ECE 448 Lecture 5. FPGA Devices

Size: px
Start display at page:

Download "ECE 448 Lecture 5. FPGA Devices"

Transcription

1 E 448 Lecture 5 FPGA evices E 448 FPGA and ASIC esign with VHL George Mason University

2 Required reading 7 Series FPGAs Configurable Logic Block: User Guide Overview Functional etails 2

3 What is an FPGA? Configurable Logic Blocks Block RAMs Block RAMs I/O Blocks Block RAMs E 448 FPGA and ASIC esign with VHL 3

4 Modern FPGA RAM blocks Multipliers Multipliers/SP units Logic Logic resources blocks (#Logic resources, #Multipliers/SP units, #RAM_blocks) Graphics based on The esign Warrior s Guide to FPGAs evices, Tools, and Flows. ISBN Copyright 2004 Mentor Graphics Corp. ( 4

5 Major FPGA Vendors AM-based FPGAs Xilinx, Inc. ~ 51% of the market ~ 85% Intel ~ 34% of the market (until 2015, Altera Corp.) Lattice Semiconductor Atmel (since 2016, subsidiary of Microchip Technology) Achronix Semiconductor Tabula (went out of business in 2015) Flash & antifuse FPGAs Microsemi SoC Products Group (until 2010 Actel) uick Logic Corp. E 448 FPGA and ASIC esign with VHL 5

6 Xilinx u Primary products: FPGAs and the associated CA software Programmable Logic evices CA Software u u Main headquarters in San Jose, CA Fabless* Semiconductor and Software Company u TSMC (Taiwan) u UMC (Taiwan) {*Xilinx acquired an equity stake in UMC in 1996} u Seiko Epson (Japan) u Samsung (Korea) E 448 FPGA and ASIC esign with VHL 6

7 Technology Low-cost Mid-range High-performance 220 nm Virtex 180 nm Spartan-II, Spartan-IIE 120/150 nm Virtex-II, Virtex-II Pro 90 nm Spartan-3 Virtex-4 65 nm Virtex-5 45 nm Spartan-6 Xilinx FPGA Families 40 nm Virtex-6 28 nm Artix-7 Kintex-7 Virtex-7 20 nm Kintex UltraSCALE 16 nm Kintex UltraSCALE+ Virtex UltraSCALE Virtex UltraSCALE+

8 FPGA Family 8

9 Artix-7 FPGA Family E 448 FPGA and ASIC esign with VHL 9

10 CLB Structure E 448 FPGA and ASIC esign with VHL George Mason University

11 General structure of an FPGA Programmable interconnect Programmable logic blocks The esign Warrior s Guide to FPGAs evices, Tools, and Flows. ISBN Copyright 2004 Mentor Graphics Corp. ( E 448 FPGA and ASIC esign with VHL 11

12 Xilinx Artix-7 CLB E 448 FPGA and ASIC esign with VHL 12

13 Row & Column Relationship Between CLBs & Slices E 448 FPGA and ASIC esign with VHL 13

14 14 A6:A1 COUT X C CX B BX A AX O6 O5 X MUX C C CMUX B B BMUX A A AMUX Reset Type FF/LAT HI LO FF/LAT HI LO FF/LAT HI LO FF/LAT HI LO CIN 0/1 Sync/Async FF/LAT A6:A1 O6 O5 C6:1 CX 6:1 A6:A1 O6 O5 B6:1 BX A6:A1 O6 O5 A6:1 AX CLK HI LO HI LO HI LO HI LO Basic Components of the Slice LUTs Storage Elements

15 Example of a 4-input LUT (Look-Up Table) (used in earlier families of FPGAs) x 1 x 2 x 3 x y x 1 x 2 x 3 x 4 LUT y x 1 x 2 x 3 x 4 x 1 x 2 x 3 x y Look-Up tables are primary elements for logic implementation Each LUT can implement any function of 4 inputs x 1 x 2 y y E 448 FPGA and ASIC esign with VHL 15

16 LUT of Artix-7 E 448 FPGA and ASIC esign with VHL 16

17 X LUT O5 Output FF HIGH LOW X LUT Output FF/LATCH FF LATCH HIGH LOW CX LUT C O5 Output CFF HIGH LOW C CX LUT C Output CFF/LATCH FF LATCH HIGH LOW C LUT B O5 Output BFF Reset Type Sync Async LUT B Output BFF/LATCH Reset Type Sync Async BX CLK HIGH LOW B BX CLK FF LATCH HIGH LOW B AX LUT A O5 Output AFF HIGH LOW A AX LUT A Output AFF/LATCH FF LATCH HIGH LOW A UG474_c2_04_

18 Reset and Set Configurations No set or reset Synchronous set Synchronous reset Asynchronous set (preset) Asynchronous reset (clear) E 448 FPGA and ASIC esign with VHL 18

19 Two ifferent Types of Slices in Artix-7 E 448 FPGA and ASIC esign with VHL 19

20 20 SLIL A6:A1 COUT X C CX B BX A AX O6 O5 UG474_c2_03_ X MUX C C CMUX B B BMUX A A AMUX Reset Type FF/LAT HI LO FF/LAT HI LO FF/LAT HI LO FF/LAT HI LO CIN 0/1 Sync/Async FF/LAT A6:A1 O6 O5 C6:1 CX 6:1 A6:A1 O6 O5 B6:1 BX A6:A1 O6 O5 A6:1 AX CLK HI LO HI LO HI LO HI LO

21 Fast Carry Logic u u Each SliceL and SliceM contains separate logic and routing for the fast generation of sum & carry signals Increases efficiency and performance of adders, subtractors, accumulators, comparators, and counters Carry logic is independent of normal logic and routing resources MSB LSB Carry Logic Routing 21

