DKT 122/3 DIGITAL SYSTEM 1


 Cora O’Neal’
 2 years ago
 Views:
Transcription
1 Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2)
2 Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits Simplification using Boolean Algebra Standard forms of Boolean Expressions Boolean Expressions & truth tables
3 Boolean Algebra (Cont.) The Karnaugh Map Karnaugh Map SOP minimization Karnaugh Map POS minimization Programmable Logic
4 Solve this.. A B X C (a) Write the equivalent Boolean expression of circuit shown above. (b) Simplify the Boolean expression found in (a).
5 Solve this.. Simplify the following Boolean expressions: (AB(C + BD) + AB)C ABC + ABC + ABC + ABC + ABC Write the Boolean expression of the following circuit. RULE: Break the longest bar first!
6 Standard Forms of Boolean Expressions Sumofproducts (SOP) Refer to two or more product terms, summed (added) by Boolean addition Productofsums (POS) Refer to multiplication of two or more sum terms
7 Sumofproducts (SOP) In an SOP expression, a single overbar cannot extend over more than one variable
8 Sumofproducts (SOP) The standard SOP form Refer to expression in which all the variables in the domain appear in each product term in the expression Example: ABCD + ABCD + ABCD (standard SOP expression) ABC + ABD + ABCD (nonstandard SOP expression)
9 Sumofproducts (SOP) The standard SOP form All variables appear in each product term. Each of the product term in the expression is called as minterm. Example f ( A, B, C ) = ABC + ABC + ABC In compact form, f(a,b,c) may be written as f ( A, B, C ) = m2 + m3 + m f ( A, B, C) = Σm(2,3,6) 6
10 Productofsums (POS) In a POS expression, a single overbar cannot extend over more than one variable
11 Standard Forms of Boolean Expressions The standard POS form Refer to expression in which all the variables in the domain appear in each sum term in the expression Example: (A + B + C)(B + C + D)(A + B + C + D) (nonstandard POS expression) (A + B + C + D)(A + B + C + D) (standard POS expression)
12 All variables appear in each product term. Each of the product term in the expression is called as maxterm. Example: ) ( ) ( ) ( ),, ( C B A C B A C B A C B A f = Standard Forms of Boolean Expressions The standard POS form Example: ) ( ) ( ) ( ),, ( C B A C B A C B A C B A f = In compact form, f(a,b,c) may be written as ),, ( M M M C B A f = (1,4,5) ),, ( M C B A f π =
13 Solve this.. Identify each of the following expressions as SOP, standard SOP, POS or standard POS: (i) AB + ABD + ACD (ii) (A + B + C)(A + B + C) (iii) ABC + ABC (iv) A(A + C)(A + B) Convert the following Boolean expressions to SOP form: (i) (A + B)(B + C + D) (ii) AB + B(CD + EF)
14 Example (Standard SOP) Convert the following Boolean expressions into standard SOP form: Solution AB + ABCD 1 st step: AB = AB (C + C) = ABC + ABC 2 nd step: ABC (D + D) + ABC (D + D) = ABCD + ABCD + ABCD + ABCD 3 rd step: ABCD + ABCD + ABCD + ABCD + ABCD
15 Example (Standard POS) Convert the following Boolean expressions into standard POS form: Solution (A + B + C)(B + C + D) 1 st step: A + B + C = A + B + C + DD = (A + B + C + D) (A + B + C + D) 2 nd step: B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D) Final answer: Combine answer for 1 st and 2 nd step
16 Boolean Expressions & Truth Tables Converting SOP to Truth Table Examine each of the products to determine where the product is equal to a 1. Set the remaining row outputs to 0.
17 Boolean Expressions & Truth Tables Converting POS to Truth Table Opposite process from the SOP expressions. Each sum term results in a 0. Set the remaining row outputs to 1.
