1750 CPU. The processor inputs the 16 bit Address (ADDR_VALID [15:0]) and the Address State (AS [3:0]). The memory management unit performs address translation to output the Physical Page Address which is referred to by Extended Address (EA [7:0]). The extended 20 bit address is formed by the concatenation of EA [7:0] and the ADDR_VALID [11:0] as shown in the figure editor@iaeme.com

3 Prasad.S.G, Dr Siva Yellampalli and Naveen.V Figure 1 Generation of 20 bit Physical Address The main memory (SRAM) is divided in to 256 pages of size 4kB each. Therefore, the MMU may have an array of registers which contain the physical page addresses (PPA) of all the pages available within the memory. The MMU decodes the incoming processor address to classify the command as either an operation on Instruction registers or Operand registers. PAGE REGISTERS The main memory is divided into 256 pages of 4k words each. The MMU maps the system memory into these 4k word pages. A page is a block of physical page memory which is uniquely specified by the PPA [3]. A given address within any page is specified by the least significant twelve bits of the CPU address bus. Each page register is 8 bit wide and contains the physical page address of a page in the main memory. A total of 512 page registers divided into two groups of 256 registers each, one dedicated for Instruction memory space and one for Operand memory space. The MMU is initialized to provide a linear, one to one mapping of the PPA when system reset occurs. The CPU may change the mapping when it is in privileged instruction mode using XIO commands 5100 to 52FF as defined in MIL-STD Two register banks, one for instruction and one for operand are created. Each bank is implemented as an 8 bit word array of length 256. Write Operation The processor data is written into the specified 8 bit register address (REG_ADDR). Write operation into the file registers occurs during the rising edge of the IOWR (write clock (W_CLK)) and when the write enable (WE) is high. Read Operation Two 256 to 1 MUX are placed one outside each set of page registers (instruction and operand page registers). Depending on the selection lines (REG_ADDR), the 48 editor@iaeme.com

4 Design and Development of Memory Management Unit for MIL-STD-1750 Processor multiplexer selects the content of required page register and relays it to the 2 to 1 multiplexer as show in figure 2. The 2 to 1 MUX selects between the signals EA_INSTRUCTION and EA_OPERAND depending upon the selection line REG_ADDR to output MMU_DATA_OUT. The data for processor read is always available on EA [7:0]. The MMU data for processor read is routed to the processor data bus in the data bus routing module when the enable MMU_DATA_CS is activated. Figure 2 Read/write logic on Page registers Translation Two 256 to 1 multiplexers are placed one outside each set of page registers (instruction and operand page registers). Depending on the selection lines (TRANS_ADR), the multiplexer selects the contents of required page register and relays it to the 2 to 1 multiplexer. TRANS_ADR to the multiplexer is formed by the concatenation of AS [3:0] and ADDR_VALID [3:0]. MMU_TRANS_PORT always contains the contents of the register specified by TRANS_ADR. MMU_TRANS_PORT is either EA_INSTRUCTION or EA_OPERAND depending upon the bank which outputs MMU_TRANS_PORT. The 2 to 1 multiplexer in the right hand corner [9]. Depending upon the value of the selection line DI, either the EA_INSTRUCTION or the EA_OPERAND is selected and relayed as the required EA [7:0] as an output of the memory management unit module. Identical to read, the translation operation is asynchronous. EA [7:0] is always available outside the memory management unit module irrespective of any translation enable. To make use of EA [7:0], the processor asserts the IOM signal to logic low. The extended 20 bit address is formed by concatenation of EA [7:0] and the ADDR_VALID [11:0] editor@iaeme.com

5 Prasad.S.G, Dr Siva Yellampalli and Naveen.V SIMULATION AND RESULTS The simulated results obtained using ModelSim simulator and the device utilization obtained using Libero Microsemi. The VHDL code for memory management unit module was simulated for all combinations of Data, Address and Control signals. Figure 3 Write operation timing waveform Figure 4 Read operation timing waveform 50 editor@iaeme.com

6 Design and Development of Memory Management Unit for MIL-STD-1750 Processor Figure 5 the simulated result of the MMU SL. No Test case 1 Operand Register Read from Locations D200 to D2FF 2 Instruction Register Read from locations D100 to D1FF 3 Operand Register Write from Locations 5200 to 52FF 4 Instruction Register Write from Locations 5100 to 51FF 5 Operand Translation for TRANS_ADR values ranging from 00 to FF 6 Instruction Translate for TRANS_ADR values ranging from 00 to FF 7 Operand Register and Instruction Register Read with IOM =0 8 Operand and Instruction Translate with IOM=1 Table 2 List of FPGA Simulation Test Case CONCLUSION AND FUTURE WORK MMU for extending the 16 bit processor address to reference 1M words (20 bit address) with the use of 256 Instruction and Operand page register each has been designed, tested for implementation. This design work will optimize the board by limiting the need for a dedicated memory management unit device and also helps to tide over the obsolescence in the MIL-STD-1750 compatible MMU. Microsemi RTAX1000S FPGA is used to realize the logics. Design and implementation of the MMU will be done in Microsemi s Libero environment using VHDL language editor@iaeme.com