22 Accessing Carry Logic u All major synthesis tools can infer carry logic for arithmetic functions Addition (SUM <= A + B) Subtraction (IFF <= A - B) Comparators (if A < B then ) Counters (count <= count +1) 22

23 COUT (To Next Slice) Carry Chain Block (CARRY4) O6 From LUT S3 MUXCY CO3 MUX/* O5 From LUT X I3 O3 MUX (Optional) O6 From LUTC S2 MUXCY CO2 CMUX/C* O5 From LUTC CX I2 O2 CMUX C (Optional) O6 From LUTB S1 MUXCY CO1 BMUX/B* O5 From LUTB BX I1 O1 BMUX B (Optional) O6 From LUTA S0 MUXCY CO0 AMUX/A* O5 From LUTA AX I0 O0 AMUX A CYINIT CIN (Optional) 0 1 CIN (From Previous Slice) *Can be used if unregistered/registered outputs are free. UG474_c2_23_

24 24 SLIM X-Ref Target - Figure 2-3 A6:A1 COUT X C CX B BX A AX O6 I2 O5 I1 MC31 WEN I1 MC31 WEN I1 MC31 WEN I1 MC31 WEN UG474_c2_02_ X MUX C C CMUX B B BMUX A A AMUX Reset Type FF/LAT HI LO FF/LAT HI LO FF/LAT HI LO FF/LAT HI LO CIN 0/1 WEN WE Sync/Async FF/LAT A6:A1 O6 O5 C6:1 CX 6:1 I A6:A1 O6 O5 B6:1 BX A6:A1 W6:W1 W6:W1 W6:W1 W6:W1 O6 O5 A6:1 AX CLK HI LO HI LO HI LO HI LO I2 I2 I2 CI BI AI

25 Xilinx Multipurpose LUT (MLUT) 16-bit 32-bit x 1 RAM 4-input 64 x 1 ROM LUT (logic) The esign Warrior s Guide to FPGAs evices, Tools, and Flows. ISBN Copyright 2004 Mentor Graphics Corp. ( 25

26 Single-port 64 x 1-bit RAM 26

27 Single-port 64 x 1-bit RAM 27

28 Memories Built of Neighboring MLUTs Memories built of 2 MLUTs: Single-port 128 x 1-bit RAM: RAM128x1S ual-port 64 x 1-bit RAM : RAM64x1 Memories built of 4 MLUTs: Single-port 256 x 1-bit RAM: RAM256x1S ual-port 128 x 1-bit RAM: RAM128x1 uad-port 64 x 1-bit RAM: RAM64x1 Simple-dual-port 64 x 3-bit RAM: RAM64x3SP (one address for read, one address for write) 28

29 ual-port 64 x 1 RAM ual-port 64 x 1-bit RAM : 64x1 Single-port 128 x 1-bit RAM: 128x1S 29

30 ual-port 64 x 1 RAM ual-port 64 x 1-bit RAM : 64x1 Single-port 128 x 1-bit RAM: 128x1S E 448 FPGA and ASIC esign with VHL 30

31 Total Size of istributed RAM in Artix-7 31

32 MLUT as a 32-bit Shift Register (L32) E 448 FPGA and ASIC esign with VHL 32

33 Input/Output Blocks (IOBs) E 448 FPGA and ASIC esign with VHL George Mason University

34 Basic I/O Block Structure Three-State FF Enable Clock Set/Reset Output FF Enable EC EC Three-State Control Output Path irect Input FF Enable Registered Input EC Input Path E 448 FPGA and ASIC esign with VHL 34

35 IOB Functionality IOB provides interface between the package pins and CLBs Each IOB can work as uni- or bi-directional I/O Outputs can be forced into High Impedance Inputs and outputs can be registered advised for high-performance I/O Inputs can be delayed E 448 FPGA and ASIC esign with VHL 35

36 Family Attributes E 448 FPGA and ASIC esign with VHL George Mason University

37 Artix-7 FPGA Family E 448 FPGA and ASIC esign with VHL 37

38 FPGA device present on the igilent Nexys 4 R board XC7A35T- 1CPG236C Artix-7 family Size Speed Grade Package type 236 pins Commercial temperature range 0 C 85 C E 448 FPGA and ASIC esign with VHL 38

39 FPGA esign Process 39

40 FPGA esign process (1) esign and implement a simple unit permitting to speed up encryption with RC5-similar cipher with fixed key set on 8031 microcontroller. Unlike in the experiment 5, this time your unit has to be able to perform an encryption algorithm by itself, executing 32 rounds.. Specification / Pseudocode On-paper hardware design (Block diagram & ASM chart) Library IEEE; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity RC5_core is port( clock, reset, encr_decr: in std_logic; data_input: in std_logic_vector(31 downto 0); data_output: out std_logic_vector(31 downto 0); out_full: in std_logic; key_input: in std_logic_vector(31 downto 0); key_read: out std_logic; ); end AES_core; VHL description (Your Source Files) Functional simulation Synthesis Post-synthesis simulation

41 FPGA esign process (2) Implementation Timing simulation Results Configuration On chip testing

42 Synthesis George Mason University

43 Logic Synthesis VHL description Circuit netlist architecture MLU_ATAFLOW of MLU is signal A1:ST_LOGIC; signal B1:ST_LOGIC; signal Y1:ST_LOGIC; signal MUX_0, MUX_1, MUX_2, MUX_3: ST_LOGIC; begin A1<=A when (NEG_A='0') else not A; B1<=B when (NEG_B='0') else not B; Y<=Y1 when (NEG_Y='0') else not Y1; end MLU_ATAFLOW; MUX_0<=A1 and B1; MUX_1<=A1 or B1; MUX_2<=A1 xor B1; MUX_3<=A1 xnor B1; with (L1 & L0) select Y1<=MUX_0 when "00", MUX_1 when "01", MUX_2 when "10", MUX_3 when others; 43

