A look at interrupts Dispatch_Tasks ( )

Size: px
Start display at page:

Download "A look at interrupts Dispatch_Tasks ( )"

Transcription

1 SHOWS WHERE S FIT IN A look at interrupts Dispatch_Tasks ( ) What are interrupts and why are they needed in an embedded system? Equally as important how are these ideas handled on the Blackfin Assignment 2 Assignment 1 Coffeepot on interrupts Current Code Init_Coffeepot( ) While (device_not ) { UpdateSimulator software update } check device is ; // And you always know when that // will happen at a certain place in // you code so the simulation // unlikely to find real le timing errors New code Init_Coffeepot( ); Stop_CoreTimer_Interrupt( ); SetUp_CoreTimer_Interrupts( hardware update); Start_CoreTimer_Interrupt( ); While (device_not ) { // Hidden background interrupt service routine // The more realistically makes the coffeepot // update out of synchronism with your software // More like real like } check ; +3 / 5V The standard instruction cycle of a microprocessor (ENCM369) * CAUSES INSTR PHASE 1 FROM PROGRAM INSTR PHASE 4 RESULT * INSTR PHASE 2 DECODE AND Y VALUES INSTR PHASE 3 EXECUTE +3 / 5V RC time constant 200 ms on 68K GROUND

2 The standard instruction cycle * EXECUTING YOUR PROGRAM UNTIL POWER IS REMOVED INSTR PHASE 1 FROM PROGRAM INSTR PHASE 4 RESULT INSTR PHASE 2 DECODE AND Y VALUES INSTR PHASE 3 EXECUTE The standard instruction cycle with external device having important data * INSTR PHASE 1 FROM PROGRAM INSTR PHASE 4 RESULT This is the data Control signal Thanks has received data INSTR PHASE 2 DECODE AND Y VALUES INSTR PHASE 3 EXECUTE Control signal I have data for you The standard instruction cycle with external device having important data * FETCH WRITE-BACK This is the data DECODE EXECUTE Control signal Thanks has received data Control signal I have data for you device The wait till approach of reading data from external device In decode phase read control register value In execute phase check 1 -- keep waiting (fetch-decode-execute-writeback instruction cycle) until the control value changes from 0 (device not ) to 1 (device ) When 1 go to a dferent part of your program code to read the data e.g. call ReadData( ) Then your program must send an acknowledge back to device that the data has been read. e.g. call AcknowledgeReadData( ). The device can then go and get more values for you. PROBLEM: You have no time to do anything else other than wait Not a problem waiting for this device is the only thing you want to do with the processor

3 Wait till approach Very problematic many devices * WAITS TOO LONG INSTR PHASE 1 FROM PROGRAM INSTR PHASE 4 RESULT INSTR PHASE 2 DECODE AND Y VALUES INSTR PHASE 3 EXECUTE 16- The Poll approach of getting data Not much waiting but a lot of doing read control register value of device go to a dferent part of the code to read the data (ReadData1( ) ) after reading the data send an acknowledge signal back to device 1 (AcknowledgeReadData1( ) ) -- 0 go and read the control value of device 2 don t worry about device 1 for some time read control register value of device go to a dferent part of the code to read the data (ReadData2() ) after reading the data send an acknowledge signal back to device 2 (AcknowledgeReadData2( ) ) -- 0 go and read the control value of device 3 don t worry about device 2 and 3 for some time ETC PROBLEM: What happens, while you are handling device 2, device 1 has time sensitive information that will disappear device 1 is not serviced immediately Interrupt Approach basic idea Extra phase in instruction cycle * Acknowledge Request done NO PHASE ANY- TIME PHASE 1 FROM NORMAL (NOT ) PROGRAM PHASE 4 ANSWER BECOMES REQUEST PHASE 2 DECODE AND Y VALUES PHASE 3 EXECUTE data These issues MUST be solved using interrupts on ANY real up 1. What device hardware can only provide a quick I am signal? 2. What more than one hardware device wants to send an interrupt request? 3. What the programmer wants to ignore low priority interrupt requests? 4. What certain interrupt requests are too important to ignore?