7 Prasad.S.G, Dr Siva Yellampalli and Naveen.V Future work can integrate the Block Protection Unit (BPU) for memory protection into the design as with the case of the dedicated Memory Management Unit. REFERENCES [1] ISRO ASIC /FPGA design and development guidelines. [2] John L. Hennsley and David A. Patterson, Computer Architecture A quantitative approach, 2 edition Morgan Kaufmanns publishers inc. San Francisco, California, [3] Memory management overview, Karl Ingström, Anders Daleby. Department of Computer Engineering, University of Mälardalen, Sweden, [4] K.C. Chang, Digital Design & Modeling with VHDL & Synthesis IEEE Computer society press. [5] Radiation-Hardended FPGAs Datasheet -Actel Corporation. See the Actel website for the latest version of the datasheet. V3.1. Radiation-Hardened FPGAs. Features [6] Processor Interface ASIC (PI-ASIC) design document. [7] Stefan Sjoholm, VHDL for Designers Pearson Prentice Hall. [8] MA User configurable, the MA31751 can perform as an MMU, a BPU or both MMU and BPU, conforming to MA31751 devices can be used to give 16M wordsoflogical. SOS/Datasheets/DNX_MA31751_Jul02.pdf. [9] Operating system concepts, 4ed, A. Silberschatz and P.B Galvin, ISBN , 1994, Addison-Wesley. [10] J.K. Kishore, A memory management unit for satellite recovery experiment, International Astronautical Congress [11] R. Revathi S. Sinthuja Dr. N. Manoharan and N. Rajendiran, Allocation of Power in Relay Networks for Secured Communication, International Journal of Advanced Research in Engineering & Technology, 6(8), 2015, pp [12] Dhanya Pushkaran and Neethu Bhaskar, AES Encryption Engine for Many Core Processor Arrays for Enhanced Security, International Journal of Electronics and Communication Engineering & Technology, 5(12), 2014, pp editor@iaeme.com

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Memory Organization Part II

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Memory Organization Part II ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 7: Organization Part II Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn,

More information

High Speed SPI Slave Implementation in FPGA using Verilog HDL

High Speed SPI Slave Implementation in FPGA using Verilog HDL High Speed SPI Slave Implementation in FPGA using Verilog HDL Mr. Akshay K. Shah Abstract SPI (Serial Peripheral Interface) is a synchronous serial communication interface for short distance communication.

More information

Note: Closed book no notes or other material allowed, no calculators or other electronic devices.

Note: Closed book no notes or other material allowed, no calculators or other electronic devices. ECE 574: Modeling and Synthesis of Digital Systems using Verilog and VHDL Fall 2017 Exam Review Note: Closed book no notes or other material allowed, no calculators or other electronic devices. One page

More information

World Journal of Engineering Research and Technology WJERT

World Journal of Engineering Research and Technology WJERT wjert, 2016, Vol. 2, Issue 5, 01-11 Research Article ISSN 2454-695X Mukthi et al. WJERT www.wjert.org SJIF Impact Factor: 3.419 DESIGN AND VERIFICATION OF PRIORITY CONFIGURABLE INTERRUPT CONTROLLER Mukthi.

More information

Statement of Research

Statement of Research On Exploring Algorithm Performance Between Von-Neumann and VLSI Custom-Logic Computing Architectures Tiffany M. Mintz James P. Davis, Ph.D. South Carolina Alliance for Minority Participation University

More information

Command & Data Handling. By: Justin Hadella Brandon Gilles

Command & Data Handling. By: Justin Hadella Brandon Gilles Command & Data Handling By: Justin Hadella Brandon Gilles Outline Design Goals Requirements System Layout Processor Considerations Baseline Design Current Development 2 Design Goals 1 Watt Operational

More information

The Memory Component

The Memory Component The Computer Memory Chapter 6 forms the first of a two chapter sequence on computer memory. Topics for this chapter include. 1. A functional description of primary computer memory, sometimes called by

More information

Summer 2003 Lecture 18 07/09/03

Summer 2003 Lecture 18 07/09/03 Summer 2003 Lecture 18 07/09/03 NEW HOMEWORK Instruction Execution Times: The 8088 CPU is a synchronous machine that operates at a particular clock frequency. In the case of the original IBM PC, that clock

More information

Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Computer Memory Basic Concepts Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University The Memory Component The memory stores the instructions and data for an

More information

APPLICATION NOTE PACE P1754 PIC SYSTEM TEST

APPLICATION NOTE PACE P1754 PIC SYSTEM TEST APPLICATION NOTE PACE P1754 PIC SYSTEM TEST The PACE1754 PIC chip provides the system designer with a system test which may be run at power-up if enabled. This test is very useful for establishing the