44 Circuit netlist (RTL view) 44

45 Implementation George Mason University

46 Mapping LUT0 FF1 LUT1 LUT2 FF2 46

47 Placing FPGA CLB SLIS 47

48 Routing FPGA Programmable Connections 48

49 Synthesis Two main stages of the FPGA esign Flow Implementation Technology independent Technology dependent RTL Synthesis Map Place & Route Configure - Code analysis - erivation of main logic constructions - Technology independent optimization - Creation of RTL View - Mapping of extracted logic structures to device primitives - Technology dependent optimization - Application of synthesis constraints -Netlist generation - Creation of Technology View - Placement of generated netlist onto the device -Choosing best interconnect structure for the placed design -Application of physical constraints - Bitstream generation - Burning device

ECE 545 Lecture 12. FPGA Resources. George Mason University

ECE 545 Lecture 12. FPGA Resources. George Mason University ECE 545 Lecture 2 FPGA Resources George Mason University Recommended reading 7 Series FPGAs Configurable Logic Block: User Guide Overview Functional Details 2 What is an FPGA? Configurable Logic Blocks

More information

ECE 448 Lecture 5. FPGA Devices

ECE 448 Lecture 5. FPGA Devices ECE 448 Lecture 5 FPGA Devices George Mason University Required reading Spartan-6 FPGA Configurable Logic Block: User Guide CLB Overview Slice Description 2 Recommended reading Highly recommended for the

More information

CS Digital Systems Project Laboratory

CS Digital Systems Project Laboratory CS 194- igital Systems Project Laboratory Lecture 1 Virtex-5 Microarchitecture Not a professor. John is OK. 2008-9- John Lazzaro (www.cs.berkeley.edu/~lazzaro) And also, an introduction to the project.

More information

ECE 699: Lecture 9. Programmable Logic Memories

ECE 699: Lecture 9. Programmable Logic Memories ECE 699: Lecture 9 Programmable Logic Memories Recommended reading XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices Chapter 7, HDL Coding Techniques Sections: RAM HDL Coding Techniques ROM

More information

ECE 545: Lecture 11. Programmable Logic Memories

ECE 545: Lecture 11. Programmable Logic Memories ECE 545: Lecture 11 Programmable Logic Memories Recommended reading Vivado Design Suite User Guide: Synthesis Chapter 4 RAM HDL Coding Techniques Initializing RAM Contents 7 Series FPGAs Memory Resources:

More information

ECE 545: Lecture 11. Programmable Logic Memories. Recommended reading. Memory Types. Memory Types. Memory Types specific to Xilinx FPGAs

ECE 545: Lecture 11. Programmable Logic Memories. Recommended reading. Memory Types. Memory Types. Memory Types specific to Xilinx FPGAs ECE 545: Lecture 11 Programmable Logic Memories Recommended reading Vivado Design Suite User Guide: Synthesis Chapter 4 RAM HDL Coding Techniques Initializing RAM Contents 7 Series FPGAs Resources: User

More information

EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) Project platform: Xilinx ML

EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) Project platform: Xilinx ML EECS150 - igital esign Lecture 3 - Field Programmable Gate Arrays (FPGAs) January 25, 2010 John Wawrzynek Spring 2011 EECS150 - Lec03-FPGA Page 1 Project platform: Xilinx ML505-110 Spring 2011 EECS150

More information

Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) EECE-474 Advanced VHDL and FPGA Design Lecture Field Programmable Gate Arrays (FPGAs) Cristinel Ababei Dept. of Electrical and Computer Engr. Marquette University Overview FPGA Devices ASIC vs. FPGA FPGA

More information

ECE 448 Lecture 13. FPGA Memories. George Mason University

ECE 448 Lecture 13. FPGA Memories. George Mason University ECE 448 Lecture 13 FPGA Memories George Mason University Recommended reading Spartan-6 FPGA Block RAM Resources: User Guide Google search: UG383 Spartan-6 FPGA Configurable Logic Block: User Guide Google

More information

ECE 645: Lecture 1. Basic Adders and Counters. Implementation of Adders in FPGAs

ECE 645: Lecture 1. Basic Adders and Counters. Implementation of Adders in FPGAs ECE 645: Lecture Basic Adders and Counters Implementation of Adders in FPGAs Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 5, Basic Addition and Counting,

More information

ECE 545 Lecture 17 RAM. George Mason University

ECE 545 Lecture 17 RAM. George Mason University ECE 545 Lecture 17 RAM George Mason University Recommended reading XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices Chapter 7, HDL Coding Techniques [ UG687 (v 14.5) March 20, 2013 ] Sections:

More information

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses Today Comments about assignment 3-43 Comments about assignment 3 ASICs and Programmable logic Others courses octor Per should show up in the end of the lecture Mealy machines can not be coded in a single

More information

ECE 448 FPGA and ASIC Design with VHDL. Spring 2018

ECE 448 FPGA and ASIC Design with VHDL. Spring 2018 ECE 448 FPGA and ASIC Design with VHDL Spring 2018 Kris Gaj Research and teaching interests: reconfigurable computing cryptography computer arithmetic network security Contact: The Engineering Building,

More information

The Virtex FPGA and Introduction to design techniques

The Virtex FPGA and Introduction to design techniques The Virtex FPGA and Introduction to design techniques SM098 Computation Structures Lecture 6 Simple Programmable Logic evices Programmable Array Logic (PAL) AN-OR arrays are common blocks in SPL and CPL

More information

EECS150 - Digital Design Lecture 13 - Project Description, Part 2: Memory Blocks. Project Overview

