Learning Outcomes. Input / Output. Introduction PICOBLAZE 10/18/2017

Size: px
Start display at page:

Download "Learning Outcomes. Input / Output. Introduction PICOBLAZE 10/18/2017"

Transcription

1 3-. Learning Outcomes 3-.2 Hardware/Software Interfacing PICOBLAZE Slides from Mark Redekopp, EE29 slide set (EE29Spiral3.pdf) adopted to suit EE354L I understand the PicoBlaze bus interface signals: PORT_ID[7:], IN_PORT[7:], OUT_PORT[7:], READ_STROBE, and WRITE_STROBE I understand how a memory map provides the agreement between addresses the software will use and that the hardware must recognize and respond to I understand how to build address decoding logic to ensure only the appropriate item/register is selected for a given PORTID For output, I can take a memory map and the PORTID and OUT_DATA bits such that the appropriate data is input or saved in a register when an OUTPUT instruction is executed For input, I can take a memory map and the appropriate PORTID bits to build logic and muxes such that the appropriate data value is present at IN_DATA when an INPUT instruction is executed Input / Output The processor connects to peripherals and other logic via the bus (address, data, and control) Software running on the processor performs loads and stores that read and write data to and from these devices based on address Processor Memory FE may signify a white dot at a particular location Video Interface A D C 254 WRITE 399 Keyboard Interface 4 4 hex 3-.3 Introduction Picoblaze (aka KCPSM6) is an 8 bit soft core processor The processor is not implemented directly in hardware on the FPGA (not a hard core) but instead it is just a Verilog description that is then synthesized along with the rest of your hardware design It provides a bus interface that can be connected to custom logic that you design and then used to control that custom logic via software executing on the processor 3-.4

2 Taken from the KCPSM6 Manual Input / Output Operations 3-.7 Exercise 3-.8 Make the register below capture data (out_data) from your Picoblaze whenever it outputs address FF hex on (address or port_id) INDATA Picoblaze Processor (software controlled) OUTDATA ADDR WS (W) D[7:] Q[7:] Reg RST 2

3 Remember: Registers w/ Enables 3-.9 Registers w/ Enables 3-. Registers (D FF s) will sample the D bit every clock edge and pass it to Q Sometimes we may want to hold the value of Q and ignore D even at a clock edge We can add an enable input and some logic in front of the D FF to accomplish this /AR D i Q i * X X X, X X Q i X Q i D /AR Y S SET D Q CLR FF with Data Enable Q The register content will change consequent to the clock edge only if the enable is active Otherwise the current Q value is maintained /AR D[3:] Q[3:] Recall Memory Interfaces We provide address and data = Overall enable (unless it is ) the memory won't read or write (we assume =) W = Write enable = Write / = read A[2:] DI[3:] W A[2:] DI[3:] W twrite M[3] Register Array DO[3:] 3-. DO[3:]??? mem[3] = mem[6] = Common asynchronous memory pinout No clock input Active low (Chip Select) Active low WE (Write Enable) Active low RD (Read Enable) commonly called (Output Enable) If they are chips, they usually have bidirectional data pins If they are inside an FPGA or an ASIC, they usually have separate data input pins and separate data output pins and perhaps active high control inputs Assume = tacc 3

4 Common asynchronous memory pinout Exercise Memory chips with bidirectional data pins and low-active control inputs KB RAM (RWM) A[9:] D[7:] WE KB ROM A[9:] D[7:] Make the register below capture data (out_data) from your Picoblaze whenever it outputs address FF hex on (address or port_id) Memory blocks in an ASIC or FPGA with unidirectional data pins and high-active control inputs KB RAM (RWM) A[9:] DI[3:] DO[7:] WE KB ROM A[9:] DO[7:] Write Strobe shall be included <= Very Important Exercise 2 Use your PicoBlaze to receive input from A given address hex and B for address x hex Since INDATA pins are dedicated input data lines, there is no harm in ignoring the READ STROBE A memory map shows what devices are assigned to a given address or address range that can then be accessed by the processor (and its software programs) Dec A7 A6 A5 A4 A3 A2 A A Assigned Device Input Switches (unused) 2 (unused) 253 LEDs 254 (unused) SegDisplay 4

