FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER CS 305: Microprocessor and Microcontrollers PART A

Size: px
Start display at page:

Download "FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER CS 305: Microprocessor and Microcontrollers PART A"

Transcription

1 Reg No Name FIFTH SEMESTER B.TECH DEGREE EXAMINATION MODEL TEST QUESTION PAPER, NOVEMBER 2017 CS 305: Microprocessor and Microcontrollers Max. Marks: 100 Duration: 3 Hours PART A Answer all questions. Each carries 3 marks 1. Define macro and subroutine with example. 2. Explain the use of following 8086 signals a. HOLD, and HLDA b. DEN and BHE 3. Explain the procedure for generating physical address and generate the physical address corresponds to the segment address 1055H and offset address 5555H 4. Explain the indexed addressing and based index addressing modes of 8086 with examples 5. PART B Answer any Two questions. Each carries 9 marks a. Draw the maximum mode circuit connections of 8086 b. Write an 8086 programme to find factorial of a number using procedure 6. a. Write an 8086 assembly language programme to convert ASCII to decimal conversion using macro. b. Draw the minimum mode of 8086 bus timing for a memory read and write operations. 7. What are the different addressing modes available in 8086 PART C Answer all questions. Each carries 3 marks 8. Explain the different types of interrupts in 8086

2 9. Discuss about fixed addressing and variable port addressing in i/o interfacing with What are the registers available in DMA controller? Mention its use 11. Explain the use of keyboard / display controller PART D Answer any Two questions. Each carries 9 marks 12. What do you meant by an interrupt and how an interrupt is handled in a. Write about memory mapped i/o and isolated i/o. b. Interface Two 16X8 ROM and Two 32X8 RAM with Select the starting address of EPROM suitably. The RAM address must start at 00000H. 14. Briefly explain the architecture of programmable input-output (8255) PART E Answer any four questions. Each carries 10 marks 15. a. Write about Microcontrollers and its types. (4 marks) b. Discuss the factors to be considered while selecting microcontrollers. c. Mention the applications of Microcontrollers. 16. Draw and explain the architecture of a. Briefly explain the interrupt structure of b. Write an assembly language program to compute x to the power n where both x and n are 8- bit numbers given by the user and the result should not be more than 16 bits using a. Explain the different addressing modes of 8051 b. Write an assembly language program to count the number of 0s and 1s in an 8- bit number using Explain the different types of instructions available in Write a note on Programmable Interval Timer.

3 Answer Key PART A 1. Macro and Subroutine (3 marks) 2. A macro call is an instruction to replace the macro name with its body, whereas subroutine call is an instruction to transfer the program s control to the subroutine s definition with all parameters, if required. A macro call results in macro expansion, whereas subroutine call results in execution. Macro expansion increases the size of the program but subroutine execution doesn t affect the size of the program Macro expansion doesn t affect the execution speed of the program much in comparison to subroutines affect the execution speed of the program a. HOLD: Input signal to the processor form the bus masters as a request to grant the control of the bus. Usually used by the DMA controller to get the control of the bus. HLDA: Is an Acknowledgment signal from the processor for HOLD (1.5marks) b. DEN (Data Enable): Output signal from the processor used as out put enable for the transceivers and BHE (Bus High Enable): It is used to enable data onto the most significant half of data bus, D8-D15. 8-bit device connected to upper half of the data bus use BHE (Active Low) signal. It is multiplexed with status signal S7. (1.5 mark) 3. In Indexed mode, Displacement is added to the index value in SI or DI register to obtain the EA. In case of 8-bit displacement, it is sign extended to 16-bit before adding to the base value. (1 mark) Example: MOV CX, [SI + 0A2H] (1/2 mark) In Based Index Addressing, the effective address is computed from the sum of a base register (BX or BP), an index register (SI or DI) and a displacement. (1 mark) Example: MOV DX, [BX + SI + 0AH] (1/2 mark) 4. Steps 1. Segment address shifted by 4 bit positions 2. Add shifted segment address with offset address (1 mark) Problem (2 marks) 4 bit left shift segment address Offset address

4 PART B Physical Address is 15AA5 5. a. Include Block diagram (3 marks) Description of the signals used (1.5 marks) b. ALP for finding factorial of a number MASM Program(3 marks) Macro definition(1.5 marks) 6. a. ALP To do ASCII to decimal conversion MASM Program(3 marks) Macro definition(1.5 marks) b.draw the memory read and write operations

5 Memory read (2.25 marks) Memory write (2.25 marks) 7. Addressing modes (9 marks) It refers to the way in which operands can be specified. 1. Immediate addressing mode