EECS150 - Digital Design Lecture 13 - Project Description, Part 2: Memory Blocks. Project Overview EECS150 - igital esign Lecture 13 - Project escription, Part 2: Memory Blocks Mar 2, 2010 John Wawrzynek Spring 2010 EECS150 - Lec13-proj2 Page 1 Project Overview A. MIPS150 pipeline structure B. Serial

More information

Basic FPGA Architecture

Basic FPGA Architecture /25/2 CS4 igital System esign Technology Timeline r. Arshad Aziz Basic FPGA Architecture The esign Warrior s Guide to FPGAs evices, Tools, and Flows. ISBN 7567643 Copyright 24 Mentor Graphics Corp. (www.mentor.com)

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Introduction to FPGA design Rakesh Gangarajaiah Rakesh.gangarajaiah@eit.lth.se Slides from Chenxin Zhang and Steffan Malkowsky WWW.FPGA What is FPGA? Field

More information

Programmable Logic. Simple Programmable Logic Devices

Programmable Logic. Simple Programmable Logic Devices Programmable Logic SM098 Computation Structures - Programmable Logic Simple Programmable Logic evices Programmable Array Logic (PAL) AN-OR arrays are common blocks in SPL and CPL architectures Implements

More information

Virtex-II Architecture

Virtex-II Architecture Virtex-II Architecture Block SelectRAM resource I/O Blocks (IOBs) edicated multipliers Programmable interconnect Configurable Logic Blocks (CLBs) Virtex -II architecture s core voltage operates at 1.5V

More information

ECE 545 Lecture 8. Data Flow Description of Combinational-Circuit Building Blocks. George Mason University

ECE 545 Lecture 8. Data Flow Description of Combinational-Circuit Building Blocks. George Mason University ECE 545 Lecture 8 Data Flow Description of Combinational-Circuit Building Blocks George Mason University Required reading P. Chu, RTL Hardware Design using VHDL Chapter 7, Combinational Circuit Design:

More information

Topics. Midterm Finish Chapter 7

Topics. Midterm Finish Chapter 7 Lecture 9 Topics Midterm Finish Chapter 7 Xilinx FPGAs Chapter 7 Spartan 3E Architecture Source: Spartan-3E FPGA Family Datasheet CLB Configurable Logic Blocks Each CLB contains four slices Each slice

More information

Topics. Midterm Finish Chapter 7

Topics. Midterm Finish Chapter 7 Lecture 9 Topics Midterm Finish Chapter 7 ROM (review) Memory device in which permanent binary information is stored. Example: 32 x 8 ROM Five input lines (2 5 = 32) 32 outputs, each representing a memory

More information

ECE 3220 Digital Design with VHDL. Course Information. Lecture 1

ECE 3220 Digital Design with VHDL. Course Information. Lecture 1 ECE 3220 Digital Design with VHDL Course Information Lecture 1 Course Information Course #: ECE 3220 Course Name: Digital Design with VHDL Course Instructor: Dr. Vida Vakilian Email: vvakilian@csub.edu

More information

EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) FPGA Overview

EECS150 - Digital Design Lecture 3 - Field Programmable Gate Arrays (FPGAs) FPGA Overview EECS150 - igital esign Lecture 3 - Field Programmable Gate rrays (FPGs) January 27, 2009 John Wawrzynek Spring 2009 EECS150 - Lec03-FPG Page 1 FPG Overview asic idea: two-dimensional array of logic blocks

More information

! Program logic functions, interconnect using SRAM. ! Advantages: ! Re-programmable; ! dynamically reconfigurable; ! uses standard processes.

! Program logic functions, interconnect using SRAM. ! Advantages: ! Re-programmable; ! dynamically reconfigurable; ! uses standard processes. Topics! SRAM-based FPGA fabrics:! Xilinx.! Altera. SRAM-based FPGAs! Program logic functions, using SRAM.! Advantages:! Re-programmable;! dynamically reconfigurable;! uses standard processes.! isadvantages:!

More information

Xilinx ASMBL Architecture

Xilinx ASMBL Architecture FPGA Structure Xilinx ASMBL Architecture Design Flow Synthesis: HDL to FPGA primitives Translate: FPGA Primitives to FPGA Slice components Map: Packing of Slice components into Slices, placement of Slices

More information

Lecture 11 Memories in Xilinx FPGAs

Lecture 11 Memories in Xilinx FPGAs Lecture 11 Memories in Xilinx FPGAs ECE 448 FPGA and ASIC Design with VHDL Recommended reading XAPP463 Using Block RAM in Spartan-3 Generation FPGAs Google search: XAPP463 XAPP464 Using Look-Up Tables

More information

Field Programmable Gate Array (FPGA)

Field Programmable Gate Array (FPGA) Field Programmable Gate Array (FPGA) Lecturer: Krébesz, Tamas 1 FPGA in general Reprogrammable Si chip Invented in 1985 by Ross Freeman (Xilinx inc.) Combines the advantages of ASIC and uc-based systems

More information

Field Programmable Gate Array

Field Programmable Gate Array Field Programmable Gate Array System Arch 27 (Fire Tom Wada) What is FPGA? System Arch 27 (Fire Tom Wada) 2 FPGA Programmable (= reconfigurable) Digital System Component Basic components Combinational

More information

ECEU530. Project Presentations. ECE U530 Digital Hardware Synthesis. Rest of Semester. Memory Structures

ECEU530. Project Presentations. ECE U530 Digital Hardware Synthesis. Rest of Semester. Memory Structures ECEU53 ECE U53 igital Hardware Synthesis Prof. Miriam Leeser mel@coe.neu.edu November 5, 26 Lecture 8: Student project presentations Memories and FPGAs Tri-state buffers and busses Student project presentations:

More information

FPGA architecture and design technology

FPGA architecture and design technology CE 435 Embedded Systems Spring 2017 FPGA architecture and design technology Nikos Bellas Computer and Communications Engineering Department University of Thessaly 1 FPGA fabric A generic island-style FPGA