5 Given an 8 bit address space (256 locations) and 3 devices that we want to interface to our microprocessor, we first must create the memory map A 64 bytes (64x8) memory A single 8 bit register A single bit D FF 3-.7 Exercise: What is a minimal set of bits that could be used to distinguish each device from the others? A 64 bytes (64x8) memory => A7 A6 =, A single 8 bit register => A7 A6 =, A single bit D FF => A7 = 3-.8 Dec A7 A6 A5 A4 A3 A2 A A Assigned Device 64x8 Memory bit Register 28 bit D FF Dec A7 A6 A5 A4 A3 A2 A A Assigned Device 64x8 Memory bit Register 28 bit D FF Memory Aliasing Given A 64 bytes (64x8) memory => A7 A6 =, A single 8 bit register => A7 A6 =, A single bit D FF => A7 = By using don't care situations the 8 bit register will respond to any address where A7 A6 =, (i.e ) and similarly the bit D FF will respond to any address where A7= (i.e ) Dec A7 A6 A5 A4 A3 A2 A A Assigned Device 64x8 Memory bit Register Note 28 bit D FF Note 3-.9 Address Decoding Address decoding refers to the process of enabling the correct device based on a specific address combination Address Decoding Logic

6 Exercise: Repeat the exercise to find a minimal set of bits that could be used to distinguish each device from the others? A 64 bytes (64x8) memory => A6 + A6'(A5+A4+A3+A2+A) A single 8 bit register => A6'A5'A4'A3'A2'A'A' A single bit D FF => A6'A5'A4'A3'A2'A'A Dec A7 A6 A5 A4 A3 A2 A A Assigned Device 8 bit Register bit D FF 2 64x8 3 Memory Address Decoding Exercise S S 8 Picoblaze Processor (software controlled) WS (W) x8 8 Memory 8 DI[7:] DO[7:] 6 A[5:] W 8-bit REG 8 8 D[7:] Q[7:] RST SET D Q -bit DFF CLR High Order Interleaving General strategy is to place devices at ranges of address divide by moresignificant bits Output Instruction Dec A7 A6 A5 A4 A3 A2 A A Assigned Device 64x8 Memory bit Register bit D FF Example: output s, FF Outputs the 8 bit number in s as data on out_port to the address (port_id) of xff 6

7 Input Instruction Example: input s8, c Places the address xc on the port_id and then grabs data from the in_port at the end of the second cycle and writes it into register s8 7

Learning Outcomes. Spiral 3 1. Digital Design Targets ASICS & FPGAS REVIEW. Hardware/Software Interfacing

Learning Outcomes. Spiral 3 1. Digital Design Targets ASICS & FPGAS REVIEW. Hardware/Software Interfacing 3-. 3-.2 Learning Outcomes Spiral 3 Hardware/Software Interfacing I understand the PicoBlaze bus interface signals: PORT_ID, IN_PORT, OUT_PORT, WRITE_STROBE I understand how a memory map provides the agreement

More information

Spiral 3-1. Hardware/Software Interfacing

Spiral 3-1. Hardware/Software Interfacing 3-1.1 Spiral 3-1 Hardware/Software Interfacing 3-1.2 Learning Outcomes I understand the PicoBlaze bus interface signals: PORT_ID, IN_PORT, OUT_PORT, WRITE_STROBE I understand how a memory map provides

More information

17.1. Unit 17. Instruction Sets Picoblaze Processor

17.1. Unit 17. Instruction Sets Picoblaze Processor 17.1 Unit 17 Instruction Sets Picoblaze Processor INSTRUCTION SET OVERVIEW 17.2 17.3 Instruction Set Review Defines the software interface of the processor and memory system Instruction set is the vocabulary

More information

How-To User Guide: Working with PicoBlaze on an FPGA. By: Sean Farner Peter Frandina

How-To User Guide: Working with PicoBlaze on an FPGA. By: Sean Farner Peter Frandina How-To User Guide: Working with PicoBlaze on an FPGA By: Sean Farner Peter Frandina Date: 5/20/2008 Table of Contents 1.0 Background Information...3 2.0 File Setup...3 3.0 Editing Source Files...3 4.0

More information

Unit 17. Instruction Set Review INSTRUCTION SET OVERVIEW. Historical Instruction Format Options. Instruction Sets Picoblaze Processor

Unit 17. Instruction Set Review INSTRUCTION SET OVERVIEW. Historical Instruction Format Options. Instruction Sets Picoblaze Processor 17.1 17.2 Unit 17 Instruction Sets Picoblaze Processor INSTRUCTION SET OVERVIEW 17.3 17.4 Instruction Set Review Defines the software interface of the processor and memory system Instruction set is the

More information

ELEC 4200 Lab#10 Interrupting SPI Receiver for use with a Processor Core

ELEC 4200 Lab#10 Interrupting SPI Receiver for use with a Processor Core ELEC 4200 Lab#10 Interrupting SPI Receiver for use with a Processor Core SPI description: http://en.wikipedia.org/wiki/serial_peripheral_interface_bus References you may need: PicoBlaze KCPSM6 User Manual