18 Boolean Expressions & Truth Tables Determining Standard Expressions from Truth Table INPUT OUTPUT A B C X SOP Expressions X = ABC + ABC + ABC + ABC POS Expressions X = (A + B + C)(A + B + C) (A + B + C)(A + B + C)
19 Solve this.. Convert the following SOP expression to an equivalent POS expression: f ( A, B, C)= ABC+ ABC + ABC + ABC Develop a truth table for the expression: f ( A, BC, ) = ( A+ B+ C) ( A+ B+ C) ( A+ B+ C) ( A+ B+ C)
20 The Karnaugh Map (KMap) Karnaugh Map (Kmap) is an array of cells in which each cell represents a binary value of the input variables KMapping is used to minimize the number of logic gates that are required in a digital circuit. This will replace Boolean reduction when the circuit is large. The number of cells in a Kmap is equal to the total number of possible input variable combinations KMap is similar to Truth Table because it present all possible values of input variables and the resulting output for each value
21 The Kmap The map is made up of a table of every possible SOP using the number of variables that are being used. If 2 variables are used, then a 2X2 map is used, If 3 variables are used, then a 4X2 map is used, If 4 variables are used, then a 4X4 map is used, If 5 variables are used, then a 8X4 map is used
22 Kmap SOP Minimization Mapping Standard SOP Expression For an SOP in standard form, a 1 is placed on the Kmap for each product term in the expression Gray Code Example of standard SOP form
23 Kmap SOP Minimization Mapping Nonstandard SOP Expression Expand the nonstandard expression A + AB + ABC Question How to expand this expression?
24 Kmap SOP Minimization Mapping directly from a truth table to a K map Thomas L. Floyd Digital Fundamentals, 9e Copyright 2006 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.
25 Kmap SOP Minimization 2 variables Kmap A A B B The upper right hand cell is A B if X= A B then put an X in that cell Notice that the map is going false to true, left to right and top to bottom A A B B 1 This show the expression true when A = 0 and B = 0
26 Kmap SOP Minimization 2 variables Kmap If X=AB + AB then put an X in both of these cells B B A 1 A 1 From Boolean reduction we know that A B + A B = B From the Karnaugh map we can circle adjacent cell and find that X = B A A B B 1 1
27 Kmap SOP Minimization 3 variables Kmap Gray Code 0 1 C C 00 A B 01 A B 11 A B 10 A B
28 Kmap SOP Minimization 3 variables Kmap X = A B C + A B C + A B C + A B C 00 A B 01 A B 11 A B 10 A B 0 1 C C Each 3 variable term is one cell on a 4 X 2 Karnaugh map
29 Kmap SOP Minimization 3 variables Kmap X = A B C + A B C + A B C + A B C 00 A B 01 A B 11 A B 10 A B 0 1 C C One simplification could be X = A B + A B
30 Kmap SOP Minimization X = A B C + A B C + A B C + A B C 3 variables Kmap X = A B C + A B C + A B C + A B C 00 A B 01 A B 11 A B 10 A B 0 1 C C Another simplification could be X = B C + B C A Karnaugh Map does wrap around
31 Kmap SOP Minimization X = A B C + A B C + A B C + A B C 3 variables Kmap X = A B C + A B C + A B C + A B C 00 A B 01 A B 11 A B 10 A B 0 1 C C The best simplification would be X = B
32 Kmap SOP Minimization 3 variables Kmap Conclusions One cell requires 3 variables Two adjacent cells require 2 variables Four adjacent cells require 1 variable Eight adjacent cells is a 1
33 Kmap SOP Minimization 4 variables Kmap Gray Code A B 01 A B 11 A B 10 A B C D C D C D C D
34 Simplify: Kmap SOP Minimization X = A B C D + A B C D + A B C D + A B C D + A B C D + A B C D Gray Code A B 01 A B 11 A B 10 A B C D C D C D C D X = ABD + ABC + CD 1 Now, try it with Boolean reductions..
35 Kmap SOP Minimization 4 variables Kmap Conclusions One Cell requires 4 variables Two adjacent cells require 3 variables Four adjacent cells require 2 variables Eight adjacent cells require 1 variable Sixteen adjacent cells give a 1 or true
36 Kmap SOP Minimization Simplify Z = B C D + B C D + C D + B C D + A B C Gray Code C D C D C D C D 00 A B 01 A B 11 A B 10 A B Z = BD + C