More information

FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) 1 Roth Text: Chapter 3 (section 3.4) Chapter 6 Nelson Text: Chapter 11 Programmable logic taxonomy Lab Device 2 Field Programmable Gate Arrays Typical Complexity

More information

INTRODUCTION TO FPGA ARCHITECTURE

INTRODUCTION TO FPGA ARCHITECTURE 3/3/25 INTRODUCTION TO FPGA ARCHITECTURE DIGITAL LOGIC DESIGN (BASIC TECHNIQUES) a b a y 2input Black Box y b Functional Schematic a b y a b y a b y 2 Truth Table (AND) Truth Table (OR) Truth Table (XOR)

More information

EE219A Spring 2008 Special Topics in Circuits and Signal Processing. Lecture 9. FPGA Architecture. Ranier Yap, Mohamed Ali.

EE219A Spring 2008 Special Topics in Circuits and Signal Processing. Lecture 9. FPGA Architecture. Ranier Yap, Mohamed Ali. EE219A Spring 2008 Special Topics in Circuits and Signal Processing Lecture 9 FPGA Architecture Ranier Yap, Mohamed Ali Annoucements Homework 2 posted Due Wed, May 7 Now is the time to turn-in your Hw

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

Lecture 7. Standard ICs FPGA (Field Programmable Gate Array) VHDL (Very-high-speed integrated circuits. Hardware Description Language)

Lecture 7. Standard ICs FPGA (Field Programmable Gate Array) VHDL (Very-high-speed integrated circuits. Hardware Description Language) Standard ICs FPGA (Field Programmable Gate Array) VHDL (Very-high-speed integrated circuits Hardware Description Language) 1 Standard ICs PLD: Programmable Logic Device CPLD: Complex PLD FPGA: Field Programmable

More information

CDA 4253 FGPA System Design Xilinx FPGA Memories. Hao Zheng Comp Sci & Eng USF

CDA 4253 FGPA System Design Xilinx FPGA Memories. Hao Zheng Comp Sci & Eng USF CDA 4253 FGPA System Design Xilinx FPGA Memories Hao Zheng Comp Sci & Eng USF Xilinx 7-Series FPGA Architecture On-Chip block RAM On-Chip block RAM Distributed RAM by Logic Fabric Distributed RAM by Logic

More information

ECE 448 Lecture 3. Combinational-Circuit Building Blocks. Data Flow Modeling of Combinational Logic

ECE 448 Lecture 3. Combinational-Circuit Building Blocks. Data Flow Modeling of Combinational Logic ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic George Mason University Reading Required P. Chu, FPGA Prototyping by VHDL Examples Chapter 3, RT-level

More information

ECE 448 Lecture 3. Combinational-Circuit Building Blocks. Data Flow Modeling of Combinational Logic

ECE 448 Lecture 3. Combinational-Circuit Building Blocks. Data Flow Modeling of Combinational Logic ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic George Mason University Reading Required P. Chu, FPGA Prototyping by VHDL Examples Chapter 3, RT-level

More information

Experiment 3. Digital Circuit Prototyping Using FPGAs

Experiment 3. Digital Circuit Prototyping Using FPGAs Experiment 3. Digital Circuit Prototyping Using FPGAs Masud ul Hasan Muhammad Elrabaa Ahmad Khayyat Version 151, 11 September 2015 Table of Contents 1. Objectives 2. Materials Required 3. Background 3.1.

More information

Basic FPGA Architecture Xilinx, Inc. All Rights Reserved

Basic FPGA Architecture Xilinx, Inc. All Rights Reserved Basic FPGA Architecture 2005 Xilinx, Inc. All Rights Reserved Objectives After completing this module, you will be able to: Identify the basic architectural resources of the Virtex -II FPGA List the differences

More information

Lecture 3: Modeling in VHDL. EE 3610 Digital Systems

Lecture 3: Modeling in VHDL. EE 3610 Digital Systems EE 3610: Digital Systems 1 Lecture 3: Modeling in VHDL VHDL: Overview 2 VHDL VHSIC Hardware Description Language VHSIC=Very High Speed Integrated Circuit Programming language for modelling of hardware

More information

Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points

Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points Midterm Exam ECE 448 Spring 2019 Wednesday, March 6 15 points Instructions: Zip all your deliverables into an archive .zip and submit it through Blackboard no later than Wednesday, March 6,

More information

Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices

Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices 3 Digital Systems Implementation Programmable Logic Devices Basic FPGA Architectures Why Programmable Logic Devices (PLDs)? Low cost, low risk way of implementing digital circuits as application specific

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 4: CAD tools (Continued) Dr. Mohamed Abd El Ghany, Basic VHDL Concept Via an Example Problem: write VHDL code for 1-bit adder 4-bit adder 2 1-bit adder Inputs: A (1 bit)

More information

INTRODUCTION TO FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

INTRODUCTION TO FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) INTRODUCTION TO FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) Bill Jason P. Tomas Dept. of Electrical and Computer Engineering University of Nevada Las Vegas FIELD PROGRAMMABLE ARRAYS Dominant digital design

More information

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs)

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Fall 2002 EECS150 - Lec06-FPGA Page 1 Outline What are FPGAs? Why use FPGAs (a short history

More information

Lecture 12 VHDL Synthesis

Lecture 12 VHDL Synthesis CPE 487: Digital System Design Spring 2018 Lecture 12 VHDL Synthesis Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030 1 What is Synthesis?

More information

Introduction to Field Programmable Gate Arrays

Introduction to Field Programmable Gate Arrays Introduction to Field Programmable Gate Arrays Lecture 1/3 CERN Accelerator School on Digital Signal Processing Sigtuna, Sweden, 31 May 9 June 2007 Javier Serrano, CERN AB-CO-HT Outline Historical introduction.