More information

Novel Design of Dual Core RISC Architecture Implementation

Novel Design of Dual Core RISC Architecture Implementation Journal From the SelectedWorks of Kirat Pal Singh Spring May 18, 2015 Novel Design of Dual Core RISC Architecture Implementation Akshatha Rai K, VTU University, MITE, Moodbidri, Karnataka Basavaraj H J,

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

Handout 15. by Dr Sheikh Sharif Iqbal. Memory Interface of 8088 and 8086 processors

Handout 15. by Dr Sheikh Sharif Iqbal. Memory Interface of 8088 and 8086 processors Handout 15 Ref: Online course on EE-390, KFUPM Objective: by Dr Sheikh Sharif Iqbal Memory Interface of 8088 and 8086 processors - To introduce the read and write bus cycles of the 8088 and 8086 processors.

More information

EE414 Embedded Systems Ch 5. Memory Part 2/2

EE414 Embedded Systems Ch 5. Memory Part 2/2 EE414 Embedded Systems Ch 5. Memory Part 2/2 Byung Kook Kim School of Electrical Engineering Korea Advanced Institute of Science and Technology Overview 6.1 introduction 6.2 Memory Write Ability and Storage

More information

AREA OPTIMIZATION OF SPI MODULE USING VERILOG HDL

AREA OPTIMIZATION OF SPI MODULE USING VERILOG HDL International Journal of Electronics and Communication Engineering & Technology (IJECET) Volume 7, Issue 3, May June 2016, pp. 38 45, Article ID: IJECET_07_03_005 Available online at http://www.iaeme.com/ijecet/issues.asp?jtype=ijecet&vtype=7&itype=3

More information

SCS750. Super Computer for Space. Overview of Specifications

SCS750. Super Computer for Space. Overview of Specifications SUPER COMPUTER FOR SPACE TM Super Computer for Space F FLIGHT MODULE Overview of Specifications One board upset every 100 years in a GEO or LEO Orbit Up to 1000X Better Performance Than Current Space Processor

More information

Multi Cycle Implementation Scheme for 8 bit Microprocessor by VHDL

Multi Cycle Implementation Scheme for 8 bit Microprocessor by VHDL Multi Cycle Implementation Scheme for 8 bit Microprocessor by VHDL Sharmin Abdullah, Nusrat Sharmin, Nafisha Alam Department of Electrical & Electronic Engineering Ahsanullah University of Science & Technology

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

FPGA Implementation of MIPS RISC Processor

FPGA Implementation of MIPS RISC Processor FPGA Implementation of MIPS RISC Processor S. Suresh 1 and R. Ganesh 2 1 CVR College of Engineering/PG Student, Hyderabad, India 2 CVR College of Engineering/ECE Department, Hyderabad, India Abstract The

More information

The Nios II Family of Configurable Soft-core Processors

The Nios II Family of Configurable Soft-core Processors The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005 2005 Altera Corporation Agenda Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture

More information

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved. Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Introduction to FPGA design Rakesh Gangarajaiah Rakesh.gangarajaiah@eit.lth.se Slides from Chenxin Zhang and Steffan Malkowsky WWW.FPGA What is FPGA? Field

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Sci. English 1-st Semester Lecture 12: Memory interfacing Typical Memory Hierarchy [1] On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data

More information

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection

Unit 1. Chapter 3 Top Level View of Computer Function and Interconnection Unit 1 Chapter 3 Top Level View of Computer Function and Interconnection Program Concept Hardwired systems are inflexible General purpose hardware can do different tasks, given correct control signals

More information

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan Processors Hi Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@maili.cgu.edu.twcgu General-purpose p processor Control unit Controllerr Control/ status Datapath ALU

More information

Techniques for Mitigating Memory Latency Effects in the PA-8500 Processor. David Johnson Systems Technology Division Hewlett-Packard Company

Techniques for Mitigating Memory Latency Effects in the PA-8500 Processor. David Johnson Systems Technology Division Hewlett-Packard Company Techniques for Mitigating Memory Latency Effects in the PA-8500 Processor David Johnson Systems Technology Division Hewlett-Packard Company Presentation Overview PA-8500 Overview uction Fetch Capabilities

More information

VLSI Implementation of Adders for High Speed ALU

VLSI Implementation of Adders for High Speed ALU VLSI Implementation of Adders for High Speed ALU Prashant Gurjar Rashmi Solanki Pooja Kansliwal Mahendra Vucha Asst. Prof., Dept. EC,, ABSTRACT This paper is primarily deals the construction of high speed

More information

I 2 C Bus Interface - Slave ver 3.08

I 2 C Bus Interface - Slave ver 3.08 DI2CS I 2 C Bus Interface - Slave ver 3.08 OVERVIEW I 2 C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data transmission over a short distance between many devices.

More information

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud.

Chapter 1. Microprocessor architecture ECE Dr. Mohamed Mahmoud. Chapter 1 Microprocessor architecture ECE 3130 Dr. Mohamed Mahmoud The slides are copyright protected. It is not permissible to use them without a permission from Dr Mahmoud http://www.cae.tntech.edu/~mmahmoud/

More information

[1] Douglas L. Perry, VHDL, third edition, ISBN , McRaw- Hill Series on Computer Engineering.