6 The addressing mode in which the data operand is a part of the instruction itself Example MOV CX, 3456H 2. Direct addressing mode The addressing mode in which the effective address of the memory location is written directly in the instruction. Example MOV AX, [4000H] 3. Register addressing mode It means that the register is the source of an operand for an instruction. Example MOV AX,BX 4. Register indirect addressing mode This addressing mode allows data to be addressed at any memory location through an offset address held in any of the following registers: BP, BX, DI & SI. Example MOV AX, [BX] 5. Indexed addressing mode Here the offset of the operand is stored in one of the index registers. DS is the default segment for SI and DI, in case of string instructions DS and ES are the default segments for SI and DI respectively. Example MOV AX, [SI] The effective address is computed as 10H *DS+[SI] 6. Register Relative The data available at an effective address formed by adding 8-bit / 16 bit displacement with the contents of the registers Example MOV AX, 50H [BX] The effective address is computed as 10H *DS+50H+[BX] 7. Based Index In this addressing mode, the offset address of the operand is computed by summing the base register to the contents of an Index register. Example MOV CX, [BX] [SI] The effective address is computed as 10H *DS+[BX]+[SI]

7 8. Relative Based Index In this addressing mode, the operands offset is computed by adding the base register contents with an Index registers contents and 8 or 16-bit displacement. Example MOV CX, 20H [BX] [SI] The effective address is computed as 10H *DS+10H+[BX]+[SI] 9. Intrasegment Direct Mode In this mode, the address to which the control is to be transferred lies in the same segment in which the control transfer instruction lies and appears directly in the instruction as an immediate displacement value Example JMP SHORT LABEL 10. Intrasegment Indirect Mode In this mode, the address to which the control is to be transferred lies in the same segment in which the control transfer instruction lies, but it is passed to the instruction indirectly Example JMP [BX]: Jump to the effective address stored in BX 11. Intersegment Direct Mode In this mode, the address to which the control is to be transferred is in a different segment. Here CS and IP of the destination address are specified directly in the instruction. Example JMP 5000H: 3000H Jump to the effective address 3000H in segment 5000H 12. Intersegment Indirect Mode In this mode, the address to which the control is to be transferred is in a different segment and is passed indirectly. Example JMP [5000H] Jump to an address in other segment specified at 5000H in DS PART C 8. NON-MASKABLE INTERRUPT (1.5 marks) The processor has non-maskable interrupt pin (NMI) having higher priority than the maskable interrupt request pin (INTR) and it is of type 2 interrupt. Example TRAP The NMI is activated on positive transition

8 MASKABLE INTERRUPT (1.5 marks) A maskable interrupt is one that can be ignored by setting (or clearing) a bit in an interrupt control register. Example INTR The INTR is a maskable interrupt because the microprocessor will be interrupted only if interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear interrupt Flag instruction. 9. Fixed Port Addressing (1.5 marks) Fixed port addressing is of 8-bit. In this case, only the lower AX, that is, AL is used. Here the address of the port is directly mentioned in the instruction Example address 45H Variable Port Addressing IN AL, 45H Move 8-bit data from an input port with the This is used when the addressed port has 16-bit address (1.5 marks) The port address is to be loaded in DX and then only i/o instruction can be used. Example MOV DX,3458H IN AL, DX address is in DX 10. DMA Address Register Move 8-bit data from an input port whose Each DMA channel has one DMA address register. The function of this register is to store the address of the starting memory location, which will be accessed by the DMA channel. Terminal Count Register Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit register isused for ascertaining that the data transfer through a DMA channel ceases or stops after the required number of DMA cycles. Mode Set Register The mode set register is used for programming the 8257 as per the requirements of the system. The function of the mode set register is to enable the DMA channels individually and also to set the various modes of operation. Status Register

9 The status register of 8257 is shown in figure. The lower order 4-bits of this register contain the terminal count status for the four individual channels. If any of these bits is set, it indicates that the specific channel has reached the terminal count condition. 11. Input (Keyboard) modes and Output (Display) modes Input (Keyboard) modes : 8279 provides three input modes, they are : 1.ScannedKeyboardMode: This mode allows a key matrix to be interfaced using either encoded or decoded scans. In the encoded scan, an 8 x 8 keyboard or in decoded scan, a 4 x 8 Keyboard can be interfaced. The code of key pressed with SHIFT and CONTROL status is stored into the FIFO RAM. 2. Scanned Sensor Matrix: In this mode, a sensor array can be interfaced with 8279 using either encoder or decoder scans. With encoder scan 8 x 8 sensor matrix or with decoder scan 4 x 8 sensor matrix can be interfaced. 3. Strobed Input : In this mode, if the control line goes low, the data on return lines, is stored in the FIFO byte by byte. Output (Display) Modes : 8279 provides two output modes for selecting the display options. 1. Display Scan: In this mode, 8279 provides 8 or 16 character multiplexed displays those can be organized as dual 4-bit or single 8-bit display units