More information

ECE 545 Lecture 6. Behavioral Modeling of Sequential-Circuit Building Blocks. Behavioral Design Style: Registers & Counters.

ECE 545 Lecture 6. Behavioral Modeling of Sequential-Circuit Building Blocks. Behavioral Design Style: Registers & Counters. ECE 55 Lecture 6 Behavioral Modeling of Sequential-Circuit Building Blocks Required reading P. Chu, RTL Hardware esign using VHL Chapter 5.1, VHL Process Chapter 8, Sequential Circuit esign: Principle

More information

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs?

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs? EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Outline What are FPGAs? Why use FPGAs (a short history lesson). FPGA variations Internal logic

More information

Digital Design Laboratory Lecture 2

Digital Design Laboratory Lecture 2 ECE 280 / CSE 280 Digital Design Laboratory Lecture 2 Adder Design Basic building block is a full adder Chained together as a ripple carry adder Carry lookahead adder is an other option Propagate and generate

More information

Chapter 8 FPGA Basics

Chapter 8 FPGA Basics Chapter 8 FPGA Basics NCHU EE Yin-Tsung Hwang YT Hwang VLSI SP 1 What are PLs? YT Hwang VLSI SP 2 Programmable Logic evices A pre-fabricated ASIC capable of performing any logic subject to user programming

More information

EE178 Lecture Module 2. Eric Crabill SJSU / Xilinx Fall 2007

EE178 Lecture Module 2. Eric Crabill SJSU / Xilinx Fall 2007 EE178 Lecture Module 2 Eric Crabill SJSU / Xilinx Fall 2007 Lecture #4 Agenda Survey of implementation technologies. Implementation Technologies Small scale and medium scale integration. Up to about 200

More information

Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective

Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective Outline Field Programmable Gate Arrays Historical perspective Programming Technologies Architectures PALs, PLDs,, and CPLDs FPGAs Programmable logic Interconnect network I/O buffers Specialized cores Programming

More information

FPGA Architecture Overview. Generic FPGA Architecture (1) FPGA Architecture

FPGA Architecture Overview. Generic FPGA Architecture (1) FPGA Architecture FPGA Architecture Overview dr chris dick dsp chief architect wireless and signal processing group xilinx inc. Generic FPGA Architecture () Generic FPGA architecture consists of an array of logic tiles

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

FPGA Implementations

FPGA Implementations FPGA Implementations Smith Text: Chapters 4-8 Online version at: http://www10.edacafe.com/book/asic/asics.php Topic outline Chapter 4 Programmable ASIC technologies Chapter 5 Programmable logic cells Chapter

More information

HDL Coding Style Xilinx, Inc. All Rights Reserved

HDL Coding Style Xilinx, Inc. All Rights Reserved HDL Coding Style Objective After completing this module, you will be able to: Select a proper coding style to create efficient FPGA designs Specify Xilinx resources that need to be instantiated for various

More information

EE260: Digital Design, Spring 2018

EE260: Digital Design, Spring 2018 Topics Verilog Module 1 Introduction Yao Zheng (Based on the slides of Prof. Jim Duckworth) Background to Verilog Introduction to language Programmable Logic Devices CPLDs and FPGAs FPGA architecture Nexys

More information

High-Tech-Marketing. Selecting an FPGA. By Paul Dillien

High-Tech-Marketing. Selecting an FPGA. By Paul Dillien High-Tech-Marketing Selecting an FPGA By Paul Dillien The Market In 2011 the total PLD market was $4.97B The FPGA portion was worth $4.1B 2 FPGA Applications The dominant applications have always been

More information

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental

More information

FPGAs in a Nutshell - Introduction to Embedded Systems-

FPGAs in a Nutshell - Introduction to Embedded Systems- FPGAs in a Nutshell - Introduction to Embedded Systems- Dipl.- Ing. Falk Salewski Lehrstuhl Informatik RWTH Aachen salewski@informatik.rwth-aachen.de Winter term 6/7 Contents History FPGA architecture

More information

Timing in synchronous systems

Timing in synchronous systems BO 1 esign of sequential logic Outline Timing in synchronous networks Synchronous processes in VHL VHL-code that introduces latches andf flip-flops Initialization of registers Mealy- and Moore machines

More information

Midterm Exam. Solutions

Midterm Exam. Solutions Midterm Exam Solutions Problem 1 List at least 3 advantages of implementing selected portions of a complex design in software Software vs. Hardware Trade-offs Improve Performance Improve Energy Efficiency

More information

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today.

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today. Overview This set of notes introduces many of the features available in the FPGAs of today. The majority use SRAM based configuration cells, which allows fast reconfiguation. Allows new design ideas to

More information

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA

L2: FPGA HARDWARE : ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA L2: FPGA HARDWARE 18-545: ADVANCED DIGITAL DESIGN PROJECT FALL 2015 BRANDON LUCIA 18-545: FALL 2014 2 Admin stuff Project Proposals happen on Monday Be prepared to give an in-class presentation Lab 1 is

More information

Design Tools for 100,000 Gate Programmable Logic Devices

Design Tools for 100,000 Gate Programmable Logic Devices esign Tools for 100,000 Gate Programmable Logic evices March 1996, ver. 1 Product Information Bulletin 22 Introduction The capacity of programmable logic devices (PLs) has risen dramatically to meet the

More information

ECE 545 Lecture 12. FPGA Embedded Resources 12/8/11. Resources. Recommended reading. Use of Embedded FPGA Resources in SHA-3 Candidates

