# CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Size: px
Start display at page:

Download "CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012"

Transcription

1 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

2 Outline Data Representation Binary Codes Why and Excess-3? Basic Operations of Boolean Algebra Examples Basic Theorems Commutative, Associative, and Distributive Laws Simplification Theorems Multiplying Out and Factoring DeMorgan s Laws

3 Data Representation (1/2) Each numbering format, or system, has a base, or maximum number of symbols that can be assigned to a single digit.

4 Data Representation (2/2) Binary: Octal: 365 Decimal: 245 Hexadecimal: F5

5 Binary Numbers (1/7) A computer stores instructions and data in memory as collections of electronic charges. 1 = on voltage at output of electronic device is high (saturated). 0 = off voltage at output of electronic device is zero.

6 Binary Numbers (2/7) Each digit in a binary number is called a bit. In a binary number, bits are numbered starting at zero on the right side, and increasing toward the left. The bit on the left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).

7 Binary Numbers (3/7) MSB LSB

8 Binary Numbers (4/7) Unsigned binary integers Can only be positive or zero Translating unsigned binary integers to decimal dec=(d n-1 *2 n-1 )+(D n-2 *2 n-2 )+..+(D 1 *2 1 )+(D 0 *2 0 ) (n=8) D 7 =1, D 6 =1, D 5 =1, D 4 =1, D 3 =0, D 2 =1, D 1 =0, D 0 =1 dec= = =245

9 Binary Numbers (5/7) Translating unsigned decimal integers to binary Example: translating 37 to binary Division Quotient Remainder 37/ / / / / /2 0 1 The result is

10 Binary Numbers (6/7) Binary Addition Beginning with the lowest (rightmost) order pair of bits. Proceed bit by bit For each bit pair. 0+0=0 0+1=1 1+0=1 1+1=10

11 Binary Numbers (7/7) Binary addition (cont) Carry: (4) (7) Bit position: (11)

12 Value Range For an n-bit unsigned binary number, the range is 0~2 n -1: 2 n different values. 2 bits: 4 values (0 3) 3 bits: 8 values (0 7) 4 bits: 16 values (0 15)... 8 bits (a byte): 256 values (0 255) 10 bits: 1024 values (0 1023)

13 Hexadecimal Integers (1/6) hexadecimal numbers are often used to represent computer memory address and instructions. A hexadecimal digit ranges from 0 to 15 (total of sixteen). The letters of the alphabet are used to represent 10 through 15. where A=10, B=11, C=12, D=13, E=14, and F=15

14 Hexadecimal Integers (2/6) Decimal Hexadecimal Binary A B C D E F Each hexadecimal digit means a four binary bit string. Every four binary bit string can be mapped to a hexadecimal digit.

15 Hexadecimal Integers (3/6) If we can break up a byte (8 bits) into halves, the upper and lower halves, each half can be represented by a hexadecimal digit. A byte could then be represented by two hexadecimal digits, rather than 8 bits. In general, any binary number can be split into four-bit groups, starting from right. Each such a group can be translated into hexadecimal digit. The result hexadecimal is much shorter than the binary equivalent.

16 Hexadecimal Integers (4/6) A A794 Note when you are finding four bit groups, begin from the right.

17 Hexadecimal Integers (5/6) Converting unsigned hexadecimal to decimal. dec=(d n-1 *16 n-1 )+(D n-2 *16 n-2 )+..+(D 1 *16 1 )+(D 0 *16 0 ) F5 245 D 1 =F, D 0 =5 dec=f* *16 0 =15*16+5*1 =240+5 =245

18 Hexadecimal Integers (6/6) Converting unsigned decimal to hexadecimal Division Quotient Remainder 422/ /16 1 A 1/ The result is 1A6.

19 Signed Integers (1/9) Signed integers can negative, zero and positive. The most significant bit in binary numbers indicates the number s sign. 0 means positive or zero 1 means negative When you are using signed binary numbers, the number of bits must be specified.

20 Signed Integers (2/9) When a signed binary is positive, it can be used as if it was an unsigned binary. When it is negative, two s complement is used the most often. Two s complement (TC) notation works like the negating operation TC(TC(number)) = number, [ -(-number)=number] TC(number)+number=0, [-number+number=0]

21 Signed Integers (3/9) Given an eight-bit number , its two s complement is Starting value Step1: reverse the bits: Step 2: add The two s complement representation of -1.