10 2. Display Entry: The Display data is entered for display either from the right side or from the left side. 12. An INTERRUPT is a condition that causes the microprocessor to temporarily work on a different task and then return to its previous task. Interrupt is an event or signal that request to attention of CPU Interrupts We are aware of the fact that the interrupt can be either hardware or software. If the interrupts are generated by the inbuilt devices, like timers or by the interfaced devices, they are called as hardware interrupts. NMI It is a single non-maskable interrupt pin (NMI) having higher priority than the maskable interrupt request pin (INTR)and it is of type 2 interrupt. INTR The INTR is a maskable interrupt because the microprocessor will be interrupted only if interrupts are enabled using set interrupt flag instruction. It should not be enabled using clear interrupt Flag instruction. The INTR interrupt is activated by an I/O port. If the interrupts are generated by the software code, they are called as software interrupts. INT- Interrupt instruction with type number The first five pointers are dedicated interrupt pointers. TYPE 0 interrupt represents division by zero situation. TYPE 1 interrupt represents single-step execution during the debugging of a program. TYPE 2 interrupt represents non-maskable NMI interrupt. TYPE 3 interrupt represents break-point interrupt.

11 TYPE 4 interrupt represents overflow interrupt. INT 3-Break Point Interrupt Instruction It is a 1-byte instruction having op-code is CCH. These instructions are inserted into the program so that when the processor reaches there, then it stops the normal execution of program and follows the break-point procedure. INTO - Interrupt on overflow instruction Whenever an interrupt occurs the processor completes the execution of the current instruction and starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler. ISR is a program that tells the processor what to do when the interrupt occurs. After the execution of ISR, control returns back to the main routine where it was interrupted. Interrupt Service Routine For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When an interrupt is invoked, the microprocessor runs the interrupt service routine. For every interrupt, there is a fixed location in memory that holds the address of its ISR. The group of memory locations set aside to hold the addresses of ISRs is called the interrupt vector table. When an interrupt is occurred, the microprocessor stops execution of current instruction. It transfers the content of program counter into stack. It also stores the current status of the interrupts internally but not on stack. After this, it jumps to the memory location specified by Interrupt Vector Table (IVT). After that the code written on that memory area will execute. Interrupt Vector Table The first 1Kbyte of memory of 8086 (00000 to003ff) is set aside as a table for storing the starting addresses of Interrupt Service Procedures(ISP).Since 4-bytes are required for storing starting addresses of ISPs, the table can hold 256 Interrupt procedures. The starting address of an ISP is often called the Interrupt Vector or Interrupt

12 Pointer. Therefore the table is referred as Interrupt Vector Table. In this table, IP value is put in as low word of the vector & CS is put in high vector. 13. a)draw and explain 1.Isolated i/o(2.5marks) 2.Memory mapped i/o(2marks) b) explaining details(4.5marks) MMIO is used in real MIPS processors. It uses addresses from 0xffff0000 to 0xffffffff (in kernel) Programmable Peripheral Interface (PPI) Data Bus Buffer This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data bus. Data is transmitted or received by the buffer upon execution of input or output instructions by the CPU. Control words and status informa-tion are also transferred through the data bus buffer. Read/Write and Control Logic The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the CPU Address and Control busses and in turn, issues commands to both of the Control Groups. (CS) Chip Select. A "low" on this input pin enables the communcation between the 8255 and the CPU. (RD) Read. A "low" on this input pin enables 8255 to send the data or status information to the CPU on the data bus. In essence, it allows the CPU to "read from" the (WR) Write. A "low" on this input pin enables the CPU to write data or control words into the (A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD and WR inputs, control the selection of one of the three ports or the control word register. They are normally connected to the least significant bits of the address bus (A0 and A1). (RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports (A, B, C) are set to the input mode.

13 A1 A0 SELECTION 0 0 PORT A 0 1 PORT B 1 0 PORT C 1 1 CONTROL Group A and Group B Controls The functional configuration of each port is programmed by the systems software. In essence, the CPU "outputs" a control word to the The control word contains information such as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the Each of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control logic, receives "control words" from the internal data bus and issues the proper commands to its associated ports. Ports A, B, and C The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and "pull-down" bus-hold devices are present on Port A. Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer. Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal output and status signal inputs in conjunction with ports A and B.