37 Example Simplify the following circuit using Kmap method.
38 Example (Cont.) Y = A + B + B C + ( A + B ) ( C + D) Y = A B + B C + A + B + ( C + D ) Y = A B + B C + (A + B ) + C D Simplified SOP expression
39 Example (Cont.) Then, map the SOP expression into the Kmap & simplify the equation Gray Code C D C D C D C D 00 A B A B A B A B Y = 1
40 Kmap POS Minimization Assume A, B, C, and D are variables. 3 variables 4 variables
41 3 variables Kmap Kmap POS Minimization
42 4 variables Kmap Kmap POS Minimization
43 4 variables Kmap Kmap POS Minimization
44 Kmap Minimization Don t Cares 3 variables with output don t cares (X) Input Output
45 Kmap Minimization Don t Cares 4 variables with output don t cares (X)
46 Example Determine the minimal SOP using KMap: F(A, B, C, D) = πm(0,2,6,8, 9,10) D(5,12,13, 14,15) D refers to don t cares What is this?
47 Example (Cont.) F(A, B, C, D) = πm(0,2,6,8, 9,10) D(5,12,13, 14,15) CD AB BC X X X X X Minimum SOP expression is: F ( A, B, C, D) = CD+ BC + AD AD CD
48 Solve this.. Reduce (a), (b) and (c) using Kmap: (a) (b) (c) f(a, B, C, D) = m (1, 3, 5, 7, 9) + d(6,12, 13)
Digital Logic Design (CEN120) (3+1)
Digital Logic Design (CEN120) (3+1) ASSISTANT PROFESSOR Engr. Syed Rizwan Ali, MS(CAAD)UK, PDG(CS)UK, PGD(PM)IR, BS(CE)PK HEC Certified Master Trainer (MTFPDP) PEC Certified Professional Engineer (COM/2531)
More informationSpecifying logic functions
CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last
More informationLSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a
More informationCombinational Logic Circuits
Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical
More informationSummary. Boolean Addition
Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse
More informationIT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationExperiment 3: Logic Simplification
Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed ElSaied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions
More information2.6 BOOLEAN FUNCTIONS
2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 4: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London Standard form of Boolean Expressions SumofProducts (SOP),
More informationAssignment (36) Boolean Algebra and Logic Simplification  General Questions
Assignment (36) Boolean Algebra and Logic Simplification  General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make
More informationChapter 3 Simplification of Boolean functions
3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean
More informationUnitIV Boolean Algebra
UnitIV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of
More informationCHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey
CHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input
More informationModule 7. Karnaugh Maps
1 Module 7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or SumofMinterms (SOM) 2.4 Canonical product of sum or ProductofMaxterms(POM)
More informationGate Level Minimization Map Method
Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically
More informationCSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map
CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,
More informationELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter
More informationCombinational Circuits Digital Logic (Materials taken primarily from:
Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a
More information4 KARNAUGH MAP MINIMIZATION
4 KARNAUGH MAP MINIMIZATION A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the
More informationGate Level Minimization
Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =
More informationSEE1223: Digital Electronics
SEE223: Digital Electronics 3 Combinational Logic Design Zulkifil Md Yusof Dept. of Microelectronics and Computer Engineering The aculty of Electrical Engineering Universiti Teknologi Malaysia Karnaugh
More informationBawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard
More informationSwitching Circuits & Logic Design
Switching Circuits & Logic Design JieHong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 23 5 Karnaugh Maps Kmap Walks and Gray Codes http://asicdigitaldesign.wordpress.com/28/9/26/kmapswalksandgraycodes/
More informationExperiment 4 Boolean Functions Implementation
Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.
More informationTo write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using Karnaugh Map.
3.1 Objectives To write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using. 3.2 Sum of Products & Product of Sums Any Boolean expression can be simplified
More informationCh. 5 : Boolean Algebra &
Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying
More informationChapter 2 Combinational
Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization HOANG Trang 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean Equations Binary Logic
More informationCMPE223/CMSE222 Digital Logic
CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Terminology For a given term, each
More informationIncompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples
Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2Level Transformation Review Boolean Cube KarnaughMap Representation and Methods Examples Incompletely specified functions
More informationA B AB CD Objectives:
Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3
More informationStandard Forms of Expression. Minterms and Maxterms
Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:
More informationChapter 2. Boolean Expressions:
Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean
More informationPhiladelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.
Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms
More informationCombinational Logic Circuits
Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 21 Binary Logic and Gates 22 Boolean Algebra 23 Standard Forms 24 TwoLevel Circuit Optimization
More informationBOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.
COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless
More informationSimplification of Boolean Functions
COM111 Introduction to Computer Engineering (Fall 20062007) NOTES 5  page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean
More informationDate Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 04. Boolean Expression Simplification and Implementation
Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 04 Boolean Expression Simplification and Implementation OBJECTIVES: To understand the utilization
More informationLiteral Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10
Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
More informationKarnaugh Map (KMap) Karnaugh Map. Karnaugh Map Examples. Ch. 2.4 Ch. 2.5 Simplification using Kmap
Karnaugh Map (KMap) Ch. 2.4 Ch. 2.5 Simplification using Kmap A graphical map method to simplify Boolean function up to 6 variables A diagram made up of squares Each square represents one minterm (or
More informationX Y Z F=X+Y+Z
This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output
More informationEEE130 Digital Electronics I Lecture #4_1
EEE130 Digital Electronics I Lecture #4_1  Boolean Algebra and Logic Simplification  By Dr. Shahrel A. Suandi 46 Standard Forms of Boolean Expressions There are two standard forms: Sumofproducts form
More informationELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show
More informationSlide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary
Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide
More informationCombinational Logic Circuits Part III Theoretical Foundations
Combinational Logic Circuits Part III Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic
More informationChapter 6. Logic Design Optimization Chapter 6
Chapter 6 Logic Design Optimization Chapter 6 Optimization The second part of our design process. Optimization criteria: Performance Size Power Twolevel Optimization Manipulating a function until it is
More informationECE380 Digital Logic
ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8 Terminology For
More informationENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.
Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to
More informationChapter 3. GateLevel Minimization. Outlines
Chapter 3 GateLevel Minimization Introduction The Map Method FourVariable Map FiveVariable Map Outlines Product of Sums Simplification Don tcare Conditions NAND and NOR Implementation Other TwoLevel
More informationChapter 2 Boolean algebra and Logic Gates
Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd Chapter 3 Modified by Yuttapong Jiraraksopakun Floyd, Digital Fundamentals, th 28 Pearson Education ENE, KMUTT ed 29 The Inverter Summary The inverter performs
More informationComputer Science. Unit4: Introduction to Boolean Algebra
Unit4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will
More informationR.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai
L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT  I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean
More informationA graphical method of simplifying logic
45 Karnaugh Map Method A graphical method of simplifying logic equations or truth tables. Also called a K map. Theoretically can be used for any number of input variables, but practically limited to 5
More informationSYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)
Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called
More informationBoolean Analysis of Logic Circuits
Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem  IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:
More informationSimplification of Boolean Functions
Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.
More informationCombinational Logic & Circuits
WeekI Combinational Logic & Circuits Spring' 232  Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other
More informationUNIT4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.
UNIT4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?
More information1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
More informationBawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationENGIN 112 Intro to Electrical and Computer Engineering
ENGIN 2 Intro to Electrical and Computer Engineering Lecture 8 Minimization with Karnaugh Maps Overview Kmaps: an alternate approach to representing oolean functions Kmap representation can be used to
More informationCprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative
More informationAnnouncements. Chapter 2  Part 1 1
Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this
More informationQUESTION BANK FOR TEST
CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice
More informationSwitching Theory And Logic Design UNITII GATE LEVEL MINIMIZATION
Switching Theory And Logic Design UNITII GATE LEVEL MINIMIZATION Twovariable kmap: A twovariable kmap can have 2 2 =4 possible combinations of the input variables A and B. Each of these combinations,
More informationSWITCHING THEORY AND LOGIC CIRCUITS
SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra
More informationCode No: 07A3EC03 Set No. 1
Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,
More informationChapter 2: Combinational Systems
Uchechukwu Ofoegbu Chapter 2: Combinational Systems Temple University Adapted from Alan Marcovitz s Introduction to Logic and Computer Design Riddle Four switches can be turned on or off. One is the switch