ECE 545 Lecture 12. FPGA Embedded Resources 12/8/11. Resources. Recommended reading. Use of Embedded FPGA Resources in SHA-3 Candidates ECE 545 Lecture 12 FPGA Embedded Resources Resources FPGA Embedded Resources web page available from the course web page George Mason University 2 Recommended reading XAPP463 Using Block RAM in Spartan-3

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Lecture 9 Jaeyong Chung Robust Systems Laboratory Incheon National University DIGITAL DESIGN FLOW Chung EPC6055 2 FPGA vs. ASIC FPGA (A programmable Logic Device) Faster time-to-market

More information

Altera FLEX 8000 Block Diagram

Altera FLEX 8000 Block Diagram Altera FLEX 8000 Block Diagram Figure from Altera technical literature FLEX 8000 chip contains 26 162 LABs Each LAB contains 8 Logic Elements (LEs), so a chip contains 208 1296 LEs, totaling 2,500 16,000

More information

Digital System Construction

Digital System Construction Digital System Construction FYSIKUM Lecture 4: More VHDL, memory, PRNG Arithmetic Memories Pipelines and buffers Pseudorandom numbers IP core generation in Vivado Introduction to Lab 3 Digital Systemkonstruktion

More information

Digital Systems Design

Digital Systems Design Digital Systems Design Review of Combinatorial Circuit Building Blocks: VHDL for Combinational Circuits Dr. D. J. Jackson Lecture 2-1 Introduction to VHDL Designer writes a logic circuit description in

More information

FPGAs: FAST TRACK TO DSP

FPGAs: FAST TRACK TO DSP FPGAs: FAST TRACK TO DSP Revised February 2009 ABSRACT: Given the prevalence of digital signal processing in a variety of industry segments, several implementation solutions are available depending on

More information

Abi Farsoni, Department of Nuclear Engineering and Radiation Health Physics, Oregon State University

Abi Farsoni, Department of Nuclear Engineering and Radiation Health Physics, Oregon State University Hardware description language (HDL) Intended to describe circuits textually, for a computer to read Evolved starting in the 1970s and 1980s Popular languages today include: VHDL Defined in 1980s by U.S.

More information

PINE TRAINING ACADEMY

PINE TRAINING ACADEMY PINE TRAINING ACADEMY Course Module A d d r e s s D - 5 5 7, G o v i n d p u r a m, G h a z i a b a d, U. P., 2 0 1 0 1 3, I n d i a Digital Logic System Design using Gates/Verilog or VHDL and Implementation

More information

V1 - VHDL Language. FPGA Programming with VHDL and Simulation (through the training Xilinx, Lattice or Actel FPGA are targeted) Objectives

V1 - VHDL Language. FPGA Programming with VHDL and Simulation (through the training Xilinx, Lattice or Actel FPGA are targeted) Objectives Formation VHDL Language: FPGA Programming with VHDL and Simulation (through the training Xilinx, Lattice or Actel FPGA are targeted) - Programmation: Logique Programmable V1 - VHDL Language FPGA Programming

More information

Hardware Description Language VHDL (1) Introduction

Hardware Description Language VHDL (1) Introduction Hardware Description Language VHDL (1) Introduction Digital Radiation Measurement and Spectroscopy NE/RHP 537 Introduction Hardware description language (HDL) Intended to describe circuits textually, for

More information

ECE 545 Lecture 6. Behavioral Modeling of Sequential-Circuit Building Blocks. George Mason University

ECE 545 Lecture 6. Behavioral Modeling of Sequential-Circuit Building Blocks. George Mason University ECE 545 Lecture 6 Behavioral Modeling of Sequential-Circuit Building Blocks George Mason University Required reading P. Chu, RTL Hardware Design using VHDL Chapter 5.1, VHDL Process Chapter 8, Sequential

More information

INTRODUCTION TO VHDL. K. Siozios

INTRODUCTION TO VHDL. K. Siozios INTRODUCTION TO VHDL K. Siozios Section of Electronics and Electronic Computers Department of Physics Aristotle University of Thessaloniki (AUTH), Greece Reconfigurable Architectures Today Moore s Law

More information

CS211 Digital Systems/Lab. Introduction to VHDL. Hyotaek Shim, Computer Architecture Laboratory

CS211 Digital Systems/Lab. Introduction to VHDL. Hyotaek Shim, Computer Architecture Laboratory CS211 Digital Systems/Lab Introduction to VHDL Hyotaek Shim, Computer Architecture Laboratory Programmable Logic Device (PLD) 2/32 An electronic component used to build reconfigurable digital circuits

More information

Block RAM. Size. Ports. Virtex-4 and older: 18Kb Virtex-5 and newer: 36Kb, can function as two 18Kb blocks

Block RAM. Size. Ports. Virtex-4 and older: 18Kb Virtex-5 and newer: 36Kb, can function as two 18Kb blocks Block RAM Dedicated FPGA resource, separate columns from CLBs Designed to implement large (Kb) memories Multi-port capabilities Multi-clock capabilities FIFO capabilities Built-in error detection and correction

More information

Field Program mable Gate Arrays

Field Program mable Gate Arrays Field Program mable Gate Arrays M andakini Patil E H E P g r o u p D H E P T I F R SERC school NISER, Bhubaneshwar Nov 7-27 2017 Outline Digital electronics Short history of programmable logic devices

More information

TSEA44 - Design for FPGAs

TSEA44 - Design for FPGAs 2015-11-24 Now for something else... Adapting designs to FPGAs Why? Clock frequency Area Power Target FPGA architecture: Xilinx FPGAs with 4 input LUTs (such as Virtex-II) Determining the maximum frequency

More information

FPGA: What? Why? Marco D. Santambrogio

FPGA: What? Why? Marco D. Santambrogio FPGA: What? Why? Marco D. Santambrogio marco.santambrogio@polimi.it 2 Reconfigurable Hardware Reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much