14

15 PART E 15. Explain a) Microcontroller- A microcontroller (μc or uc) is a solitary chip microcomputer fabricated from VLSI fabrication. A micro controller is also known as embedded controller(.5marks) functional unit(1.5marks)( CPUMemoryInput/output portsserial Ports TimersADC (Analog to digital converter)dac (digital to analog converter) Interpret Control-Special Functioning Block) Microcontrollers are divided into categories according to their memory, architecture, bits and instruction sets. So types of microcontrollers(2marks) Bits: 1. 8 bits microcontroller executes logic & arithmetic operations. Intel 8031/ bits microcontroller executes with greater accuracy and performance in contrast to 8-bit. Example Intel bits microcontroller is employed mainly in automatically controlled appliances such as office machines, implantable medical appliances, etc. Memory:

16 1.External Memory Microcontroller When an embedded structure is built with a microcontroller which does not comprise of all the functioning blocks existing on a chip it is named as external memory microcontroller. 2.Embedded Memory Microcontroller When an embedded structure is built with a microcontroller which comprise of all the functioning blocks existing on a chip it is named as embedded memory microcontroller. Instruction Set: 1. CISC- CISC means complex instruction set computer. 2. RISC- RISC means Reduced Instruction Set Computers Memory Architecture: 1. Harvard Memory Architecture Microcontroller 2. Princeton Memory Architecture Microcontroller b)criteria Efficiency, cost effective Speed Packaging Power consumption Amount of RAM and ROM No of I/O pin and timer Easiness in developing product Availability in needed quantities c) Each application carry 1 mark Application of Microcontroller in Day to Day Life Devices: 1. Light sensing & controlling devices 2. Temperature sensing and controlling devices 3. Fire detection & safety devices 4. Industrial instrumentation devices 5. Process control devices Application of Microcontroller in Industrial Control Devices: 1. Industrial instrumentation devices 2. Process control devices Application of Microcontroller in Metering & Measurement Devices: 1. Measuring revolving objects 2. Volt Meter 3. Current meter 4. Hand-held metering systems

17 16. Draw the block diagram neatly(3marks) Explaining functional blocks in detail(7marks) Salient features of 8051 microcontroller are given below. Eight bit CPU On chip clock oscillator 4Kbytes of internal program memory (code memory) [ROM] 128 bytes of internal data memory [RAM] 64 Kbytes of external program memory address space. 64 Kbytes of external data memory address space. 32 bi directional I/O lines (can be used as four 8 bit ports or 32 individually addressable I/O lines) Two 16 Bit Timer/Counter :T0, T1 Full Duplex serial data receiver/transmitter Four Register banks with 8 registers in each bank. Sixteen bit Program counter (PC) and a data pointer (DPTR) 8 Bit Program Status Word (PSW) 8 Bit Stack Pointer Five vector interrupt structure (RESET not considered as an interrupt.) 8051 CPU consists of 8 bit ALU with associated registers like accumulator A, B register, SW, SP, 16 bit program counter, stack pointer. ALU can perform arithmetic and logic functions on 8 bit variables has 128 bytes of internal RAM which is divided into

18 Working registers [00 1F] Bit addressable memory area [20 2F] General purpose memory area (Scratch pad memory) [30-7F] 8051 has 4 K Bytes of internal ROM. The address space is from 0000 to 0FFFh. If the program size is more than 4 K Bytes 8051 will fetch the code automatically from external memory. Accumulator is an 8 bit register widely used for all arithmetic and logical operations. Accumulator is also used to transfer data between external memory. B register is used along with Accumulator for multiplication and division. A and B registers together is also called MATH registers. PSW (Program Status Word). This is an 8 bit register which contains the arithmetic status of ALU and the bank select bits of register banks. 17. a) explain five interrupts. They are maskable and vectored interrupts. Out of these five, two are external interrupt and three are internal interrupts makes use of two registers to deal with interrupts. 1. IE Register This is an 8 bit register used for enabling or disabling the interrupts. Explain and draw the structure of IE register. 2. IP Register. This is an 8 bit register used for setting the priority of the interrupts b) writing program effectively(5 marks) 18. a)explain in brief(5marks) immediate, register, direct, indirect addressing mode with example b) writing program effectively(5 marks) 19. Explain arithmetic instruction with example(2marks) logic and compare instruction with example(2marks) rotate and data serialization instructions(2marks)

19 20. data transfer instructions(2marks) branch instructions(2marks) Draw block diagram (1.5marks) explain the functional unit(7marks) List applications(1.5marks) 1.Interrupt a time sharing operating system at evenly spaced intervals so that it can switch a program 2. Programmable one shot generator 3. Serve as a programmable baud rate generator. 4. Measure time delays between external events. 5. Count the number of times an event occurs. 6. Causes the processer to be interrupted after a programmed number of external events have occurred. 7. Real time clock.. Prepared By MUMTHAS T.K, JINSHA K

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

8086 Interrupts and Interrupt Responses:

8086 Interrupts and Interrupt Responses: UNIT-III PART -A INTERRUPTS AND PROGRAMMABLE INTERRUPT CONTROLLERS Contents at a glance: 8086 Interrupts and Interrupt Responses Introduction to DOS and BIOS interrupts 8259A Priority Interrupt Controller

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

UNIT 1. Introduction to microprocessor. Block diagram of simple computer or microcomputer.