[1] Douglas L. Perry, VHDL, third edition, ISBN , McRaw- Hill Series on Computer Engineering. Lecture 12 1 Reference list [1] Douglas L. Perry, VHDL, third edition, ISBN 0-07-049436-3, McRaw- Hill Series on Computer Engineering. [2] Kevin Skahil, VHDL for programmable logic, ISBN 0-201-89586-2

More information

Operating systems and concurrency B02

Operating systems and concurrency B02 Operating systems and concurrency B02 David Kendall Northumbria University David Kendall (Northumbria University) Operating systems and concurrency B02 1 / 13 Device handling - ARM7 bus structure David

More information

of Soft Core Processor Clock Synchronization DDR Controller and SDRAM by Using RISC Architecture

of Soft Core Processor Clock Synchronization DDR Controller and SDRAM by Using RISC Architecture Enhancement of Soft Core Processor Clock Synchronization DDR Controller and SDRAM by Using RISC Architecture Sushmita Bilani Department of Electronics and Communication (Embedded System & VLSI Design),

More information

Implementation of High Speed Distributed Data Acquisition System

Implementation of High Speed Distributed Data Acquisition System International Journal of Advancements in Research & Technology, Volume 1, Issue 4, September-2012 1 Implementation of High Speed Distributed Data Acquisition System ANJU P.RAJU 1, AMBIKA SEKHAR 2 1 Embedded

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Sci. English 1-st Semester Lecture 12: Memory interfacing Typical Memory Hierarchy [1] On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data

More information

Laboratory Exercise 8

Laboratory Exercise 8 Laboratory Exercise 8 Memory Blocks In computer systems it is necessary to provide a substantial amount of memory. If a system is implemented using FPGA technology it is possible to provide some amount

More information

Documentation. Design File Formats. Constraints Files. Verification. Slices 1 IOB 2 GCLK BRAM

Documentation. Design File Formats. Constraints Files. Verification. Slices 1 IOB 2 GCLK BRAM DES and DES3 Encryption Engine (MC-XIL-DES) May 19, 2008 Product Specification AllianceCORE Facts 10805 Rancho Bernardo Road Suite 110 San Diego, California 92127 USA Phone: (858) 385-7652 Fax: (858) 385-7770

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 30 Random Access Memory (RAM) Overview Memory is a collection of storage cells with associated input and output circuitry Possible to read

More information

Computer Organization. 8th Edition. Chapter 5 Internal Memory

Computer Organization. 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM)

More information

ENGG3380: Computer Organization and Design Lab4: Buses and Peripheral Devices

ENGG3380: Computer Organization and Design Lab4: Buses and Peripheral Devices ENGG3380: Computer Organization and Design Lab4: Buses and Peripheral Devices School of Engineering, University of Guelph Winter 2017 1 Objectives: The purpose of this lab is : Learn basic bus design techniques.

More information

Design and Implementation of Hamming Code on FPGA using Verilog

Design and Implementation of Hamming Code on FPGA using Verilog International Journal of Engineering and Advanced Technology (IJEAT) Design and Implementation of Hamming Code on FPGA using Verilog Ravi Hosamani, Ashwini S. Karne Abstract In mathematics, digital communication

More information

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Hardware Design Environments Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Outline Welcome to COE 405 Digital System Design Design Domains and Levels of Abstractions Synthesis

More information

Using a Cache Simulator on Big Data Applications

Using a Cache Simulator on Big Data Applications 1 Using a Cache Simulator on Big Data Applications Liliane Ntaganda Spelman College lntagand@scmail.spelman.edu Hyesoon Kim Georgia Institute of Technology hyesoon@cc.gatech.edu ABSTRACT From the computer

More information

UG0725 User Guide PolarFire FPGA Device Power-Up and Resets

UG0725 User Guide PolarFire FPGA Device Power-Up and Resets UG0725 User Guide PolarFire FPGA Device Power-Up and Resets Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100

More information

A Hardware Filesystem Implementation for High-Speed Secondary Storage

A Hardware Filesystem Implementation for High-Speed Secondary Storage A Hardware Filesystem Implementation for High-Speed Secondary Storage Dr.Ashwin A. Mendon, Dr.Ron Sass Electrical & Computer Engineering Department University of North Carolina at Charlotte Presented by:

More information

SINGLE BOARD COMPUTER FOR SPACE

SINGLE BOARD COMPUTER FOR SPACE SINGLE BOARD COMPUTER FOR SPACE Proven in Space Best Single Event Performance Seamless Error Correction Wide Range of Processing Power Highest Design Margin SCS750 FLIGHT MODULE Overview of Specifications