4 What hardware device can only provide a quick I am signal? Add interrupt (capture) latch to processor (Capture Request) What the programmer wants to ignore a low priority interrupt? Add (Ignore) Interrupt Mask (Capture) e.g. IGNORE INTERRUP IF FIO_MASK_A BIT is 0 (Lab. 1) Interrupt Mask Ignore FAST CHANGING Signal send (1) and then becomes 0 BECOMES REQUEST LINE What certain hardware interrupts are too important to ignore? NMI bypass the IGNORE Interrupt Mask Non-Maskable Interrupts NMI (Capture) Interrupt Mask Ignore What more than one hardware wants to send an interrupt? NMI Pending interrupts (still to be done (Capture) Interrupt Mask Ignore BECOMES REQUEST LINE BECOMES REQUEST LINE

5 Blackfin MASKS and Latches Same hardware in concept as previous slides Have discussed Normal, Hardware Loop, Jump, Conditional Jump Call, RTS Program flow before Unpredictable and planned interrupts Using idle low power mode in Lab. 0 and 2 uttcos Normal linear flow causes PC to increment to be able to fetch next next instruction Subroutine call flow PC increments, but is then stored (link register) and PC forced to Jump to new instruction at start of subroutine function PC = PC + 2 uses program counter PC as an Instruction Pointer register Fetch instruction at memory location PC then increment the PC to point at the next instruction PC = PC+2 or for bigger instr PC = PC + 4; CALL ES RETS = PC + 4 (FFA03C78) PC set to 0xFFA01E24 So instruction 0xFFA01E24 done next This instruction is NOT fetched (until end of subroutine) This instruction is now fetched HAVE JUMPED TO SUBROUTINE

6 Interrupt dferent -- Occurs ANYTIME, ANYWHERE Must Jump to NOW, not later! How can the up do this? What must happen to PC? Interrupt occurs HERE (green arrow) Must Jump to NOW but how? First step is obvious PC has 0xFFA01E44 in it up just about to fetch P0.L = instruction Remember what instruction you were about to execute so up can do that instruction after finishing the Hardware Interrupt could occur anytime, anywhere in C++ or ASM or library code (or while up sitting at a breakpoint being debugged (Lab 0, 2, 3, 4) ) Use program counter PC as an Instruction Pointer register Fetch instruction at memory location PC then increment the PC to point at the next instruction PC = PC+2 PC = PC + 4; How make this happen? RETI is register used to remember the instruction stopped by interrupt RETI = PC (0xFFA01E44) PC must get set to what????? value to make interrupt service routine run for this interrupt? Interrupt occurs HERE Must Jump to but how First step is obvious Remember what instruction you were about to execute RETI = PC (0xFFA01E44) PC =????? Some how like magic we must have the up set PC = start of Timer 0xFFA01EC0 then processor will start executing Timer code Solution Blackfin has Lookup table of what value to put into PC for each interrupt than can occur Look-up table for the start of every interrupt routine is stored in EVR table Event vector register table (see BF533 reference sheet) To Vector is a verb Meaning to lead or direct to Obvious Post-Lab Quiz 3 question to set EVR Event (e.g interrupts) Table EVT6 Entry for CORE-TIMER interrupt

7 Why do all these event addresses in the EVR ( jump) table start the same? The don t know what to do exception service routine (ESR) IDLE This is the assembly code While (wait till some happens) instruction This is the address of the the processor does not know what to do there is an interrupt of this sort EXCEPTION VDSP / CCES Emulator puts in a breakpoint so for us, as developers, the program stops. In real le processor can t stop, just goes into an infinite loop until watchdog timer resets the processor Don t know what to do Exception This exception hangs the processor Keeps doing same instruction (doing nothing) which is safer than doing something The developer should have provided a better ESR had known what to do Solution Lookup table of what value to put into PC for each type of interrupt that occurs Question the start of the is in the event table How did it get there? Problem solved by using WATCHG TIMER Event (e.g interrupts) Table