UNIT 1. Introduction to microprocessor. Block diagram of simple computer or microcomputer. UNIT 1 Unit 1 contents at a glance: 1. Architecture of 8086 microprocessor, 2. Register organization, 3. 8086 flag register and its functions, 4. addressing modes of 8086, 5. Pin diagram of 8086, 6. Minimum

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : MICROPROCESSORS AND INTERFACING Code : AEC021 Class : B.

More information

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I

EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers UNIT-I EC2304-MICROPROCESSOR AND MICROCONROLLERS 2 marks questions and answers 1. Define microprocessors? UNIT-I A semiconductor device(integrated circuit) manufactured by using the LSI technique. It includes

More information

Northern India Engineering College, Delhi (GGSIP University) PAPER I

Northern India Engineering College, Delhi (GGSIP University) PAPER I PAPER I Q1.Explain IVT? ANS. interrupt vector table is a memory space for storing starting addresses of all the interrupt service routine. It stores CS:IP PAIR corresponding to each ISR. An interrupt vector

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

EC6504 MICROPROCESSOR AND MICROCONTROLLER

EC6504 MICROPROCESSOR AND MICROCONTROLLER UNIT I THE 8086 MICROPROCESSOR 1. What do you mean by Addressing modes? (May/June 2014) The different ways that a microprocessor can access data are referred to as addressing modes. 2. What is meant by

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING

S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING S.R.M. INSTITUTE OF SCIENCE & TECHNOLOGY SCHOOL OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK Subject Code : EC307 Subject Name : Microprocessor and Interfacing Year & Sem : III Year, V Sem

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

icroprocessor istory of Microprocessor ntel 8086:

icroprocessor istory of Microprocessor ntel 8086: Microprocessor A microprocessor is an electronic device which computes on the given input similar to CPU of a computer. It is made by fabricating millions (or billions) of transistors on a single chip.

More information

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS UNIT 1 - THE 8085 AND 8086

More information

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors OVERVIEW UNIT II Introduction to 8086 microprocessors Architecture of 8086 processors Register Organization of 8086 Memory Segmentation of 8086 Pin Diagram of 8086 Timing Diagrams for 8086 Interrupts of

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

EASWARI ENGINEERING COLLEGE DEPARTMENT OF ELECTRONICS AND COMMUNICATION QUESTION BANK - V SEMESTER ECE EC2304 MICROPROCESSORS AND MICROCONTROLLERS UNIT I 1. When the 8086 processor is in minimum mode and

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information

1. What is Microprocessor? Give the power supply & clock frequency of 8085?

1. What is Microprocessor? Give the power supply & clock frequency of 8085? 1. What is Microprocessor? Give the power supply & clock frequency of 8085? A microprocessor is a multipurpose, programmable logic device that reads binary instructions from a storage device called memory

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013)

BHARATHIDASAN ENGINEERING COLLEGE. III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) BHARATHIDASAN ENGINEERING COLLEGE III Year / V Semester / EEE MICROPROCESSORS AND MICROCONTROLLERS (R-2013) FREQUENTLY ASKED QUESTIONS IN UNIVERSITY EXAMINATION PART A UNIT 1-8085 PROCESSOR 1. Draw the

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN ROAD MAP SDK-86 Intel 8086 Features 8086 Block Diagram 8086 Architecture Bus Interface Unit Execution Unit 8086 Architecture 8086 Programmer s Model Flag Register

More information

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller. UNIT V -8051 MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS 1. What is micro controller? Micro controller is a microprocessor with limited number of RAM, ROM, I/O ports and timer on a single chip

More information

Basics of Microprocessor

Basics of Microprocessor Unit 1 Basics of Microprocessor 1. Microprocessor Microprocessor is a multipurpose programmable integrated device that has computing and decision making capability. This semiconductor IC is manufactured

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India.

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India. Unit I Introduction Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad 501218, India. Pre-requisites Digital Logic Design (A1404) Computer Architecture

More information

UNIT-1. It is a 16-bit Microprocessor (μp).it s ALU, internal registers works with 16bit binary word.