More information

FPGA VHDL Design Flow AES128 Implementation

FPGA VHDL Design Flow AES128 Implementation Sakinder Ali FPGA VHDL Design Flow AES128 Implementation Field Programmable Gate Array Basic idea: two-dimensional array of logic blocks and flip-flops with a means for the user to configure: 1. The interconnection

More information

ISSN: [Bilani* et al.,7(2): February, 2018] Impact Factor: 5.164

ISSN: [Bilani* et al.,7(2): February, 2018] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A REVIEWARTICLE OF SDRAM DESIGN WITH NECESSARY CRITERIA OF DDR CONTROLLER Sushmita Bilani *1 & Mr. Sujeet Mishra 2 *1 M.Tech Student

More information

Functional Verification of Enhanced RISC Processor

Functional Verification of Enhanced RISC Processor Functional Verification of Enhanced RISC Processor SHANKER NILANGI 1 1 Assistant Professor, Dept of ECE, Bheemanna Khandre Institute of Technology, Bhalki, Karnataka, India s.nilangi@gmail.com 1 SOWMYA

More information

EECS 3201: Digital Logic Design Lecture 7. Ihab Amer, PhD, SMIEEE, P.Eng.

EECS 3201: Digital Logic Design Lecture 7. Ihab Amer, PhD, SMIEEE, P.Eng. EECS 3201: Digital Logic Design Lecture 7 Ihab Amer, PhD, SMIEEE, P.Eng. 2x2 binary multiplier 2 4x4 Array Multiplier 3 Multiplexer (MUX) 4 MUX Implementations 5 Wider MUXes 6 Logic with MUXes 7 Reducing

More information

Pipelined MIPS processor with cache controller using VHDL implementation for educational purpose

Pipelined MIPS processor with cache controller using VHDL implementation for educational purpose Journal From the SelectedWorks of Kirat Pal Singh Winter December 28, 203 Pipelined MIPS processor with cache controller using VHDL implementation for educational purpose Hadeel Sh. Mahmood, College of

More information

Chapter 13 Programmable Logic Device Architectures

Chapter 13 Programmable Logic Device Architectures Chapter 13 Programmable Logic Device Architectures Chapter 13 Objectives Selected areas covered in this chapter: Describing different categories of digital system devices. Describing different types of

More information

CHAPTER TWELVE - Memory Devices

CHAPTER TWELVE - Memory Devices CHAPTER TWELVE - Memory Devices 12.1 6x1,024 = 16,384 words; 32 bits/word; 16,384x32 = 524,288 cells 12.2 16,384 addresses; one per word. 12.3 2 16 = 65,536 words = 64K. Thus, memory capacity is 64Kx4.

More information

Laboratory Pipeline MIPS CPU Design (2): 16-bits version

Laboratory Pipeline MIPS CPU Design (2): 16-bits version Laboratory 10 10. Pipeline MIPS CPU Design (2): 16-bits version 10.1. Objectives Study, design, implement and test MIPS 16 CPU, pipeline version with the modified program without hazards Familiarize the

More information

FPGA Implementation of A Pipelined MIPS Soft Core Processor

FPGA Implementation of A Pipelined MIPS Soft Core Processor FPGA Implementation of A Pipelined MIPS Soft Core Processor Lakshmi S.S 1, Chandrasekhar N.S 2 P.G. Student, Department of Electronics and Communication Engineering, DBIT, Bangalore, India 1 Assistant

More information

Learning Outcomes. Spiral 3 1. Digital Design Targets ASICS & FPGAS REVIEW. Hardware/Software Interfacing

Learning Outcomes. Spiral 3 1. Digital Design Targets ASICS & FPGAS REVIEW. Hardware/Software Interfacing 3-. 3-.2 Learning Outcomes Spiral 3 Hardware/Software Interfacing I understand the PicoBlaze bus interface signals: PORT_ID, IN_PORT, OUT_PORT, WRITE_STROBE I understand how a memory map provides the agreement

More information

Memory Controller. Speaker: Tzu-Wei Tseng. Adopted from National Taiwan University SoC Design Laboratory. SOC Consortium Course Material

Memory Controller. Speaker: Tzu-Wei Tseng. Adopted from National Taiwan University SoC Design Laboratory. SOC Consortium Course Material Memory Controller Speaker: Tzu-Wei Tseng Adopted from National Taiwan University SoC Design Laboratory SOC Consortium Course Material Goal of This Lab Familiarize with ARM memory interface Know ARM Integrator

More information

190-MHz CMOS 4-Kbyte Pipelined Caches

190-MHz CMOS 4-Kbyte Pipelined Caches 90-MHz CMOS -Kbyte Pipelined Caches Apoorv Srivastava, Yong-Seon Koh, Barton Sano, and Alvin M. Despain ACAL-TR-9- November 99 ABSTRACT In this paper we describe the design and implementation of a 90-MHz

More information

High-Speed SDR SDRAM Controller Core for Actel FPGAs. Introduction. Features. Product Brief Version 1.0 November 2002