22 Signed Integers (4/9) Two s complement of hexadecimal Reversing a hexadecimal digit is subtracting the digit from 15 6A3D 95C2+1 95C3 95C3 6A3C+1 6A3D

23 Signed Integers (5/9) For a signed hexadecimal number, it is negative if its most significant digit is greater than 7. Otherwise it is zero or positive.

24 Signed Integers (5/9) Converting signed binary to decimal MSB=1, this binary is in two s complement notation. Get its two s complement (positive equivalent). Convert to decimal. Make the decimal negative. MSB=0, this binary can be treated as an unsigned binary.

25 Signed Integers (6/9) Starting value: Step1: reverse the bits: Step2: add Step3: its two s complement: Step4: convert to decimal 16 Step5: make the decimal neg: -16

26 Signed Integers (8/9) How to Convert signed decimal to binary? Convert signed decimal to hexadecimal? Convert signed hexadecimal to decimal?

27 Signed Integers (9/9) Maximum and Minimum Values: For an n-bit signed binary number, the range is -2 n-1 2 n-1-1

28 Addition of Signed Binary Numbers (use five bits) =13+(-12) =01101+TC(01100) =01101+( ) = = =00001 (1/3) The carry from the MSB is discarded. in signed binary number addition.

29 Addition of Signed Binary Numbers (2/3) (We still use 5 bits) = =11001 The result is negative!! It is an overflow.

30 Addition of Signed Binary Numbers (3/3) (Still 5 bits) =TC(12)+TC(13) =TC(01100)+TC(01101) =( )+( ) = = =00111 The carry from the MSB is discarded. The result is positive!! It is an overflow.

31 Binary Codes (1/2) Binary codes: how to represent decimal digits. Weighted codes BCD codes ( ): each decimal digit is represented by its four-bit binary equivalent. 937: codes: weights are 6, 3, 1, 1 937:

32 Binary Codes (2/2) Non-weighted codes Excess 3: obtained from the code by adding 3 (0011) to each the codes. 937: out-of-5: exactly 2 out of 5 bits are 1, has error-checking properties. 937: Gray code: the codes for successive decimal digits differ in exactly one bit 456:

33 Why Excess-3? Excess-3 codes For a decimal digit D, complement its code results in the code of 9-D.

34 Why ? (1/3) codes codes

35 Why ? (2/3) Lets consider the situations of 1 bit corrupted In coding method, all 0001, 0010, 0100, and 1000 are valid codes. In coding method, only 0001, 0100, and 1000 are valid codes.

36 Why ? (3/3) Lets define the concept of error rate at 1 bit corrupted to be the number of possible valid codes after being corrupted divided by 4. For example, for 0000, the error rate at 1 bit corrupted is 100% when using codes and 75% when using codes.

37 Basic Operations of Boolean Algebra (1/11) All the switching devices are two-state devices. Boolean algebra is useful in analyzing switching devices and circuits.

38 Basic Operations of Boolean Algebra (2/11) Basic elements: Three tools in analyzing switching devices Boolean expression: A+B, A B Truth table Logic diagram Inputs and outputs can only be 0 s or 1 s.

39 Basic Operations of Boolean Algebra (3/11) Basic operations: AND Logic expression: C=A B or C=AB Truth table A B C=A B Logic diagram

40 Basic Operations of Boolean Algebra (4/11) Basic operations (cont) OR Logic Expression: C=A+B Truth Table Logic diagram A B C=A B

41 Basic Operations of Boolean Algebra (5/11) Basic operations (cont) complement Logic Expression: C=A Truth Table A C Logic diagram

42 Basic Operations of Boolean Algebra (6/11) Rules of precedence: Brackets NOT AND OR

43 Basic Operations of Boolean Algebra (7/11) Example 1: Logic expression AB +C Order of execution: B AB AB +C Logic diagram

44 Basic Operations of Boolean Algebra (8/11) Example 1 (cont) Truth Table How many inputs: three How many rows: 2 3 =8 How many outputs: one

45 Basic Operations of Boolean Example 1 (cont) Algebra (9/11) A B C B AB AB +C

46 Basic Operations of Boolean Algebra (10/11) Example 2: Boolean expression: [A(C+D)] +BE Logic diagram:

47 Basic Operations of Boolean Algebra (11/11) Example 2 Truth Table How many inputs: five How many rows: 2 5 =32 How many outputs: one