8 The start address of the got into the event table HOW? Tell (register) the processor how to handle each interrupt service routine Blackfin MASKS and Latches SetUp_EVT Also we can understand what the raise( ) C++ function does This is a special C++ instruction to allow us to test Raise( ) use software to put a 1 into the interrupt latch register making the processor think that a hardware interrupt has happened Event table information can be found in the Blackfin Hardware Manual and Blackfin Reference Sheet What happens the device does take away its I m signal during an interrupt? (Capture)

9 These registers control other interrupt capability IMASK the interrupt control register for the whole processor SIC- IMASK the interrupt control register for the processor peripherals IMASK over-rides SIC_IMASK These figures are useful for other interrupt activity Details of the Core Event Table used by IMASK controller when responding to request Shows how the entries in the SIC_IMASK are normally mapped (multiplexed) to entries in IMASK Can be changed you need to Tackled today Three ways of handling hardware requests for service Wait till the device signals then process the data If device 1 process its data Else If device 2 process its data POLL Interrupt start processing the data from a specic device NOW!

WATCHDOG TIMER ISR DEVELOPMENT TDD APPROACH

WATCHDOG TIMER ISR DEVELOPMENT TDD APPROACH WATCHDOG TIMER ISR DEVELOPMENT TDD APPROACH Through the use of user stories You can use a very similar approach when testing your CORE_TIMER ISR during Assignment 2 When developing the coffeepot Water

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 1. Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 1 Interrupt Dr. Tao Li 1 M&M: Chapter 8 Or Reading Assignment Software and Hardware Engineering (new version): Chapter 12 Dr. Tao Li 2 Interrupt An

More information

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1

Reading Assignment. Interrupt. Interrupt. Interrupt. EEL 4744C: Microprocessor Applications. Lecture 7. Part 1 Reading Assignment EEL 4744C: Microprocessor Applications Lecture 7 M&M: Chapter 8 Or Software and Hardware Engineering (new version): Chapter 12 Part 1 Interrupt Dr. Tao Li 1 Dr. Tao Li 2 Interrupt An

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

Getting the O in I/O to work on a typical microcontroller

Getting the O in I/O to work on a typical microcontroller Getting the O in I/O to work on a typical microcontroller Ideas of how to send output signals to the radio controlled car. The theory behind the LED controller used in the Familiarization Lab Agenda Processors

More information

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Discussion of the capabilities of the Analog Devices ADSP-5333 Evaluation Board used in this course M. Smith, ECE

More information

Getting the O in I/O to work on a typical microcontroller

Getting the O in I/O to work on a typical microcontroller Getting the O in I/O to work on a typical microcontroller Ideas of how to send output signals to the radio controlled car. The theory behind the LED controller used in the Familiarization Lab Agenda Processors

More information

Microprocessors and Microcontrollers (EE-231)

Microprocessors and Microcontrollers (EE-231) Microprocessors and Microcontrollers (EE-231) Objective Interrupts Programming in C In Proteus On 8051 development board Interrupt An interrupt is an external or internal event that interrupts the microcontroller

More information

CHAPTER 11 INTERRUPTS PROGRAMMING

CHAPTER 11 INTERRUPTS PROGRAMMING CHAPTER 11 INTERRUPTS PROGRAMMING Interrupts vs. Polling An interrupt is an external or internal event that interrupts the microcontroller To inform it that a device needs its service A single microcontroller

More information

12. Interrupts and Programmable Multilevel Interrupt Controller

12. Interrupts and Programmable Multilevel Interrupt Controller 12. Interrupts and Programmable Multilevel Interrupt Controller 12.1 Features Short and predictable interrupt response time Separate interrupt configuration and vector address for each interrupt Programmable

More information

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto

Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto Discussion of the capabilities of the Analog Devices ADSP-5333 Evaluation Board used in this course M. Smith, ECE