High-Speed SDR SDRAM Controller Core for Actel FPGAs. Introduction. Features. Product Brief Version 1.0 November 2002 Introduction Complementing the high-speed communication solutions from MorethanIP, the High- Speed SDRAM Controller offers storage extension for memory critical applications. For example with packet-based

More information

The CPU Design Kit: An Instructional Prototyping Platform. for Teaching Processor Design. Anujan Varma, Lampros Kalampoukas

The CPU Design Kit: An Instructional Prototyping Platform. for Teaching Processor Design. Anujan Varma, Lampros Kalampoukas The CPU Design Kit: An Instructional Prototyping Platform for Teaching Processor Design Anujan Varma, Lampros Kalampoukas Dimitrios Stiliadis, and Quinn Jacobson Computer Engineering Department University

More information

AvnetCore: Datasheet

AvnetCore: Datasheet AvnetCore: Datasheet CAN Controller with / FIFO Intended Use: Automotive Industry Engine Control Unit Sensors Version 1.0, July 2006 xcan_clk (>8 MHz) pclk reset_n APB Interrupts System Control APB Interface

More information

Design of a Pipelined 32 Bit MIPS Processor with Floating Point Unit

Design of a Pipelined 32 Bit MIPS Processor with Floating Point Unit Design of a Pipelined 32 Bit MIPS Processor with Floating Point Unit P Ajith Kumar 1, M Vijaya Lakshmi 2 P.G. Student, Department of Electronics and Communication Engineering, St.Martin s Engineering College,

More information

AvnetCore: Datasheet

AvnetCore: Datasheet AvnetCore: Datasheet VME32 Intended Use: Medical systems Industrial controls: robotic, factory automation VME_ADDR[31:1] VME_AM[5:0] VME_DATA_IN[31:0] VME_DATA_OUT[31:0] VME_EXT_DRV_N VME_EXT_DDIR VME_INT_DRV_N

More information

PowerPC 740 and 750

PowerPC 740 and 750 368 floating-point registers. A reorder buffer with 16 elements is used as well to support speculative execution. The register file has 12 ports. Although instructions can be executed out-of-order, in-order

More information

FPGA based Simulation of Clock Gated ALU Architecture with Multiplexed Logic Enable for Low Power Applications

FPGA based Simulation of Clock Gated ALU Architecture with Multiplexed Logic Enable for Low Power Applications IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 FPGA based Simulation of Clock Gated ALU Architecture with Multiplexed Logic Enable for

More information

Network on Chip round table European Space Agency, ESTEC Noordwijk / The Netherlands 17 th and 18 th of September 2009

Network on Chip round table European Space Agency, ESTEC Noordwijk / The Netherlands 17 th and 18 th of September 2009 Network on Chip round table European Space Agency, ESTEC Noordwijk / The Netherlands 17 th and 18 th of September 2009 Ph. Armbruster Head of Data Systems Division European Space Agency - ESTEC 17 th of

More information

EFFICIENT HARDWARE DESIGN AND IMPLEMENTATION OF ENCRYPTED MIPS PROCESSOR

EFFICIENT HARDWARE DESIGN AND IMPLEMENTATION OF ENCRYPTED MIPS PROCESSOR EFFICIENT HARDWARE DESIGN AND IMPLEMENTATION OF ENCRYPTED MIPS PROCESSOR Kirat Pal Singh, Centre for Development of Advanced Computing (C-DAC), Mohali, Punjab, India Kirat_addiwal@yahoo.com Dilip Kumar,

More information

OPERATIONAL UP TO. 300 c. Microcontrollers Memories Logic

OPERATIONAL UP TO. 300 c. Microcontrollers Memories Logic OPERATIONAL UP TO 300 c Microcontrollers Memories Logic Whether You Need an ASIC, Mixed Signal, Processor, or Peripheral, Tekmos is Your Source for High Temperature Electronics Using either a bulk silicon

More information

ISSN Vol.03, Issue.08, October-2015, Pages:

ISSN Vol.03, Issue.08, October-2015, Pages: ISSN 2322-0929 Vol.03, Issue.08, October-2015, Pages:1284-1288 www.ijvdcs.org An Overview of Advance Microcontroller Bus Architecture Relate on AHB Bridge K. VAMSI KRISHNA 1, K.AMARENDRA PRASAD 2 1 Research

More information

TOE10G-IP with CPU reference design

TOE10G-IP with CPU reference design TOE10G-IP with CPU reference design Rev1.1 6-Feb-19 1 Introduction TCP/IP is the core protocol of the Internet Protocol Suite for networking application. TCP/IP model has four layers, i.e. Application

More information

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 05, No. 02, March 2016, pp

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 05, No. 02, March 2016, pp Design of High Speed AMBA APB Master Slave Burst Data Transfer for ARM Microcontroller Kottu Veeranna Babu 1, B. Naveen Kumar 2, B.V.Reddy 3 1 M.Tech Embedded Systems Student, Vikas College of Engineering

More information

UDP1G-IP reference design manual

UDP1G-IP reference design manual UDP1G-IP reference design manual Rev1.1 14-Aug-18 1 Introduction Comparing to TCP, UDP provides a procedure to send messages with a minimum of protocol mechanism, but the data cannot guarantee to arrive

More information

The special radiation-hardened processors for new highly informative experiments in space

The special radiation-hardened processors for new highly informative experiments in space Journal of Physics: Conference Series PAPER OPEN ACCESS The special radiation-hardened processors for new highly informative experiments in space To cite this article: O V Serdin et al 2017 J. Phys.: Conf.