More information

Changes in timetable (changes in GREEN)

Changes in timetable (changes in GREEN) Changes in timetable (changes in GREEN) Wk12: May25 29 HLAB5 PICOBLAZE assembly Wk13: Jun1 5 Still hand in assignment on Wk13 Jun5 C.O.B. Wks14 15 (Jun8 19) Hardware tests Exam on Jun 22 Project lab I

More information

16.1. Unit 16. Computer Organization Design of a Simple Processor

16.1. Unit 16. Computer Organization Design of a Simple Processor 6. Unit 6 Computer Organization Design of a Simple Processor HW SW 6.2 You Can Do That Cloud & Distributed Computing (CyberPhysical, Databases, Data Mining,etc.) Applications (AI, Robotics, Graphics, Mobile)

More information

ROM (4K X 8) ROM (4K X 8) FOLD BACK FOR RAM0 RWM - RAM (2K X 8) RWM - RAM (2K X 8) FOLD BACK FOR RAM1 INPUT DEVICE 1

ROM (4K X 8) ROM (4K X 8) FOLD BACK FOR RAM0 RWM - RAM (2K X 8) RWM - RAM (2K X 8) FOLD BACK FOR RAM1 INPUT DEVICE 1 Lecture-43 In previous lectures, we have interfaced memory chips, input and output devices separately with the processor. We shall now take up a problem which involves all i.e, ROM, RWM, input devices

More information

CDA 4253 FPGA System Design The PicoBlaze Microcontroller. Hao Zheng Comp Sci & Eng U of South Florida

CDA 4253 FPGA System Design The PicoBlaze Microcontroller. Hao Zheng Comp Sci & Eng U of South Florida CDA 4253 FPGA System Design The PicoBlaze Microcontroller Hao Zheng Comp Sci & Eng U of South Florida Overview of PicoBlaze So:-core microcontroller in VHDL: portable to other plaaorms. Small: occupies

More information

ADPCM-HCO Voice Compression Logic Core

ADPCM-HCO Voice Compression Logic Core ADPCM-HCO Voice Compression Logic Core Functional Description The ADPCM-HCO logic core [Adaptive Differential Pulse Code Modulation-High Channel count Optimized] is a peripheral for digital voice compression

More information

EE 457 Unit 7b. Main Memory Organization

EE 457 Unit 7b. Main Memory Organization 1 EE 457 Unit 7b Main Memory Organization 2 Motivation Organize main memory to Facilitate byte-addressability while maintaining Efficient fetching of the words in a cache block Low order interleaving (L.O.I)

More information

8051 Interfacing: Address Map Generation

8051 Interfacing: Address Map Generation 85 Interfacing: Address Map Generation EE438 Fall2 Class 6 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas 85 Interfacing Address Mapping Use address bus and

More information

PICOBLAZE INTERRUPT INTERFACE

PICOBLAZE INTERRUPT INTERFACE CHAPTER 17 PICOBLAZE INTERRUPT INTERFACE 17.1 INTRODUCTION During normal program execution, a microcontroller polls the I/O peripherals (i.e., checks the status signals) and determines the course of action

More information

ADPCM-LCO Voice Compression Logic Core

ADPCM-LCO Voice Compression Logic Core ADPCM-LCO Voice Compression Logic Core Functional Description The ADPCM-LCO logic core [Adaptive Differential Pulse Code Modulation-Low Channel count Optimized] is a peripheral for digital voice compression/de-compression

More information

The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port

The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port A Simple Parallel Output Port We want a port which will write 8

More information

Using MSI Logic To Build An Output Port

Using MSI Logic To Build An Output Port Using MSI Logic To Build An Output Port Many designs use standard MSI logic for microprocessor expansion This provides an inexpensive way to expand microprocessors One MSI device often used in such expansions

More information

1-2 Chapter 1: The Beboputer Microcomputer

1-2 Chapter 1: The Beboputer Microcomputer 1-2 Chapter 1: The Beboputer Microcomputer The Beboputer microcomputer In its broadest sense, a computer is a device that can accept information from the outside world, process that information using logical

More information

Chapter 5 Embedded Soft Core Processors

Chapter 5 Embedded Soft Core Processors Embedded Soft Core Processors Coarse Grained Architecture. The programmable gate array (PGA) has provided the opportunity for the design and implementation of a soft core processor in embedded design.