More information

Section 7 Program Sequencer

Section 7 Program Sequencer Section 7 Program Sequencer 7-1 a ADSP-BF533 Block Diagram Core Timer 64 L1 Instruction Memory Performance Monitor JTAG/ Debug Core Processor LD0 32 LD1 32 L1 Data Memory SD32 DMA Mastered 32 bus Core

More information

Introduction to Lab. 3

Introduction to Lab. 3 Solving a Lab 1 Issue Introduction to Lab. 3 Also includes Solving a Lab. 1 issues Using the graphics LCD with your assignment 1 Rediscuss the Watchdog timer for Assignment 2 Many people have said My Enable

More information

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss

Grundlagen Microcontroller Interrupts. Günther Gridling Bettina Weiss Grundlagen Microcontroller Interrupts Günther Gridling Bettina Weiss 1 Interrupts Lecture Overview Definition Sources ISR Priorities & Nesting 2 Definition Interrupt: reaction to (asynchronous) external

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Interrupt Handling Module No: CS/ES/13 Quadrant 1 e-text 1. Interrupt An interrupt is the occurrence of a condition--an event --

More information

Lab 9: On-Board Time Generation and Interrupts

Lab 9: On-Board Time Generation and Interrupts Lab 9: On-Board Time Generation and Interrupts Summary: Develop a program and hardware interface that will utilize externally triggered interrupts and the onboard timer functions of the 68HC12. Learning

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

An overview of Interrupts ECE3534

An overview of Interrupts ECE3534 An overview of errupts ECE3534 Microprocessor erfacing: errupts Suppose a peripheral intermittently receives data, which must be serviced by the processor The processor can poll the peripheral regularly

More information

8086 Interrupts and Interrupt Responses:

8086 Interrupts and Interrupt Responses: UNIT-III PART -A INTERRUPTS AND PROGRAMMABLE INTERRUPT CONTROLLERS Contents at a glance: 8086 Interrupts and Interrupt Responses Introduction to DOS and BIOS interrupts 8259A Priority Interrupt Controller

More information

Microcontroller Not just a case of you say tomarto and I say tomayto

Microcontroller Not just a case of you say tomarto and I say tomayto Microprocessor or Microcontroller Not just a case of you say tomarto and I say tomayto M. Smith, ECE University of Calgary, Canada Information taken from Analog Devices On-line Manuals with permission

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

Building a COFFEE POT simulation on CCESS for Blackfin BF533

Building a COFFEE POT simulation on CCESS for Blackfin BF533 Building a COFFEE POT simulation on CCESS 2.6.0 for Blackfin BF533 Last lecture covered some detailed ideas Let step back and do something simpler to get an introduction of ideas needed for Lab0 and Assignment

More information

Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments is shown in Figure 1.

Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments is shown in Figure 1. Viewing the tm4c123gh6pm_startup_ccs.c file, the first piece of code we see after the comments is shown in Figure 1. Figure 1 Forward declaration for the default handlers These are the forward declarations,

More information

Design of Decode, Control and Associated Datapath Units

Design of Decode, Control and Associated Datapath Units 1 Design of Decode, Control and Associated Datapath Units ECE/CS 3710 - Computer Design Lab Lab 3 - Due Date: Thu Oct 18 I. OVERVIEW In the previous lab, you have designed the ALU and hooked it up with

More information

Last Time. Think carefully about whether you use a heap Look carefully for stack overflow Especially when you have multiple threads

Last Time. Think carefully about whether you use a heap Look carefully for stack overflow Especially when you have multiple threads Last Time Cost of nearly full resources RAM is limited Think carefully about whether you use a heap Look carefully for stack overflow Especially when you have multiple threads Embedded C Extensions for

More information

Interrupt is a process where an external device can get the attention of the microprocessor. Interrupts can be classified into two types:

Interrupt is a process where an external device can get the attention of the microprocessor. Interrupts can be classified into two types: 8085 INTERRUPTS 1 INTERRUPTS Interrupt is a process where an external device can get the attention of the microprocessor. The process starts from the I/O device The process is asynchronous. Classification