More information

Adding PC Connectivity to the MTS-88 Microcomputer Teaching. Omar Walid Abdul-Wahab, Wameedh Nazar Flayyih. System

Adding PC Connectivity to the MTS-88 Microcomputer Teaching. Omar Walid Abdul-Wahab, Wameedh Nazar Flayyih. System Adding PC Connectivity to the MTS-88 Microcomputer Teaching System Computer Engineering Department, University of Baghdad, Baghdad, Iraq omarwalid1@yahoo.com, wam_nazar@yahoo.com doi: 10.4156/ijact.vol2.issue2.16

More information

Random Access Memory (RAM)

Random Access Memory (RAM) Random Access Memory (RAM) EED2003 Digital Design Dr. Ahmet ÖZKURT Dr. Hakkı YALAZAN 1 Overview Memory is a collection of storage cells with associated input and output circuitry Possible to read and write

More information

Revolutionary Quad-Pipelined Ultra High Performance 16/32-bit Microcontroller v. 6.05

Revolutionary Quad-Pipelined Ultra High Performance 16/32-bit Microcontroller v. 6.05 DQ80251 Revolutionary Quad-Pipelined Ultra High Performance 16/32-bit Microcontroller v. 6.05 O V E R V I E W DQ80251 is a revolutionary Quad-Pipelined ultrahigh performance, speed optimized soft core,

More information

EE 8217 *Reconfigurable Computing Systems Engineering* Sample of Final Examination

EE 8217 *Reconfigurable Computing Systems Engineering* Sample of Final Examination 1 Student name: Date: June 26, 2008 General requirements for the exam: 1. This is CLOSED BOOK examination; 2. No questions allowed within the examination period; 3. If something is not clear in question

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

COMPUTER ARCHITECTURES

COMPUTER ARCHITECTURES COMPUTER ARCHITECTURES Random Access Memory Technologies Gábor Horváth BUTE Department of Networked Systems and Services ghorvath@hit.bme.hu Budapest, 2019. 02. 24. Department of Networked Systems and

More information

Learning Outcomes. Input / Output. Introduction PICOBLAZE 10/18/2017

Learning Outcomes. Input / Output. Introduction PICOBLAZE 10/18/2017 3-. Learning Outcomes 3-.2 Hardware/Software Interfacing PICOBLAZE Slides from Mark Redekopp, EE29 slide set (EE29Spiral3.pdf) adopted to suit EE354L I understand the PicoBlaze bus interface signals: PORT_ID[7:],

More information

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs)

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Fall 2002 EECS150 - Lec06-FPGA Page 1 Outline What are FPGAs? Why use FPGAs (a short history

More information

High Speed Data Acquisition System with Ethernet Interface

High Speed Data Acquisition System with Ethernet Interface IOSR Journal of Electronics and Communication Engineering (IOSRJECE) ISSN : 2278-2834 Volume 2, Issue 5 (Sep-Oct 2012), PP 12-17 High Speed Data Acquisition System with Ethernet Interface Anju P.Raju Sree

More information

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs?

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs? EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Outline What are FPGAs? Why use FPGAs (a short history lesson). FPGA variations Internal logic

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

VLSI DESIGN OF REDUCED INSTRUCTION SET COMPUTER PROCESSOR CORE USING VHDL

VLSI DESIGN OF REDUCED INSTRUCTION SET COMPUTER PROCESSOR CORE USING VHDL International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.2, Issue 3 (Spl.) Sep 2012 42-47 TJPRC Pvt. Ltd., VLSI DESIGN OF

More information

Observability in Multiprocessor Real-Time Systems with Hardware/Software Co-Simulation

Observability in Multiprocessor Real-Time Systems with Hardware/Software Co-Simulation Observability in Multiprocessor Real-Time Systems with /Software Co-Simulation Mohammed El Shobaki Mälardalen University, IDt/CUS P.O. Box 833, S-721 23 Västerås, Sweden E-mail: mohammed.el.shobaki@mdh.se

More information

SmartGen Hard Multiplier Accumulator v1.0. Handbook

SmartGen Hard Multiplier Accumulator v1.0. Handbook SmartGen Hard Multiplier Accumulator v1.0 Handbook Actel Corporation, Mountain View, CA 94043 2009 Actel Corporation. All rights reserved. Printed in the United States of America Part Number: 502-00-171-0

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 5: Zeshan Chishti DRAM Basics DRAM Evolution SDRAM-based Memory Systems Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science