More information

The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14

The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14 The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14 Using MSI Logic To Build An Output Port Many designs use standard MSI logic for microprocessor expansion This provides an inexpensive

More information

PicoBlaze Instruction Set and Event Reference

PicoBlaze Instruction Set and Event Reference Appendix C PicoBlaze Instruction Set and Event Reference This appendix provides a detailed operational description of each PicoBlaze instruction and the Interrupt and Reset events, including pseudocode

More information

Agenda. PicoBlaze Hello World project using the PicoBlaze. Class 9 Copyright 2011 Greg Tumbush Ver 1.0 1

Agenda. PicoBlaze Hello World project using the PicoBlaze. Class 9 Copyright 2011 Greg Tumbush Ver 1.0 1 Agenda PicoBlaze Hello World project using the PicoBlaze Class 9 Copyright 2011 Greg Tumbush Ver 1.0 1 Embedded Processor Why? Firmware is easier to maintain/modify/deploy If the constraints of you system

More information

Lab 4: Integrating a picoblaze processor in LabVIEW FPGA by use of CLIP node

Lab 4: Integrating a picoblaze processor in LabVIEW FPGA by use of CLIP node Lab 4: Integrating a picoblaze processor in LabVIEW FPGA by use of CLIP node Keywords: LabVIEW, LabVIEW FPGA, Xilinx SPARTAN3E Starter Kit, VHDL, picoblaze, assembler, CLIP node. Introduction Welcome to

More information

The Memory Component

The Memory Component The Computer Memory Chapter 6 forms the first of a two chapter sequence on computer memory. Topics for this chapter include. 1. A functional description of primary computer memory, sometimes called by

More information

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control EE 37 Unit Single-Cycle CPU path and Control CPU Organization Scope We will build a CPU to implement our subset of the MIPS ISA Memory Reference Instructions: Load Word (LW) Store Word (SW) Arithmetic

More information

Verilog HDL: Behavioral Counter

Verilog HDL: Behavioral Counter Verilog HDL: Behavioral Counter This example describes an 8-bit loadable counter with count enable. The always construct, highlighted in red text, describes how the counter should behave. behav_counter.v

More information

EE251: Thursday November 15

EE251: Thursday November 15 EE251: Thursday November 15 Major new topic: MEMORY A KEY topic HW #7 due today; HW #8 due Thursday, Nov. 29 Lab #8 finishes this week; due week of Nov. 26 All labs MUST be completed/handed-in by Dec.

More information

Microprocessor Architecture. mywbut.com 1

Microprocessor Architecture. mywbut.com 1 Microprocessor Architecture mywbut.com 1 Microprocessor Architecture The microprocessor can be programmed to perform functions on given data by writing specific instructions into its memory. The microprocessor

More information

Microprocessors and Microcontrollers (EE-231)

Microprocessors and Microcontrollers (EE-231) Microprocessors and Microcontrollers (EE-231) Main Objectives 8088 and 80188 8-bit Memory Interface 8086 t0 80386SX 16-bit Memory Interface I/O Interfacing I/O Address Decoding More on Address Decoding

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

You will work in groups of four for the project (same groups as Project 1).

You will work in groups of four for the project (same groups as Project 1). COS/ELE 375 Prof. August Lab 2: PAW Processor Design (18 Nov 2015) Due January 12, 2015 Introduction In the prior project, you became familiar with the PAW instruction set. In this project you will design,

More information

Menu. word size # of words byte = 8 bits

Menu. word size # of words byte = 8 bits Menu LSI Components >Random Access Memory (RAM) Static RAM (SRAM) Dynamic RAM (DRAM) Read-Only Memory (ROM) Look into my... See figures from Lam text on web: RAM_ROM_ch6.pdf 1 It can be thought of as 1

More information

Summer 2003 Lecture 21 07/15/03

Summer 2003 Lecture 21 07/15/03 Summer 2003 Lecture 21 07/15/03 Simple I/O Devices Simple i/o hardware generally refers to simple input or output ports. These devices generally accept external logic signals as input and allow the CPU

More information

Microprocessor & Interfacing Lecture DMA Controller--1

Microprocessor & Interfacing Lecture DMA Controller--1 Microprocessor & Interfacing Lecture 26 8237 DMA Controller--1 E C S D E P A R T M E N T D R O N A C H A R Y A C O L L E G E O F E N G I N E E R I N G Contents Introduction Features Basic Process of DMA

More information

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors Input/Output 1 Introduction Embedded system functionality aspects Processing Transformation of data Implemented using processors Storage Retention of data Implemented using memory Communication Transfer

More information

PicoBlaze 8-bit Embedded Microcontroller

PicoBlaze 8-bit Embedded Microcontroller PicoBlaze 8-bit Embedded Microcontroller 1 PicoBlaze Overview PicoBlaze is a simple 8-bit microcontroller Compact in size Occupies 96 slices in a Spartan-3 (5% of an XC3S200) Performance is respectable

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Data Acquisition Using INS8048