More information

Interrupts L33-1. Interrupts

Interrupts L33-1. Interrupts L33-1 Interrupts Interrupts Interrupts are like receiving a telephone call while you are in a face-to-face meeting: The phone rings (ie, an interrupt is sent) Tell the person you are meeting with to please

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

EECE 340 Introduction to Microprocessors w/lab Section A. Term Project Parking Visitor Counter

EECE 340 Introduction to Microprocessors w/lab Section A. Term Project Parking Visitor Counter Section A Term Project Parking Visitor Counter Group Members: Instructor: Dr. Jinane Biri Due date: Sunday, Dec. 16, 2012 1 Table of Contents 1. Objective... 2 2. Introduction and Problem Description...

More information

Interrupts and Using Them in C

Interrupts and Using Them in C Interrupts and Using Them in C Lecture 10 Embedded Systems 10-1 In These Notes... Interrupts How they work Creating and debugging C interrupt routines Sources M16C Hardware Manual P&P 8.1 and 8.5 Readings

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information

EKT222 Miroprocessor Systems Lab 5

EKT222 Miroprocessor Systems Lab 5 LAB 5: Interrupts Objectives: 1) Ability to define interrupt in 8085 microprocessor 2) Ability to understanding the interrupt structure in the 8085 microprocessor 3) Ability to create programs using the

More information

Automated Testing Environment

Automated Testing Environment Automated Testing Environment Concepts required for testing embedded systems adopted in this course (quizzes, assignments and laboratories) 1 To be tackled today Why test, and what kinds of tests are there?

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

Generating Rectify( ) Test driven development approach to TigerSHARC

Generating Rectify( ) Test driven development approach to TigerSHARC Generating Rectify( ) Test driven development approach to TigerSHARC assembly code production Assembly code examples Part 1 of 3 Concepts Concepts of C++ stubs Forcing the test to fail test of test Generating

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

8085 Interrupts. Lecturer, CSE, AUST

8085 Interrupts. Lecturer, CSE, AUST 8085 Interrupts CSE 307 - Microprocessors Mohd. Moinul Hoque, 1 Interrupts Interrupt is a process where an external device can get the attention of the microprocessor. The process starts from the I/O device

More information

Interrupt Driven Programming in MSP430 Assembly (ESCAPE) *

Interrupt Driven Programming in MSP430 Assembly (ESCAPE) * OpenStax-CNX module: m45965 1 Interrupt Driven Programming in MSP430 Assembly (ESCAPE) * Matthew Johnson Based on Interrupt Driven Programming in MSP430 Assembly by Matthew Johnson This work is produced

More information

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I.

University of Texas at El Paso Electrical and Computer Engineering Department. EE 3176 Laboratory for Microprocessors I. University of Texas at El Paso Electrical and Computer Engineering Department EE 3176 Laboratory for Microprocessors I Fall 2016 LAB 03 Low Power Mode and Port Interrupts Goals: Bonus: Pre Lab Questions:

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur

Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur Microprocessors and Microcontrollers Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur Lecture - 09 8085 Microprocessors (Contd.) (Refer Slide Time:

More information

Section 9. Watchdog Timer and Power-up Timer

Section 9. Watchdog Timer and Power-up Timer Section 9. Watchdog Timer and Power-up Timer HIGHLIGHTS This section of the manual contains the following topics: 9.1 Introduction... 9-2 9.2 Watchdog Timer and Power-up Timer Control Registers... 9-3

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 09, SPRING 2013 TOPICS TODAY I/O Architectures Interrupts Exceptions FETCH EXECUTE CYCLE 1.7 The von Neumann Model This is a general

More information

ECE332, Week 8. Topics. October 15, Exceptions. Hardware Interrupts Software exceptions

ECE332, Week 8. Topics. October 15, Exceptions. Hardware Interrupts Software exceptions ECE332, Week 8 October 15, 2007 1 Topics Exceptions Hardware Interrupts Software exceptions Unimplemented instructions Software traps Other exceptions 2 1 Exception An exception is a transfer of control

More information

Section 16 System Design

Section 16 System Design Section 16 System Design 16-1 a Operating Modes 16-2 a Operating Modes User mode Causes exceptions when protected resources are accessed. May be used for algorithm/application code Supervisor mode has

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

If we can just send 1 signal correctly over the SPI MOSI line, then Lab 4 will work!!!