More information

JTAG TAP CONTROLLER PROGRAMMING USING FPGA BOARD

JTAG TAP CONTROLLER PROGRAMMING USING FPGA BOARD JTAG TAP CONTROLLER PROGRAMMING USING FPGA BOARD 1 MOHAMED JEBRAN.P, 2 SHIREEN FATHIMA, 3 JYOTHI M 1,2 Assistant Professor, Department of ECE, HKBKCE, Bangalore-45. 3 Software Engineer, Imspired solutions,

More information

The Xilinx XC6200 chip, the software tools and the board development tools

The Xilinx XC6200 chip, the software tools and the board development tools The Xilinx XC6200 chip, the software tools and the board development tools What is an FPGA? Field Programmable Gate Array Fully programmable alternative to a customized chip Used to implement functions

More information

IMPLEMENTATION OF DDR I SDRAM MEMORY CONTROLLER USING ACTEL FPGA

IMPLEMENTATION OF DDR I SDRAM MEMORY CONTROLLER USING ACTEL FPGA IMPLEMENTATION OF DDR I SDRAM MEMORY CONTROLLER USING ACTEL FPGA Vivek V S 1, Preethi R 2, Nischal M N 3, Monisha Priya G 4, Pratima A 5 1,2,3,4,5 School of Electronics and Communication, REVA university,(india)

More information

Universal Serial Bus Host Interface on an FPGA

Universal Serial Bus Host Interface on an FPGA Universal Serial Bus Host Interface on an FPGA Application Note For many years, designers have yearned for a general-purpose, high-performance serial communication protocol. The RS-232 and its derivatives

More information

Integrated Circuit Design Using. Open Cores and Design Tools. Martha SaloméLópez de la Fuente

Integrated Circuit Design Using. Open Cores and Design Tools. Martha SaloméLópez de la Fuente Integrated Circuit Design Using Open Cores and Design Tools Martha SaloméLópez de la Fuente Science Publishing Group 548 Fashion Avenue New York, NY 10018 www.sciencepublishinggroup.com Published by Science

More information

A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS

A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS A ONE CHIP HARDENED SOLUTION FOR HIGH SPEED SPACEWIRE SYSTEM IMPLEMENTATIONS Joseph R. Marshall, Richard W. Berger, Glenn P. Rakow Conference Contents Standards & Topology ASIC Program History ASIC Features

More information

Hardware Description of Multi-Directional Fast Sobel Edge Detection Processor by VHDL for Implementing on FPGA

Hardware Description of Multi-Directional Fast Sobel Edge Detection Processor by VHDL for Implementing on FPGA Hardware Description of Multi-Directional Fast Sobel Edge Detection Processor by VHDL for Implementing on FPGA Arash Nosrat Faculty of Engineering Shahid Chamran University Ahvaz, Iran Yousef S. Kavian

More information

Pipelined High Performance 8-bit Microcontroller ver 3.10

Pipelined High Performance 8-bit Microcontroller ver 3.10 DP8051 Pipelined High Performance 8-bit Microcontroller ver 3.10 OVERVIEW DP8051 is an ultra high performance, speed optimized soft core of a single-chip 8- bit embedded controller dedicated for operation

More information

True In-Circuit Emulation of Honeywell HXNV0100 MRAM and ASICs

True In-Circuit Emulation of Honeywell HXNV0100 MRAM and ASICs True In-Circuit Emulation of Honeywell HXNV0100 MRAM and ASICs Features Real-time emulation of Honeywell HXNV0100 synchronous MRAM Same X/Y form-factor as HXNV0100 Implemented using an Actel ProASIC3 A3P1000

More information

Design and VLSI Implementation of DDR SDRAM Controller for High Speed Applications

Design and VLSI Implementation of DDR SDRAM Controller for High Speed Applications Design and VLSI Implementation of DDR SDRAM Controller for High Speed Applications Deepali Sharma # Shruti bhargava # Mahendra Vucha * # Dept. of ECE, TIT, Bhopal, India. * Research Fellow, MANIT, Bhopal

More information

Topics. FPGA Design EECE 277. Interconnect and Logic Elements Part 2. Laboratory Assignment #1 Save Everything!!! Guest Lecture

Topics. FPGA Design EECE 277. Interconnect and Logic Elements Part 2. Laboratory Assignment #1 Save Everything!!! Guest Lecture FPGA Design EECE 277 Interconnect and Logic Elements Part 2 Dr. William H. Robinson February 4, 2005 http://eecs.vanderbilt.edu/courses/eece277/ Topics The sky is falling. I must go and tell the King.

More information

University of Alexandria Faculty of Engineering Division of Communications & Electronics

University of Alexandria Faculty of Engineering Division of Communications & Electronics University of Alexandria Faculty of Engineering Division of Communications & Electronics Subject Name: Microprocessors Lecturer: Dr. Mohammed Morsy Academic Year: 2012 2013 Assistants: Eng. Ahmed Bedewy

More information