More informationMenu. Algebraic Simplification  Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification
Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification  Boolean Algebra Minterms (written as m i ):
More informationDigital Logic Lecture 7 Gate Level Minimization
Digital Logic Lecture 7 Gate Level Minimization By Ghada AlMashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. Kmap principles. Simplification using Kmaps. Don tcare
More informationDigital logic fundamentals. Question Bank. Unit I
Digital logic fundamentals Question Bank Subject Name : Digital Logic Fundamentals Subject code: CA102T Staff Name: R.Roseline Unit I 1. What is Number system? 2. Define binary logic. 3. Show how negative
More informationENGIN 112. Intro to Electrical and Computer Engineering
ENIN 2 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra ENIN2 L6: More Boolean Algebra September 5, 23 A B Overview Epressing Boolean functions Relationships between algebraic
More informationBOOLEAN ALGEBRA. 1. State & Verify Laws by using :
BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)
More informationCS8803: Advanced Digital Design for Embedded Hardware
CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883
More informationGraduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB
CH5 Karnaugh Maps Lecturer: 吳安宇教授 Date:2006/0/20 CCESS IC L Problems in lgebraic Simplification The procedures are difficult to apply in a systematic way. It is difficult to tell when you have arrived
More informationGateLevel Minimization
MEC520 디지털공학 GateLevel Minimization JeeHwan Ryu School of Mechanical Engineering GateLevel MinimizationThe Map Method Truth table is unique Many different algebraic expression Boolean expressions may
More information數位系統 Digital Systems 朝陽科技大學資工系. Speaker: FuwYi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷
數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: FuwYi Yang 楊伏夷 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象,
More informationUNIT II. Circuit minimization
UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationGet Free notes at ModuleI One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)
More informationMODULE 5  COMBINATIONAL LOGIC
Introduction to Digital Electronics Module 5: Combinational Logic 1 MODULE 5  COMBINATIONAL LOGIC OVERVIEW: For any given combination of input binary bits or variables, the logic will have a specific
More informationCS470: Computer Architecture. AMD Quad Core
CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flipflops Functional bocks: Combinational, Sequential Instruction
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationReview. EECS Components and Design Techniques for Digital Systems. Lec 05 Boolean Logic 9/404. Seq. Circuit Behavior. Outline.
Review EECS 150  Components and Design Techniques for Digital Systems Lec 05 Boolean Logic 9404 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley Design flow
More informationBoolean Function Simplification
Universit of Wisconsin  Madison ECE/Comp Sci 352 Digital Sstems Fundamentals Charles R. Kime Section Fall 200 Chapter 2 Combinational Logic Circuits Part 5 Charles Kime & Thomas Kaminski Boolean Function
More informationADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS
ABSTRACT ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS Dr. Mohammed H. ALJammas Department of Computer and Information Engineering, College of Electronics Engineering, University of Mosul, Mosul 
More informationPOWR IP PZ1/17
Silesian University of Technology as Centre of Modern Education Based on Research and Innovations POWR.03.05.00IP.0800PZ1/17 Project cofinanced by the European Union under the European Social Fund
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationIntroduction. The QuineMcCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick
CSEE E6861y Prof. Steven Nowick The QuineMcCluskey Method Handout 5 January 24, 2013 Introduction The QuineMcCluskey method is an exact algorithm which finds a minimumcost sumofproducts implementation
More informationFinal Examination (Open Katz, asynchronous & test notes only, Calculators OK, 3 hours)
Your Name: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO Department of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA CRUZ CS
More informationLarger Kmaps. So far we have only discussed 2 and 3variable Kmaps. We can now create a 4variable map in the
EET 3 Chapter 3 7/3/2 PAGE  23 Larger Kmaps The variable Kmap So ar we have only discussed 2 and 3variable Kmaps. We can now create a variable map in the same way that we created the 3variable
More informationUniversity of Technology
University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 5 & 6 Minimization with Karnaugh Maps Karnaugh maps lternate way of representing oolean function ll rows
More informationLOGIC CIRCUITS. Kirti P_Didital Design 1
LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists
More informationGateLevel Minimization. BME208 Logic Circuits Yalçın İŞLER
GateLevel Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to
More informationSIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN
SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN SUBJECT: CSE 2.1.6 DIGITAL LOGIC DESIGN CLASS: 2/4 B.Tech., I SEMESTER, A.Y.201718 INSTRUCTOR: Sri A.M.K.KANNA
More informationSIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: IIB.Tech & ISem Course & Branch: B.Tech
More information