Data Acquisition Using INS8048 Data Acquisition Using INS8048 Abstract This application note describes techniques for interfacing National Semiconductor s ADC0833 serial I O and ADC0804 parallel I O A D converters to the INS8048 family

More information

8255 Programmable Peripheral Interface Architecture MCT/UNIT III/NARASIMHARAJ/LECTURE NOTES /IV MECH A

8255 Programmable Peripheral Interface Architecture MCT/UNIT III/NARASIMHARAJ/LECTURE NOTES /IV MECH A 8255 Programmable Peripheral Interface Architecture 8255 PPI Architecture The parallel input-output port chip 8255 is also called as programmable peripheral input- output port. The Intel s 8255 is designed

More information

ECE 437 Computer Architecture and Organization Lab 6: Programming RAM and ROM Due: Thursday, November 3

ECE 437 Computer Architecture and Organization Lab 6: Programming RAM and ROM Due: Thursday, November 3 Objectives: ECE 437 Computer Architecture and Organization Lab 6: Programming RAM and ROM Due: Thursday, November 3 Build Instruction Memory and Data Memory What to hand in: Your implementation source

More information

Lab 4: Register File and Memory 50 points Instructor: Yifeng Zhu Due: One week

Lab 4: Register File and Memory 50 points Instructor: Yifeng Zhu Due: One week Objectives: Lab 4: Register File and Memory 50 points Instructor: Yifeng Zhu Due: One week Build Register File Build Instruction Memory and Data Memory 1. Overview A combinational circuit neither contains

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

Implementing a PicoBlaze microprocessor structure (state machine) using a reconfigurable hardware medium

Implementing a PicoBlaze microprocessor structure (state machine) using a reconfigurable hardware medium Laboratory number 3 Implementing a PicoBlaze microprocessor structure (state machine) using a reconfigurable hardware medium Purpose of the laboratory: A PicoBlaze TM processor version for Virtex, Virtex-E,

More information

Topic 3. ARM Cortex M3(i) Memory Management and Access. Department of Electronics Academic Year 14/15. (ver )

Topic 3. ARM Cortex M3(i) Memory Management and Access. Department of Electronics Academic Year 14/15. (ver ) Topic 3 ARM Cortex M3(i) Memory Management and Access Department of Electronics Academic Year 14/15 (ver 25-10-2014) Index 3.1. Memory maps 3.2. Memory expansion 3.3. Memory management & Data alignment

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 5 Simple CPU Overview Instruction Set Software Process Software Program High Level Language Description if (x > ) x = x + y - z; a = b*x; Compiler JLEZ X,SKIP MOVE.W

More information

History and Basic Processor Architecture

History and Basic Processor Architecture History and Basic Processor Architecture History of Computers Module 1 Section 1 What Is a Computer? An electronic machine, operating under the control of instructions stored in its own memory, that can

More information

EE 109 Unit 12 Computer Organization

EE 109 Unit 12 Computer Organization 1 EE 19 Unit 12 Computer Organization 2 Review of some key concepts from the first half of the semester A BRIEF SUMMARY 3 A Few Big Ideas 1 Setting and clearing bits in a register tells the hardware what

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

V8-uRISC 8-bit RISC Microprocessor AllianceCORE Facts Core Specifics VAutomation, Inc. Supported Devices/Resources Remaining I/O CLBs

V8-uRISC 8-bit RISC Microprocessor AllianceCORE Facts Core Specifics VAutomation, Inc. Supported Devices/Resources Remaining I/O CLBs V8-uRISC 8-bit RISC Microprocessor February 8, 1998 Product Specification VAutomation, Inc. 20 Trafalgar Square Nashua, NH 03063 Phone: +1 603-882-2282 Fax: +1 603-882-1587 E-mail: sales@vautomation.com

More information

CMSC 2833 Lecture Memory Organization and Addressing

CMSC 2833 Lecture Memory Organization and Addressing Computer memory consists of a linear array of addressable storage cells that are similar to registers. Memory can be byte-addressable, or word-addressable, where a word typically consists of two or more

More information

CSCE 312 Lab manual. Lab 4 - Computer Organization and Data Path Design. Instructor: Dr. Yum. Fall 2016

CSCE 312 Lab manual. Lab 4 - Computer Organization and Data Path Design. Instructor: Dr. Yum. Fall 2016 CSCE 312 Lab manual Lab 4 - Computer Organization and Data Path Design Instructor: Dr. Yum Fall 2016 Department of Computer Science & Engineering Texas A&M University Chapter 5: Computer Organization and

More information

Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur

Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur Lecture - 09 8085 Microprocessors (Contd.) (Refer Slide Time:

More information

Outcomes. Spiral 1 / Unit 6. Flip Flops FLIP FLOPS AND REGISTERS. Flip flops and Registers. Outputs only change once per clock period

Outcomes. Spiral 1 / Unit 6. Flip Flops FLIP FLOPS AND REGISTERS. Flip flops and Registers. Outputs only change once per clock period 1-6.1 1-6.2 Spiral 1 / Unit 6 Flip flops and Registers Mark Redekopp Outcomes I know the difference between combinational and sequential logic and can name examples of each. I understand latency, throughput,

More information

Using Programmable Logic and the PALCE22V10

Using Programmable Logic and the PALCE22V10 Using Programmable Logic and the PALCE22V10 Programmable logic chips (like the PALCE22V10) provide a convenient solution for glue logic and state machine control required by your design. A single PAL chip

More information

EN164: Design of Computing Systems Lecture 06: Lab Foundations / Verilog 2

EN164: Design of Computing Systems Lecture 06: Lab Foundations / Verilog 2 EN164: Design of Computing Systems Lecture 06: Lab Foundations / Verilog 2 Professor Sherief Reda http://scaleenginbrownedu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

Lab 6 Using PicoBlaze. Fast Sorting.

Lab 6 Using PicoBlaze. Fast Sorting. Lab 6 Using PicoBlaze. Fast Sorting. Design, implement, and verify experimentally a circuit shown in the block diagram below, composed of the following major components: PicoBlaze-6 microcontroller with

More information

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp.

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp. Cache associativity Cache and performance 12 1 CMPE110 Spring 2005 A. Di Blas 110 Spring 2005 CMPE Cache Direct-mapped cache Reads and writes Textbook Edition: 7.1 to 7.3 Second Third Edition: 7.1 to 7.3

More information

Pin Description, Status & Control Signals of 8085 Microprocessor

Pin Description, Status & Control Signals of 8085 Microprocessor Pin Description, Status & Control Signals of 8085 Microprocessor 1 Intel 8085 CPU Block Diagram 2 The 8085 Block Diagram Registers hold temporary data. Instruction register (IR) holds the currently executing

More information

Contents. 1 Overview 2 Memory barriers 3 Example 4 Basic types of address decoding 5 Complete and incomplete address decoding

Contents. 1 Overview 2 Memory barriers 3 Example 4 Basic types of address decoding 5 Complete and incomplete address decoding Memory-mapped I/O From Wikipedia, the free encyclopedia For more generic meanings of input/output port, see Computer port (hardware). "MMIO" redirects here. For the airport serving Saltillo, Mexico, assigned

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

Embedded Systems. Read pages

Embedded Systems. Read pages Embedded Systems Read pages 385-417 Definition of Embedded Systems Embedded systems Computer dedicated to serve specific purposes Many physical systems today use computer for powerful and intelligent applications

More information

Reading Spartan-3A Device DNA

Reading Spartan-3A Device DNA Reading Spartan-3A Device DNA A Reference Design for the Spartan-3A Starter Kit Includes an LCD display driver Rev2 10 th July 2007 Ken Chapman Xilinx Ltd Limitations Limited Warranty and Disclaimer. These

More information

EET2411 DIGITAL ELECTRONICS. A device or electrical circuit used to store a single bit (0 or 1) Ex. FF.

EET2411 DIGITAL ELECTRONICS. A device or electrical circuit used to store a single bit (0 or 1) Ex. FF. Chapter 12 - Memory Devices Digital information is easily stored Commonly used memory devices and systems will be examined Flip flops Registers VLSI and LSI memory devices The difference between main memory

More information

Outcomes. Spiral 1 / Unit 6. Flip Flops FLIP FLOPS AND REGISTERS. Flip flops and Registers. Outputs only change once per clock period

Outcomes. Spiral 1 / Unit 6. Flip Flops FLIP FLOPS AND REGISTERS. Flip flops and Registers. Outputs only change once per clock period 1-5.1 1-5.2 Spiral 1 / Unit 6 Flip flops and Registers Mark Redekopp Outcomes I know the difference between combinational and sequential logic and can name examples of each. I understand latency, throughput,

More information

EE 308 Spring 2011 The MC9S12 in Expanded Mode How to get into expanded mode

EE 308 Spring 2011 The MC9S12 in Expanded Mode How to get into expanded mode The MC9S12 in Expanded Mode How to get into expanded mode Huang Chapter 14 Module Mapping Control (MMC) V4 Block User Guide Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide The MC9S12

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Sci. English 1-st Semester Lecture 12: Memory interfacing Typical Memory Hierarchy [1] On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data