48 Basic Theorems Operations with 0 and 1 X+0=X X 1=X X+1=1 X 0=0 Idempotent laws X+X=X X X=X Involution law (X ) =X Laws of complementarity X+X =1 X X =0

49 Commutative, Associative, and Distributive Laws Commutative laws XY=YX X+Y=Y+X Associative laws (XY)Z=X(YZ) (X+Y)+Z=X+(Y+Z)=X+Y+Z XYZ=1 iff X=Y=Z=1 X+Y+Z=0 iff X=Y=Z=0 Distributive laws X(Y+Z)=XY+XZ X+YZ=(X+Y)(X+Z)

50 Simplification Theorems (1/3) XY+XY =X (X+Y)(X+Y )=X X+XY=X X(X+Y)=X (X+Y )Y=XY XY +Y=X+Y

51 Simplification Theorems (2/3)

52 Simplification Theorems (3/3) Z=[A+B C+D+EF][A+B C+(D+EF) ] X=A+B C and Y=D+EF Z=(X+Y)(X+Y )=X=A+B C Z=(AB+C)(B D+C E )+(AB+C) X=B D+C E and Y=(AB+C) Z=Y X+Y=Y+X=B D+C E +(AB+C)

53 Multiplying and Factoring (1/4) Sum-of-products All products are the products of single variables or complements. AB +CD E+AC E A+B +C+D E (A+B)CD+EF X Product-of-sums All sums are the sums of single variables or complements. (A+B )(C+D +E)(A+C +E ) (A+B)(C+D+E)F (A+B)(B C+D) X

54 Multiplying and Factoring (2/4) Multiplying (A+B)(B+C)(D +B)(ACD +E) =(ACD +B)(ACD +E) =ACD +BE

55 Multiplying and Factoring (3/4) Factoring AB +C D =(AB +C )(AB +D) =(A+C )(B +C )(A+D)(B +D)

56 Multiplying and Factoring (4/4) A sum-of-products expression can always be realized directly by one or more AND gates feeding a single OR gate at the circuit output. A product-of-sums expression can always be realized by one or more OR gates feeding a single AND gate at the circuit output.

57 DeMorgan s Laws (1/2) (X+Y) =X Y (XY) =X +Y (X 1 + X 2 + X X n ) =X 1 X 2 X 3 X n (X 1 X 2 X 3 X n ) = X 1 + X 2 + X X n

58 DeMorgan s Laws (2/2) [(A +B)C ] =(A +B) +(C ) =AB +C [(A+B )C ] (A+B)(C+A) =(A B+C)(A+B)A C =(A B+C)(A BC ) =A BC

### Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

### Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions

EE210: Switching Systems Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions Prof. YingLi Tian Feb. 5/7, 2019 Department of Electrical Engineering The City College of New

### Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System

Moodle 1 WILLINGDON COLLEGE SANGLI ELECTRONICS (B. Sc.-I) Introduction to Number System E L E C T R O N I C S Introduction to Number System and Codes Moodle developed By Dr. S. R. Kumbhar Department of

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

### Logic Design: Part 2

Orange Coast College Business Division Computer Science Department CS 6- Computer Architecture Logic Design: Part 2 Where are we? Number systems Decimal Binary (and related Octal and Hexadecimal) Binary

### Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010

Contents Number systems and conversion Binary arithmetic Representation of negative numbers Addition of two s complement numbers Addition of one s complement numbers Binary s Readings Unit.~. UNIT NUMBER

### EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

### UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.

UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### 2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

### Number representations

Number representations Number bases Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at conversions among them and between each of them and decimal. Binary Base-two, or

### DKT 122/3 DIGITAL SYSTEM 1

Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits

### BINARY SYSTEM. Binary system is used in digital systems because it is:

CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

### X Y Z F=X+Y+Z

This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### Chapter 1 Review of Number Systems

1.1 Introduction Chapter 1 Review of Number Systems Before the inception of digital computers, the only number system that was in common use is the decimal number system which has a total of 10 digits

### SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)

Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

### MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

### Microcomputers. Outline. Number Systems and Digital Logic Review

Microcomputers Number Systems and Digital Logic Review Lecture 1-1 Outline Number systems and formats Common number systems Base Conversion Integer representation Signed integer representation Binary coded