UNIT-1. It is a 16-bit Microprocessor (μp).it s ALU, internal registers works with 16bit binary word. UNIT-1 Introduction to 8086: 8086 Microprocessor is an enhanced version of 8085Microprocessor that was designed by Intel in 1976. It is a 16-bit Microprocessor having 20 address lines and16 data lines

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Department of Computer Science and Engineering QUESTION BANK Subcode/Subject : CS1304 Microprocessor & Microcontroller Year/Sem: III / V UNIT I THE 8085 MICROPROCESSOR PART A ( 2Marks) 1. How AD0-AD7 are

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK : Microprocessors and Microcontrollers :

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

PART - B (Answer all five units, 5 X 10 = 50 Marks)

PART - B (Answer all five units, 5 X 10 = 50 Marks) Code: 13A04507 R13 B.Tech III Year I Semester (R13) Supplementary Examinations June 2017 MICROPROCESSS & INTERFACING (Common to CSE & IT) PART - A (a) Mention the function of the instruction ADD M of 8085

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 8086 Microprocessor Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers.

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

VALLIAMMAI ENGINEERING COLLEGE S.R.M. NAGAR, KATTANKULATHUR-603203. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING VII-EEE EE6502- MICROPROCESSORS AND MICROCONTROLLERS QUESTION BANK UNIT I 1. What

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

The Purpose of Interrupt

The Purpose of Interrupt Interrupts 3 Introduction In this chapter, the coverage of basic I/O and programmable peripheral interfaces is expanded by examining a technique called interrupt-processed I/O. An interrupt is a hardware-initiated

More information

MLR INSTITUTE OF TECHNOLOGY DUNDIGAL , HYDERABAD

MLR INSTITUTE OF TECHNOLOGY DUNDIGAL , HYDERABAD Name Code : 56012 Class Branch MR INSTITUTE OF TECHNOOGY DUNDIGA - 500 043, HYDERABAD EECTRONICS AND COMMUNICATION ENGINEERING ASSIGNMENT QUESTIONS : MICROPROCESSORS AND MICROCONTROERS : III - B. Tech

More information

Question Bank Part-A UNIT I- THE 8086 MICROPROCESSOR 1. What is microprocessor? A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary information

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I THE 8085 & 8086 MICROPROCESSORS. PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT I THE 8085 & 8086 MICROPROCESSORS. PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT I THE 8085 & 8086 MICROPROCESSORS PART A (2 Marks) 1. Give the significance of SIM and RIM instruction available in 8085. [NOV/DEC 2006] Instruction

More information

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller

Architecture & Instruction set of 8085 Microprocessor and 8051 Micro Controller of 8085 microprocessor 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration 8-bit

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Figure 1-5 Intel Corporation s 8086 Microprocessor. The 8086, announced in 1978, was the first 16-bit microprocessor

More information

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor?

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor? UNIT-I INTRODUCTION TO MICROPROCESSOR A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time. (i) The first commercially available microprocessor was

More information

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Moodle 4 WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Advanced Microprocessors and Introduction to Microcontroller Moodle developed By Dr. S. R. Kumbhar Department of Electronics Willingdon

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

BASIC INTERFACING CONCEPTS

BASIC INTERFACING CONCEPTS Contents i SYLLABUS UNIT - I 8085 ARCHITECTURE Introduction to Microprocessors and Microcontrollers, 8085 Processor Architecture, Internal Operations, Instructions and Timings, Programming the 8085-Introduction

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

8051 Microcontrollers

8051 Microcontrollers 8051 Microcontrollers Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu March 8, 2016 Controller vs Processor Controller vs Processor Introduction to 8051 Micro-controller In 1981,Intel corporation

More information

UNIT-IV. The semiconductor memories are organized as two-dimensional arrays of memory locations.

UNIT-IV. The semiconductor memories are organized as two-dimensional arrays of memory locations. UNIT-IV MEMORY INTERFACING WITH 8086: The semi conductor memories are of two types: Static RAM Dynamic RAM The semiconductor memories are organized as two-dimensional arrays of memory locations. For Ex:

More information

Architecture of 8086 Microprocessor

Architecture of 8086 Microprocessor MCQ on Microprocessor and Interfacing Technique S.E.Compure (Sem-II) UNIT 1 Architecture of 8086 Microprocessor 1 marks Questions 1. Which is first microprocessor? (a) 8008 (b) 8085 (c) 8086 (d) 4004 2.

More information

INTRODUCTION TO MICROPROCESSORS

INTRODUCTION TO MICROPROCESSORS INTRODUCTION TO MICROPROCESSORS Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 7, 2016 Richa Upadhyay Prabhu (MPSTME) INTRODUCTION January 7, 2016 1 / 63 Course Design Prerequisite:

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 02/04/2018 Max Marks: 40 Subject & Code : Microprocessor (15CS44) Section : IV A and B Name of faculty: Deepti.C Time : 8:30 am-10:00 am Note: Note: Answer any five complete

More information

EC 6504 MICROPROCESSOR AND MICROCONTROLLER

EC 6504 MICROPROCESSOR AND MICROCONTROLLER DEPARTMENTOFELECTRONICS&COMMUNICATIONENGINEERING EC 6504 MICROPROCESSOR AND MICROCONTROLLER UNIT I THE 8086 MICROPROCESSOR PARTA 1. What is microprocessor? What is the difference between a MP and CPU?