If we can just send 1 signal correctly over the SPI MOSI line, then Lab 4 will work!!! If we can just send 1 signal correctly over the SPI MOSI line, then Lab 4 will work!!! Design and implementation details on the way to a valid SPI-LCD interface driver Slides 3 to 13 are old versions of

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Types of Interrupts:

Types of Interrupts: Interrupt structure Introduction Interrupt is signals send by an external device to the processor, to request the processor to perform a particular task or work. Mainly in the microprocessor based system

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 2. M68HC12 Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 2. M68HC12 Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 2 M68HC12 Interrupt Dr. Tao Li 1 Reading Assignment Software and Hardware Engineering (New version): Chapter 12 or SHE (old version) Chapter 8 And

More information

Basics of Microprocessor

Basics of Microprocessor Unit 1 Basics of Microprocessor 1. Microprocessor Microprocessor is a multipurpose programmable integrated device that has computing and decision making capability. This semiconductor IC is manufactured

More information

An Operating System in Action

An Operating System in Action 1 An Operating System in Action CPU loads boot program from ROM (e.g. BIOS in PC s) Boot program: Examines/checks machine configuration (number of CPU s, how much memory, number & type of hardware devices,

More information

PC Interrupt Structure and 8259 DMA Controllers

PC Interrupt Structure and 8259 DMA Controllers ELEC 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 1998/99 WINTER SESSION, TERM 2 PC Interrupt Structure and 8259 DMA Controllers This lecture covers the use of interrupts and the vectored interrupt

More information

INTERRUPTS in microprocessor systems

INTERRUPTS in microprocessor systems INTERRUPTS in microprocessor systems Microcontroller Power Supply clock fx (Central Proccesor Unit) CPU Reset Hardware Interrupts system IRQ Internal address bus Internal data bus Internal control bus

More information

Design and Implementation Interrupt Mechanism

Design and Implementation Interrupt Mechanism Design and Implementation Interrupt Mechanism 1 Module Overview Study processor interruption; Design and implement of an interrupt mechanism which responds to interrupts from timer and UART; Program interrupt

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Interrupt Basics Karl-Ragmar Riemschneider

Interrupt Basics Karl-Ragmar Riemschneider Interrupt Basics Exceptions and Interrupts Interrupts Handlers vs. Subroutines Accept or hold Pending: Priority control Exception vector table Example Karl-Ragmar Riemschneider Exceptions

More information

Blackfin Online Learning & Development

Blackfin Online Learning & Development Presentation Title: Multimedia Starter Kit Presenter Name: George Stephan Chapter 1: Introduction Sub-chapter 1a: Overview Chapter 2: Blackfin Starter Kits Sub-chapter 2a: What is a Starter Kit? Sub-chapter

More information

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses ECE 354 Computer Systems Lab II Interrupts, Strings, and Busses Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system

More information

Introduction to Embedded Systems. Lab Logistics

Introduction to Embedded Systems. Lab Logistics Introduction to Embedded Systems CS/ECE 6780/5780 Al Davis Today s topics: lab logistics interrupt synchronization reentrant code 1 CS 5780 Lab Logistics Lab2 Status Wed: 3/11 teams have completed their

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

COSC 243. Input / Output. Lecture 13 Input/Output. COSC 243 (Computer Architecture)

COSC 243. Input / Output. Lecture 13 Input/Output. COSC 243 (Computer Architecture) COSC 243 Input / Output 1 Introduction This Lecture Source: Chapter 7 (10 th edition) Next Lecture (until end of semester) Zhiyi Huang on Operating Systems 2 Memory RAM Random Access Memory Read / write

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

Continuing with whatever we saw in the previous lectures, we are going to discuss or continue to discuss the hardwired logic design.