### CHW 261: Logic Design

CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

### SWITCHING THEORY AND LOGIC CIRCUITS

SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra

### Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

### UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

### LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

### Binary logic. Dr.Abu-Arqoub

Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible

### Number System. Introduction. Decimal Numbers

Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

### Chapter 3 Simplification of Boolean functions

3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean

### DIGITAL SYSTEM DESIGN

DIGITAL SYSTEM DESIGN UNIT I: Introduction to Number Systems and Boolean Algebra Digital and Analog Basic Concepts, Some history of Digital Systems-Introduction to number systems, Binary numbers, Number

### CS/COE 0447 Example Problems for Exam 2 Spring 2011

CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4-bit numbers 3 and 5 with the fast shift-add multipler. Use the table below. List the multiplicand (M) and product

### Lecture (04) Boolean Algebra and Logic Gates

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is

### Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Boolean algebra properties basic assumptions and properties: Closure law A set S is closed with respect to a binary operator, for every

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### LOGIC CIRCUITS. Kirti P_Didital Design 1

LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists

### Gate Level Minimization

Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =

### Simplification of Boolean Functions

Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.

### Digital Systems COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

Digital Systems COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Welcome to COE 202 Course Webpage: http://faculty.kfupm.edu.sa/coe/mudawar/coe202/ Lecture

### Boolean Analysis of Logic Circuits

Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Decimal Numbers The position of each digit in a weighted

### 60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

### Number Systems CHAPTER Positional Number Systems

CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

### SE311: Design of Digital Systems

SE311: Design of Digital Systems Lecture 3: Complements and Binary arithmetic Dr. Samir Al-Amer (Term 041) SE311_Lec3 (c) 2004 AL-AMER ١ Outlines Complements Signed Numbers Representations Arithmetic Binary

Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse

### Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Data Representation ti and Arithmetic for Computers Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Questions What do you know about

### Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### Binary Values. CSE 410 Lecture 02

Binary Values CSE 410 Lecture 02 Lecture Outline Binary Decimal, Binary, and Hexadecimal Integers Why Place Value Representation Boolean Algebra 2 First: Why Binary? Electronic implementation Easy to store

### Digital Systems and Binary Numbers

Digital Systems and Binary Numbers Mano & Ciletti Chapter 1 By Suleyman TOSUN Ankara University Outline Digital Systems Binary Numbers Number-Base Conversions Octal and Hexadecimal Numbers Complements

### Outline. What Digit? => Number System. Decimal (base 10) Significant Digits. Lect 03 Number System, Gates, Boolean Algebra. CS221: Digital Design

Lect 3 Number System, Gates, Boolean Algebra CS22: Digital Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati Outline Number System Decimal, Binary, Octal, Hex Conversions

Class Subject Code Subject Prepared By Lesson Plan for Time: Lesson. No 1.CONTENT LIST: Introduction to UnitI 2. SKILLS ADDRESSED: Listening I year, 02 sem CS6201 Digital Principles & System Design S.Seedhanadevi

### ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.

Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to

### Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Chapter Overview. Welcome to Assembly Language

Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Slides prepared by Kip R. Irvine Revision date: 09/15/2002 Chapter corrections (Web) Printing a slide show

### Computer Organization

Computer Organization Register Transfer Logic Number System Department of Computer Science Missouri University of Science & Technology hurson@mst.edu 1 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5,

### COE 202- Digital Logic. Number Systems II. Dr. Abdulaziz Y. Barnawi COE Department KFUPM. January 23, Abdulaziz Barnawi. COE 202 Logic Design

1 COE 0- Digital Logic Number Systems II Dr. Abdulaziz Y. Barnawi COE Department KFUPM COE 0 Logic Design January 3, 016 Objectives Base Conversion Decimal to other bases Binary to Octal and Hexadecimal

### Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

### Data Representation 1

1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

### Chapter 10 Binary Arithmetics

27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT 1 BOOLEAN ALGEBRA AND LOGIC GATES Review of binary

### Computer Organization and Programming

Sep 2006 Prof. Antônio Augusto Fröhlich (http://www.lisha.ufsc.br) 8 Computer Organization and Programming Prof. Dr. Antônio Augusto Fröhlich guto@lisha.ufsc.br http://www.lisha.ufsc.br/~guto Sep 2006

### Injntu.com Injntu.com Injntu.com R16

1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder

Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 1 for Fall Semester,

### Circuit analysis summary

Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

### CS & IT Conversions. Magnitude 10,000 1,

CS & IT Conversions There are several number systems that you will use when working with computers. These include decimal, binary, octal, and hexadecimal. Knowing how to convert between these number systems

### Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds.

UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers of ): DIGIT 3 4 5 6 7 8 9 Number:

Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 1 for Spring Semester,

### Data Representation COE 301. Computer Organization Prof. Muhamed Mudawar

Data Representation COE 30 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Positional Number

### Computer Logical Organization Tutorial

Computer Logical Organization Tutorial COMPUTER LOGICAL ORGANIZATION TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Computer Logical Organization Tutorial Computer

### Combinational Circuits

Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

### Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

### Level ISA3: Information Representation

Level ISA3: Information Representation 1 Information as electrical current At the lowest level, each storage unit in a computer s memory is equipped to contain either a high or low voltage signal Each

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

### LOGIC DESIGN. Dr. Mahmoud Abo_elfetouh

LOGIC DESIGN Dr. Mahmoud Abo_elfetouh Course objectives This course provides you with a basic understanding of what digital devices are, how they operate, and how they can be designed to perform useful

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

### Korea University of Technology and Education

MEC52 디지털공학 Binary Systems Jee-Hwan Ryu School of Mechanical Engineering Binary Numbers a 5 a 4 a 3 a 2 a a.a - a -2 a -3 base or radix = a n r n a n- r n-...a 2 r 2 a ra a - r - a -2 r -2...a -m r -m

### R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai

L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean

### Numbering systems. Dr Abu Arqoub

Numbering systems The decimal numbering system is widely used, because the people Accustomed (معتاد) to use the hand fingers in their counting. But with the development of the computer science another

### D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### Variable, Complement, and Literal are terms used in Boolean Algebra.

We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

### EEE130 Digital Electronics I Lecture #4_1

EEE130 Digital Electronics I Lecture #4_1 - Boolean Algebra and Logic Simplification - By Dr. Shahrel A. Suandi 4-6 Standard Forms of Boolean Expressions There are two standard forms: Sum-of-products form

### History of Computing. Ahmed Sallam 11/28/2014 1

History of Computing Ahmed Sallam 11/28/2014 1 Outline Blast from the past Layered Perspective of Computing Why Assembly? Data Representation Base 2, 8, 10, 16 Number systems Boolean operations and algebra

### COMP Overview of Tutorial #2

COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

### Code No: 07A3EC03 Set No. 1

Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,

### Chapter 2 Number System

Chapter 2 Number System Embedded Systems with ARM Cortext-M Updated: Tuesday, January 16, 2018 What you should know.. Before coming to this class Decimal Binary Octal Hex 0 0000 00 0x0 1 0001 01 0x1 2

### CMPE223/CMSE222 Digital Logic Design. Positional representation

CMPE223/CMSE222 Digital Logic Design Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition Positional representation First consider integers Begin with positive only

### CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

### COE 202: Digital Logic Design Number Systems Part 2. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 0: Digital Logic Design Number Systems Part Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: -34 Objectives Arithmetic operations: Binary number system Other number systems Base Conversion

### DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6- Binary Addition 6-2 Representing Signed Numbers 6-3 Addition in the 2 s- Complement System 6-4 Subtraction in the 2 s- Complement

### Chapter Overview. Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 1: Basic Concepts. Printing this Slide Show

Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 1: Basic Concepts Chapter Overview Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations

### Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence

GATE Postal Correspondence Computer Sc. & IT 1 Digital Logic Computer Sciencee & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key concepts,

### DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) COURSE / CODE NUMBER SYSTEM

COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) NUMBER SYSTEM A considerable subset of digital systems deals with arithmetic operations. To understand the

### Agenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010

// EE : INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture : Introduction /9/ Avinash Kodi, kodi@ohio.edu Agenda Go over the syllabus Introduction ti to Digital it Systems // Why Digital Systems?

Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 2150 (Tarnoff) Computer Organization TEST 1 for Spring Semester,

### Octal & Hexadecimal Number Systems. Digital Electronics

Octal & Hexadecimal Number Systems Digital Electronics What, More Number Systems? Why do we need more number systems? Humans understand decimal Check out my ten digits! Digital electronics (computers)

### TOPICS. Other Number Systems. Other Number Systems 9/9/2017. Octal Hexadecimal Number conversion

Topic : Introduction To computers Faculty : Department of commerce and Management BY: Prof.Meeta R. Gujarathi E mail: meetargujarathi@gmail.com Octal Hexadecimal Number conversion TOPICS Other Number Systems

### SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

### DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR

UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error