More information

MICROPROCESSORS & MICRO CONTROLLER COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK

MICROPROCESSORS & MICRO CONTROLLER COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUBJECT CODE: EC1257 SUBJECT NAME: MICROPROCESSOR AND MICROCONTROLLER YEAR : II IT SEM : IV UNIT I THE 8085 MICROPROCESSOR

More information

Hardware and Software Architecture. Chapter 2

Hardware and Software Architecture. Chapter 2 Hardware and Software Architecture Chapter 2 1 Basic Components The x86 processor communicates with main memory and I/O devices via buses Data bus for transferring data Address bus for the address of a

More information

Microprocessor Architecture

Microprocessor Architecture Microprocessor - 8085 Architecture 8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology. It has the following configuration

More information

EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR PART A

EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR PART A EC6504 MICROPROCESSOR AND MICROCONTROLLER Question Bank EC6504 MICROPROCESSOR AND MICROCONTROLLER QUESTION BANK UNIT I - THE 8086 MICROPROCESSOR 1. List the addressing modes of 8086?give examples [May

More information

KINGS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Microprocessors and Microcontrollers UNIT-I 8085 MICROPROCESSOR

KINGS DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. Subject Name: Microprocessors and Microcontrollers UNIT-I 8085 MICROPROCESSOR KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Name: Microprocessors and Microcontrollers Year/Sem: II/IV UNIT-I 8085 MICROPROCESSOR PART-A (2 MARKS) 1. Name the

More information

EE2007 Microprocessor systems.

EE2007 Microprocessor systems. EE2007 Microprocessor systems Tutorial 1 Semester 1 AY 2010-11 Ganesh Iyer ganesh.vigneswara@gmail.com (facebook, gtalk) http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore,

More information

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks)

QUESTION BANK. EE 6502 / Microprocessor and Microcontroller. Unit I Processor. PART-A (2-Marks) QUESTION BANK EE 6502 / Microprocessor and Microcontroller Unit I- 8085 Processor PART-A (2-Marks) YEAR/SEM : III/V 1. What is meant by Level triggered interrupt? Which are the interrupts in 8085 level

More information

Lecture Note On Microprocessor and Microcontroller Theory and Applications

Lecture Note On Microprocessor and Microcontroller Theory and Applications Lecture Note On Microprocessor and Microcontroller Theory and Applications MODULE: 1 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip

More information

ENE 334 Microprocessors

ENE 334 Microprocessors Page 1 ENE 334 Microprocessors Lecture 7: MCS-51 Architecture I : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Architecture I Page 2 Outlines: 8051 Microcontroller Hardware

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

DEPARTMENT OF ECE QUESTION BANK SUBJECT: MICROPROCESSOR AND MICROCONTROLLER UNIT-1 PART-A (2 MARKS)

DEPARTMENT OF ECE QUESTION BANK SUBJECT: MICROPROCESSOR AND MICROCONTROLLER UNIT-1 PART-A (2 MARKS) DEPARTMENT OF ECE QUESTION BANK SUBJECT: MICROPROCESSOR AND MICROCONTROLLER CODE: EC6504 UNIT-1 1. How many memory locations are available in 8086 microprocessor? 2. What are the flags available in 8086

More information

Fig 1. Block diagram of a microcomputer

Fig 1. Block diagram of a microcomputer Computer: A computer is a multipurpose programmable machine that reads binary instructions from its memory, accepts binary data as input,processes the data according to those instructions and provides

More information

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers.

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers. Lecture 5: Computer Organization Instruction Execution Computer Organization Addressing Buses Fetch-Execute Cycle Computer Organization CPU Control Unit U Input Output Memory Components Control Unit fetches

More information

Chapter Three Addressing Mode MOV AX, BX

Chapter Three Addressing Mode MOV AX, BX Chapter Three The 8086 The 8086 When the 8086 executes an instruction, it performs the specified function on data. The data are called its operands and may be part of the instruction reside in one of the

More information

Instructions Involve a Segment Register (SR-field)

Instructions Involve a Segment Register (SR-field) BYTE 1 = 11000111 2 = C7 16 BYTE 2 = (MOD)000(R/M) = 100000112 = 83 16 BYTE 3 = 34 16 and BYTE 4 = 12 16 BYTE 5 = CD 16 and BYTE 6 = AB 16 The machine code for the instruction is: MOV [BP+DI+1234H], 0ABCDH