Continuing with whatever we saw in the previous lectures, we are going to discuss or continue to discuss the hardwired logic design. Computer Organization Part I Prof. S. Raman Department of Computer Science & Engineering Indian Institute of Technology Lecture 10 Controller Design: Micro programmed and hard wired (contd) Continuing

More information

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives:

ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: ECGR 4101/5101, Fall 2016: Lab 1 First Embedded Systems Project Learning Objectives: This lab will introduce basic embedded systems programming concepts by familiarizing the user with an embedded programming

More information

Programming and Data Structure

Programming and Data Structure Programming and Data Structure Dr. P.P.Chakraborty Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture # 09 Problem Decomposition by Recursion - II We will

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 3: Polling and Interrupts Programmed I/O and DMA Interrupts Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering and Computer Science

More information

UNIMPLEMENTED INSTRUCTIONS

UNIMPLEMENTED INSTRUCTIONS UNIMPLEMENTED INSTRUCTIONS OVERVIEW: This Programming Assignment will take the sine computation program you wrote for Programming Assignment #4 and implement it as a 68000 assembly language instruction.

More information

Chapter 3 - Top Level View of Computer Function

Chapter 3 - Top Level View of Computer Function Chapter 3 - Top Level View of Computer Function Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Top Level View 1 / 127 Table of Contents I 1 Introduction 2 Computer Components

More information

ECE 354 Introduction to Lab 2. February 23 rd, 2003

ECE 354 Introduction to Lab 2. February 23 rd, 2003 ECE 354 Introduction to Lab 2 February 23 rd, 2003 Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system supervisors

More information

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab By the end of Class Pseudo-code for Lab 1-2 due as part of prelab Homework #5 on website due before next class Outline Introduce Lab 1-2 Counting Timers on C8051 Interrupts Laboratory Worksheet #05 Copy

More information

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks)

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks) QUESTION BANK EE 6502 / Microprocessor and Microcontroller Unit I- 8085 Processor PART-A (2-Marks) YEAR/SEM : III/V 1. What is meant by Level triggered interrupt? Which are the interrupts in 8085 level

More information

Interrupts and Low Power Features

Interrupts and Low Power Features ARM University Program 1 Copyright ARM Ltd 2013 Interrupts and Low Power Features Module Syllabus Interrupts What are interrupts? Why use interrupts? Interrupts Entering an Exception Handler Exiting an

More information

Microprocessors B (17.384) Spring Lecture Outline

Microprocessors B (17.384) Spring Lecture Outline Microprocessors B (17.384) Spring 2013 Lecture Outline Class # 04 February 12, 2013 Dohn Bowden 1 Today s Lecture Administrative Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

ECE251: Thursday September 27

ECE251: Thursday September 27 ECE251: Thursday September 27 Exceptions: Interrupts and Resets Chapter in text and Lab #6. READ ALL this material! This will NOT be on the mid-term exam. Lab Practical Exam #1 Homework # due today at

More information

CS 104 Computer Organization and Design

CS 104 Computer Organization and Design CS 104 Computer Organization and Design Exceptions and Interrupts CS104: Exceptions and Interrupts 1 Exceptions and Interrupts App App App System software Mem CPU I/O Interrupts: Notification of external

More information

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text

e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text e-pg Pathshala Subject: Computer Science Paper: Embedded System Module: Interrupt Programming in Embedded C Module No: CS/ES/20 Quadrant 1 e-text In this lecture embedded C program for interrupt handling

More information

MACHINE CONTROL INSTRUCTIONS: 1. EI

MACHINE CONTROL INSTRUCTIONS: 1. EI Lecture-33 MACHINE CONTROL INSTRUCTIONS: 1. EI (Enable interrupts): The interrupt system is disabled just after RESET operation. There is an internal INTE F/F (Interrupt enable flipflop) which is reset