More information

538 Lecture Notes Week 1

538 Lecture Notes Week 1 538 Clowes Lecture Notes Week 1 (Sept. 6, 2017) 1/10 538 Lecture Notes Week 1 Announcements No labs this week. Labs begin the week of September 11, 2017. My email: kclowes@ryerson.ca Counselling hours:

More information

Lecture-7 Characteristics of Memory: In the broad sense, a microcomputer memory system can be logically divided into three groups: 1) Processor

Lecture-7 Characteristics of Memory: In the broad sense, a microcomputer memory system can be logically divided into three groups: 1) Processor Lecture-7 Characteristics of Memory: In the broad sense, a microcomputer memory system can be logically divided into three groups: 1) Processor memory 2) Primary or main memory 3) Secondary memory Processor

More information

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM)

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM) Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash (EEPROM) Static RAM (SRAM) Dynamic RAM (DRAM) Generic pin configuration: Address connection

More information

Computer Architecture 2/26/01 Lecture #

Computer Architecture 2/26/01 Lecture # Computer Architecture 2/26/01 Lecture #9 16.070 On a previous lecture, we discussed the software development process and in particular, the development of a software architecture Recall the output of the

More information

8085 Microprocessor Architecture and Memory Interfacing. Microprocessor and Microcontroller Interfacing

8085 Microprocessor Architecture and Memory Interfacing. Microprocessor and Microcontroller Interfacing 8085 Microprocessor Architecture and Memory 1 Points to be Discussed 8085 Microprocessor 8085 Microprocessor (CPU) Block Diagram Control & Status Signals Interrupt Signals 8085 Microprocessor Signal Flow

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system.

Microcontrollers. Fig. 1 gives a comparison of a microprocessor system and a microcontroller system. Syllabus: : Introduction to, 8051 Microcontroller Architecture and an example of Microcontroller based stepper motor control system (only Block Diagram approach). (5 Hours) Introduction to A microcontroller

More information

Chapter TEN. Memory and Memory Interfacing

Chapter TEN. Memory and Memory Interfacing Chapter TEN Memory and Memory Interfacing OBJECTIVES this chapter enables the student to: Define the terms capacity, organization, and speed as used in semiconductor memories. Calculate the chip capacity

More information

Memory System Design. Outline

Memory System Design. Outline Memory System Design Chapter 16 S. Dandamudi Outline Introduction A simple memory block Memory design with D flip flops Problems with the design Techniques to connect to a bus Using multiplexers Using

More information

Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide

Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide - Computer with N bit address bus can access 2 N bytes of

More information

ECEN 651: Microprogrammed Control of Digital Systems Department of Electrical and Computer Engineering Texas A&M University

ECEN 651: Microprogrammed Control of Digital Systems Department of Electrical and Computer Engineering Texas A&M University ECEN 651: Microprogrammed Control of Digital Systems Department of Electrical and Computer Engineering Texas A&M University Prof. Mi Lu TA: Ehsan Rohani Laboratory Exercise #3 Storage Elements in Verilog

More information

Microprocessor s. Address Bus. External Buses. Interfacing CPU with external word. We classify the CPU interfacing signals in three functional buses:

Microprocessor s. Address Bus. External Buses. Interfacing CPU with external word. We classify the CPU interfacing signals in three functional buses: Interfacing CPU with external word s interfacing signals bus bus Power supply lines a d Typical Bus arbitration Status Bus control Interrupts control Control bus Clock signal Miscellaneous External Buses

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

Lecture 2 Microcomputer Organization: Fig.1.1 Basic Components of Microcomputer

Lecture 2 Microcomputer Organization: Fig.1.1 Basic Components of Microcomputer Lecture 2 Microcomputer Organization: As discussed in previous lecture microprocessor is a central processing unit (CPU) with its related timing functions on a single chip. A microprocessor combined with

More information

Unit DMA CONTROLLER 8257

Unit DMA CONTROLLER 8257 DMA CONTROLLER 8257 In microprocessor based system, data transfer can be controlled by either software or hardware. To transfer data microprocessor has to do the following tasks: Fetch the instruction

More information

Roa Logic. APB4 Multiplexer. Datasheet. October, c Roa Logic B.V.

Roa Logic. APB4 Multiplexer. Datasheet.   October, c Roa Logic B.V. Roa Logic Silicon Proven IP for FPGA and ASIC www.roalogic.com APB4 Multiplexer Datasheet http://roalogic.github.io/plic October, 2017 c Roa Logic B.V. Contents 1 Introduction 1 1.1 Features......................................