More information

Stratix II vs. Virtex-4 Performance Comparison

Stratix II vs. Virtex-4 Performance Comparison White Paper Stratix II vs. Virtex-4 Performance Comparison Altera Stratix II devices use a new and innovative logic structure called the adaptive logic module () to make Stratix II devices the industry

More information

VHDL-MODELING OF A GAS LASER S GAS DISCHARGE CIRCUIT Nataliya Golian, Vera Golian, Olga Kalynychenko

VHDL-MODELING OF A GAS LASER S GAS DISCHARGE CIRCUIT Nataliya Golian, Vera Golian, Olga Kalynychenko 136 VHDL-MODELING OF A GAS LASER S GAS DISCHARGE CIRCUIT Nataliya Golian, Vera Golian, Olga Kalynychenko Abstract: Usage of modeling for construction of laser installations today is actual in connection

More information

DIGITAL LOGIC WITH VHDL (Fall 2013) Unit 1

DIGITAL LOGIC WITH VHDL (Fall 2013) Unit 1 DIGITAL LOGIC WITH VHDL (Fall 23) Unit DESIGN FLOW DATA TYPES LOGIC GATES WITH VHDL TESTBENCH GENERATION DESIGN FLOW Design Entry: We specify the logic circuit using a Hardware Description Language (e.g.,

More information

What is Xilinx Design Language?

What is Xilinx Design Language? Bill Jason P. Tomas University of Nevada Las Vegas Dept. of Electrical and Computer Engineering What is Xilinx Design Language? XDL is a human readable ASCII format compatible with the more widely used

More information

Very Large Scale Integration (VLSI)

Very Large Scale Integration (VLSI) Very Large Scale Integration (VLSI) Lecture 6 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. Madian-VLSI 1 Contents FPGA Technology Programmable logic Cell (PLC) Mux-based cells Look up table PLA

More information

CSE140L: Components and Design Techniques for Digital Systems Lab

CSE140L: Components and Design Techniques for Digital Systems Lab CSE140L: Components and Design Techniques for Digital Systems Lab Tajana Simunic Rosing Source: Vahid, Katz, Culler 1 Announcements & Outline Lab 4 due; demo signup times listed on the cse140l site Check

More information

RTL Design. Gate-level design is now rare! RTL = Register Transfer Level

RTL Design. Gate-level design is now rare! RTL = Register Transfer Level RTL Design Gate-level design is now rare! design automation is necessary to manage the complexity of modern circuits only library designers use gates automated RTL synthesis is now almost universal RTL

More information

Lecture 5: Aldec Active-HDL Simulator

Lecture 5: Aldec Active-HDL Simulator Lecture 5: Aldec Active-HDL Simulator 1. Objective The objective of this tutorial is to introduce you to Aldec s Active-HDL 9.1 Student Edition simulator by performing the following tasks on a 4-bit adder

More information

CCE 3202 Advanced Digital System Design

CCE 3202 Advanced Digital System Design CCE 3202 Advanced Digital System Design Lab Exercise #2 Introduction You will use Xilinx Webpack v9.1 to allow the synthesis and creation of VHDLbased designs. This lab will outline the steps necessary

More information

Verilog for High Performance

Verilog for High Performance Verilog for High Performance Course Description This course provides all necessary theoretical and practical know-how to write synthesizable HDL code through Verilog standard language. The course goes

More information

ECE 545 Lecture 12. Datapath vs. Controller. Structure of a Typical Digital System Data Inputs. Required reading. Design of Controllers

ECE 545 Lecture 12. Datapath vs. Controller. Structure of a Typical Digital System Data Inputs. Required reading. Design of Controllers ECE 545 Lecture 12 Design of Controllers Finite State Machines and Algorithmic State Machine (ASM) Charts Required reading P. Chu, using VHDL Chapter 1, Finite State Machine: Principle & Practice Chapter

More information

Summary. Introduction. Application Note: Virtex, Virtex-E, Spartan-IIE, Spartan-3, Virtex-II, Virtex-II Pro. XAPP152 (v2.1) September 17, 2003

Summary. Introduction. Application Note: Virtex, Virtex-E, Spartan-IIE, Spartan-3, Virtex-II, Virtex-II Pro. XAPP152 (v2.1) September 17, 2003 Application Note: Virtex, Virtex-E, Spartan-IIE, Spartan-3, Virtex-II, Virtex-II Pro Xilinx Tools: The Estimator XAPP152 (v2.1) September 17, 2003 Summary This application note is offered as complementary

More information

COVER SHEET: Total: Regrade Info: 2 (6 points) 3 (8 points) 4 (10 points) 8 (12 points) 6 (6 points) 7 (6 points) 9 (30 points) 10 (4 points)

COVER SHEET: Total: Regrade Info: 2 (6 points) 3 (8 points) 4 (10 points) 8 (12 points) 6 (6 points) 7 (6 points) 9 (30 points) 10 (4 points) EEL 4712 Midterm 2 Spring 2010 VERSION 1 Name: UFID: Sign your name here if you would like for your test to be returned in class: IMPORTANT: Please be neat and write (or draw) carefully. If we cannot read

More information

CSE140L: Components and Design

CSE140L: Components and Design CSE140L: Components and Design Techniques for Digital Systems Lab Tajana Simunic Rosing Source: Vahid, Katz, Culler 1 Grade distribution: 70% Labs 35% Lab 4 30% Lab 3 20% Lab 2 15% Lab 1 30% Final exam

More information

FPGA briefing Part II FPGA development DMW: FPGA development DMW:

FPGA briefing Part II FPGA development DMW: FPGA development DMW: FPGA briefing Part II FPGA development FPGA development 1 FPGA development FPGA development : Domain level analysis (Level 3). System level design (Level 2). Module level design (Level 1). Academical focus

More information