More information

OS Structure. Hardware protection & privilege levels Control transfer to and from the operating system

OS Structure. Hardware protection & privilege levels Control transfer to and from the operating system OS Structure Topics Hardware protection & privilege levels Control transfer to and from the operating system Learning Objectives: Explain what hardware protection boundaries are. Explain how applications

More information

8051 I/O and 8051 Interrupts

8051 I/O and 8051 Interrupts 8051 I/O and 8051 Interrupts Class 7 EE4380 Fall 2002 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Agenda 8051 I/O Interfacing Scanned LED displays LCD displays

More information

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis

Interfacing. Introduction. Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures. Vahid, Givargis Interfacing Introduction Addressing Interrupt DMA Arbitration Advanced communication architectures Vahid, Givargis Introduction Embedded system functionality aspects Processing Transformation of data Implemented

More information

Procesory Sygnałowe w aplikacjach przemysłowych

Procesory Sygnałowe w aplikacjach przemysłowych Procesory Sygnałowe w aplikacjach przemysłowych Tryb SIMD, przerwania, konfiguracja nóżek układu IET Katedra Elektroniki Kraków 2015 dr inż. Roman Rumian Alternate (Secondary) DAG Registers To facilitate

More information

(Refer Slide Time: 02.06)

(Refer Slide Time: 02.06) Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 27 Depth First Search (DFS) Today we are going to be talking

More information

CMSC 201 Fall 2018 Lab 04 While Loops

CMSC 201 Fall 2018 Lab 04 While Loops CMSC 201 Fall 2018 Lab 04 While Loops Assignment: Lab 04 While Loops Due Date: During discussion, September 24 th through September 27 th Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

More information

ENSC E-123: Homework D10: Counter as Peripheral

ENSC E-123: Homework D10: Counter as Peripheral Homework D10, Counter as Peripheral 1 REV 4 1 ; April 9, 2015 ENSC E-123: Homework D10: Counter as Peripheral Contents 1 Counter as Peripheral (9 points, total) 1 1.1 Computer-driven Load* Switch, to Clear

More information

Test driven development Example

Test driven development Example Test driven development Example Developing a moving average filter that can be tested using the EUNIT plug in REVIEW Using the E UNIT testing Framework Activate CCES and select your workspace (H:/ENCM511

More information

NEC 78K0- Family On-Chip Emulation

NEC 78K0- Family On-Chip Emulation _ Technical Notes V9.9.86 NEC 78K0- Family On-Chip Emulation Contents Contents... 1 1 Introduction... 2 2 Emulation options... 3 2.1 Hardware Options... 3 3 CPU Setup... 6 3.1 General Options... 6 3.2

More information

Interrupts. by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar

Interrupts. by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Chapter 12 Interrupts by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Microprocessor & Interfacing (140701) Rahul Patel 1 Points to be Discussed 8085 Interrupts

More information

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture License: http://creativecommons.org/licenses/by-nc-nd/3./ Hardware interrupt: 5. If in an eternal device (for eample I/O interface) a predefined event occurs this device issues an interrupt request to

More information

A First Look at Microprocessors

A First Look at Microprocessors A First Look at Microprocessors using the The General Prototype Computer (GPC) model Part 4 Ports CPU Ecosystem All CPUs need RAM, ROM, a clock source and reset circuit, and power. Power Supply 1 Vio Vcore

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

427 Class Notes Lab2: Real-Time Clock Lab

427 Class Notes Lab2: Real-Time Clock Lab This document will lead you through the steps of creating a new hardware base system that contains the necessary components and connections for the Real-Time Clock Lab. 1. Start up Xilinx Platform Studio

More information

int $0x32 // call interrupt number 50

int $0x32 // call interrupt number 50 Kernel Programming: Process isolation, goal to make programs run fast and reliably o Processes should not affect others, unless there s a specific and allowed communication channel o Each process can act

More information