More information

Unit wise Question Bank UNIT-II

Unit wise Question Bank UNIT-II Academic year: 2017-18 Program: B Tech Course Title: Microprocessor & Microcontrollers Unit wise Question Bank Year/Semester: III/I Section: A, B & C Branch: ECE UNIT-I 1. Draw the functional pin diagram

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

Microprocessors and Interfacng. Question bank

Microprocessors and Interfacng. Question bank Microprocessors & Interfacing 8086 ARCHITECTURE: UNIT-I Functional Diagram, Register Organization, Addressing modes, Instructions, Functional schematic, Minimum and Maximum mode operations of 8086, 8086

More information

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Microprocessors and Microcontrollers. Answer ONE question from each unit.

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Microprocessors and Microcontrollers. Answer ONE question from each unit. Hall Ticket Number: 14 CS/IT 503 November, 2017 Fifth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT IV I/O INTERFACING PART A (2 Marks) 1. Name the three modes used by the DMA processor to transfer data? [NOV/DEC 2006] Signal transfer mode (cycling

More information

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC.

Module I. Microcontroller can be classified on the basis of their bits processed like 8bit MC, 16bit MC. MICROCONTROLLERS AND APPLICATIONS 1 Module 1 Module I Introduction to Microcontrollers: Comparison with Microprocessors Harvard and Von Neumann Architectures - 80C51 microcontroller features - internal

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program for 16 bit BCD addition LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM TOOLS/SOFTWARE

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST 2 Date : 28/03/2016 Max Marks: 50 Subject & Code : Microprocessor (10CS45) Section: IV A and B Name of faculty: Deepti.C Time: 8:30-10:00 am Note: Answer any complete five questions

More information

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit 1 1. introduction The internal function of 8086 processor are partitioned logically into processing units,bus Interface Unit(BIU)

More information

MICROPROCESSOR QUESTION BANK. Unit 1

MICROPROCESSOR QUESTION BANK. Unit 1 QUESTION BANK Unit 1 1. Explain the term Microprocessor. ( CO1-K2) A microprocessor is a multipurpose, programmable logic device that receives binary instructions from a storage device called memory accepts

More information

CG2007 Microprocessor systems.

CG2007 Microprocessor systems. CG2007 Microprocessor systems Tutorial 1 Semester 2 AY 2011-12 Ganesh Iyer ganesh.vigneswara@gmail.com http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore, India. I

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: 8051 Architecture Module No: CS/ES/5 Quadrant 1 e-text In this lecture the detailed architecture of 8051 controller, register bank,

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMMUNICATION ENGINEERING REG 2008 TWO MARKS QUESTION AND ANSWERS

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMMUNICATION ENGINEERING REG 2008 TWO MARKS QUESTION AND ANSWERS CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY B.E.,/B.TECH., ELECTRONICS EC6504 MICROPROCESSORS & MICRO CONTROLLERS COMMUNICATION ENGINEERING REG 2008 TWO MARKS QUESTION AND ANSWERS UNIT 1 AND 2 CS SUBJECT

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture 1 The 80x86 architecture processors popular since its application in IBM PC (personal computer). 2 First Four generations

More information

3.1 Description of Microprocessor. 3.2 History of Microprocessor

3.1 Description of Microprocessor. 3.2 History of Microprocessor 3.0 MAIN CONTENT 3.1 Description of Microprocessor The brain or engine of the PC is the processor (sometimes called microprocessor), or central processing unit (CPU). The CPU performs the system s calculating

More information

It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions.

It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions. 1.What is Microprocessor? It is a program controlled semiconductor device (IC}, which fetches, decode and executes instructions. 2. What are the basic units of a microprocessor? The basic units or blocks

More information

Microprocessor and Microcontroller question bank. 1 Distinguish between microprocessor and microcontroller.

Microprocessor and Microcontroller question bank. 1 Distinguish between microprocessor and microcontroller. Course B.E(EEE) Batch 2015 Semester V Subject code subject Name UAEE503 Microprocessor and Microcontroller question bank UNIT-1 Architecture of a Microprocessor PART-A Marks: 2 1 Distinguish between microprocessor

More information

MICROCONTROLLERS 8051

MICROCONTROLLERS 8051 MICROCONTROLLERS 8051 PART A Unit 1: Microprocessor and Microcontroller. Introduction, Microprocessor and Microcontrollers, A Microcontroller survey. RISC & CISC CPU Architectures, Harvard & Von Neumann

More information

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 Exp:1 STUDY OF MICROCONTROLLER 8051 To study the microcontroller and familiarize the 8051microcontroller kit Theory:- A Microcontroller consists of a powerful

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information