More information

ALTERA M9K EMBEDDED MEMORY BLOCKS

ALTERA M9K EMBEDDED MEMORY BLOCKS ALTERA M9K EMBEDDED MEMORY BLOCKS M9K Overview M9K memories are Altera s embedded high-density memory arrays Nearly all modern FPGAs include something similar of varying sizes 8192 bits per block (9216

More information

University of Alexandria Faculty of Engineering Division of Communications & Electronics

University of Alexandria Faculty of Engineering Division of Communications & Electronics University of Alexandria Faculty of Engineering Division of Communications & Electronics Subject Name: Microprocessors Lecturer: Dr. Mohammed Morsy Academic Year: 2012 2013 Assistants: Eng. Ahmed Bedewy

More information

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp.

registers data 1 registers MEMORY ADDRESS on-chip cache off-chip cache main memory: real address space part of virtual addr. sp. 13 1 CMPE110 Computer Architecture, Winter 2009 Andrea Di Blas 110 Winter 2009 CMPE Cache Direct-mapped cache Reads and writes Cache associativity Cache and performance Textbook Edition: 7.1 to 7.3 Third

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 Exp:1 STUDY OF MICROCONTROLLER 8051 To study the microcontroller and familiarize the 8051microcontroller kit Theory:- A Microcontroller consists of a powerful

More information

PicoBlaze 8-Bit Microcontroller for CPLD Devices

PicoBlaze 8-Bit Microcontroller for CPLD Devices Application Note: CPLD XAPP37(v.) January 9, 23 R PicoBlaze -Bit Microcontroller for CPLD Devices Summary Introduction This application note describes the implementation of an -bit microcontroller design

More information

I/O Design. Input / Output Instructions. Engineering 4862 Microprocessors. Lecture 23. Cheng Li

I/O Design. Input / Output Instructions. Engineering 4862 Microprocessors. Lecture 23. Cheng Li Engineering 4862 Microprocessors Lecture 23 Cheng Li EN-4012 licheng@engr.mun.ca I/O Design When designing an I/O port, ensure that the port is only active when selected by the microprocessor Use latches

More information

GATE Exercises on Microprocessors

GATE Exercises on Microprocessors 1 GATE Exercises on Microprocessors Abstract This problem set has questions taken from GATE papers over the last twenty years. Teachers can use the problem set for courses tutorials. 1) The clock frequency

More information

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis Interfacing Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures Vahid, Givargis Introduction Embedded system functionality aspects Processing Transformation of data Implemented

More information

PRINCETON (VON NEUMAN) ARCHITECTURE MICROPROCESSOR

PRINCETON (VON NEUMAN) ARCHITECTURE MICROPROCESSOR 1 IN OUT PRINCTON (VON NUMAN) ARCHITCTUR DATA MICROPROCSSOR ALU CONTROL STATUS INSTRUCTION CONTROL CONTROL & ADDR CLOCK ADDR(N Bits) COMPUTR DATA(M Bits) CONTROL Computer with N bit address bus can access

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Sci. English 1-st Semester Lecture 12: Memory interfacing Typical Memory Hierarchy [1] On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data

More information

Interface DAC to a PC. Control Word of MC1480 DAC (or DAC 808) 8255 Design Example. Engineering 4862 Microprocessors

Interface DAC to a PC. Control Word of MC1480 DAC (or DAC 808) 8255 Design Example. Engineering 4862 Microprocessors Interface DAC to a PC Engineering 4862 Microprocessors Lecture 22 Cheng Li EN-4012 licheng@engr.mun.ca DAC (Digital-to-Analog Converter) Device used to convert digital pulses to analog signals Two methods

More information

QUIZ Ch.6. The EAT for a two-level memory is given by:

QUIZ Ch.6. The EAT for a two-level memory is given by: QUIZ Ch.6 The EAT for a two-level memory is given by: EAT = H Access C + (1-H) Access MM. Derive a similar formula for three-level memory: L1, L2 and RAM. Hint: Instead of H, we now have H 1 and H 2. Source:

More information

COVER SHEET: Total: Regrade Info: 7 (6 points) 2 (14 points) 4 (12 points) 8 (20 points) 9 (24 points) 10 (5 extra credit points)

COVER SHEET: Total: Regrade Info: 7 (6 points) 2 (14 points) 4 (12 points) 8 (20 points) 9 (24 points) 10 (5 extra credit points) EEL 4712 Midterm 3 Spring 2011 VERSION 1 Name: UFID: Sign your name here if you would like for your test to be returned in class: IMPORTANT: Please be neat and write (or draw) carefully. If we cannot read

More information

Memory & Simple I/O Interfacing

Memory & Simple I/O Interfacing Chapter 10 Memory & Simple I/O Interfacing Expected Outcomes Explain the importance of tri-state devices in microprocessor system Distinguish basic type of semiconductor memory and their applications Relate

More information