Background. memcellsf09. Single- and Double-port SRAM building blocks. w Allen Tanner built an SRAM/ROM generator program back in 2004

Size: px
Start display at page:

Download "Background. memcellsf09. Single- and Double-port SRAM building blocks. w Allen Tanner built an SRAM/ROM generator program back in 2004"

Transcription

1 memcellsf09 Single- and Double-port SRAM building blocks Background w Allen Tanner built an SRAM/ROM generator program back in 2004 n the ROM seems to work fine there are fabricated examples that work n the SRAM isn t as good there are fabricated examples that work and that don t work w So, I have new (tested) SRAM cells w For ROM, you can still use makemem n But Verilog case compiled by Synopsys works just as well! Ø 1

2 ROM ROM V DD Pull-up devices WL[0] WL[1] GND WL[2] WL[3] GND BL[0] BL[1] BL[2] BL[3] Ø 2

3 ROM ROM Ø 3

4 ROM Layout Metal1 on top of diffusion WL[0] WL[1] Basic cell 10 λ x 7 λ GND (diffusion) Polysilicon Metal1 WL[2] 2 λ WL[3] Only 1 layer (contact mask) is used to program memory array Programming of the memory can be delayed to one of last process steps ROM Layout Ø 4

5 makemem 102 vladimir:~> java -cp /uusoc/facility/cad_common/local/cadence/lib/mem/j makemem -h makemem v2.2 Nov 8, 2004 Allen Tanner University of Utah CS6710 Enter the following: java makemem choice options Where: choice selects the creation of either ROM or SRAM. for ROM enter:-r rname : rname.rom is the file name. : for SRAM enter:-s r c : Version 1 SRAM single port. for SRAM enter:-s1 r c : Version 2 SRAM single port. for SRAM enter:-s2 r c : Version 2 SRAM dual port. for SRAM enter:-s3 r c : Version 2 SRAM triple port. : r is the number of rows (decimal). : c is the number of columns (decimal). : :-h -H : help (no processing occurs when help is requested). :-f fname : output file name. Used with.cif,.v &.il files. :-n sname rname : sname for array top cell name. : : rname for ROM (only) dockable ROM array top cell name :-t n : use tristate buffers on the outputs of ROM. :-q : output hello.txt file to find the working file directory. makemem Limits w Number of rows is limited to 64 by address decoder design n Columns are not restricted w For ROM you can add a tristate bus at the output which is another level of decoding n width must be an even number w SRAM has single, dual, and triple port options Ø 5

6 ROM vs. Verilog ROM vs. Verilog Ø 6

7 ROM vs. Verilog ROM vs. Verilog Ø 7

8 ROM vs. Verilog ROM vs. Verilog Ø 8

9 ROM vs. Verilog After all this you should use your cells and Verilog! w Can be tricky SRAM n Make the SRAM bit cells as small as possible n assembled into columns l A column is bunch of bit cells and the associated support for writing (big drivers) and reading (pullups, sense amps, or inverters) those bits l Column height is number of words in the memory l Columns are tiled in width to make the number of bits in a word n addressing hardware on the side l convert binary addresses into unary row addresses Ø 9

10 Disclaimer w These cells are available for you to use n They have been fabricated and tested w But they re offered without any warranty! J n Use at your own risk I think they ll work, but they ve only been tested on one test chip n Make sure you understand the protocol and timing n Make sure to simulate with your whole system (behavioral simulation) Protocol and timing w These are async static RAMS no clock n Apply the Address and wait for data (Q) n Probably around 10ns delay on-chip w They are also static write n Apply Address, WE, and Din n Wait (~10ns) until write happens n For safety, use a 1ns setup time from Address to WE Ø 10

11 SRAM example (4x8) SRAM cells R/W circuits Address decoder Column SRAM example (4x8) Address Bits Ø 11

12 SRAM example (4x8) Datain, Qout, and WE signals SRAM 8t Cell Ø 12

13 SRAM 8t Cell SRAM Cell (4x4) Ø 13

14 SRAM Column Support SRAM Column Support Ø 14

15 Double-port SRAM w One RW port, one R-only port w duplicates the read circuits for a second port Double-port SRAM w One RW port, one R-only port w duplicates the read circuits for a second port Ø 15

16 2-port column support 2-port column support Ø 16

17 2-port example (32x16) 2-port example (32x16) A Bits D, Q, QR, and WE bits RA Bits Ø 17

18 memcellsf09 w Building blocks for these SRAMs n /uusoc/facility/cad_common/local/cadence/lib/oa/memcellsf09 n Make sure to turn categories on l Things are separated into categories to keep things organized n Both 8t (single-port) and 10t (double-port) columns are available l in 4, 8, 16, and 32rows l Tile them horizontally to get bits in a word l Must be even (columns are two-bits wide) Address Decoders w two kinds: static and pseudonmos n static burns less power, but is slower n pseudonmos uses more power, but slightly faster n Both have been tested working up to 32x16 Ø 18

19 memcellsf09 Library Memory Size Comparison 4rows by 8bits 32rows by 16bits 32rows by 16bits Dual port Ø 19

Using makemem template

Using makemem template Using makemem template V1.2 November 18, 2004 Modified by Erik Brunvand for CS/EE 6710 Nov 2006 This document describes how to set up to use makemem the ROM and SRAM generator. It also gives an example

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 23-1 guntzel@inf.ufsc.br Semiconductor Memory Classification

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 26: November 9, 2018 Memory Overview Dynamic OR4! Precharge time?! Driving input " With R 0 /2 inverter! Driving inverter

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 22: Memery, ROM

CMPEN 411 VLSI Digital Circuits Spring Lecture 22: Memery, ROM CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 22: Memery, ROM [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L22 S.1

More information

Memory and Programmable Logic

Memory and Programmable Logic Digital Circuit Design and Language Memory and Programmable Logic Chang, Ik Joon Kyunghee University Memory Classification based on functionality ROM : Read-Only Memory RWM : Read-Write Memory RWM NVRWM

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

Memory. Outline. ECEN454 Digital Integrated Circuit Design. Memory Arrays. SRAM Architecture DRAM. Serial Access Memories ROM

Memory. Outline. ECEN454 Digital Integrated Circuit Design. Memory Arrays. SRAM Architecture DRAM. Serial Access Memories ROM ECEN454 Digital Integrated Circuit Design Memory ECEN 454 Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports DRAM Outline Serial Access Memories ROM ECEN 454 12.2 1 Memory

More information

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy.

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 4, 7 Memory Overview, Memory Core Cells Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM

More information

! Memory. " RAM Memory. " Serial Access Memories. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory.  Serial Access Memories. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 5, 8 Memory: Periphery circuits Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery " Serial Access Memories

More information

Lecture 11: MOS Memory

Lecture 11: MOS Memory Lecture 11: MOS Memory MAH, AEN EE271 Lecture 11 1 Memory Reading W&E 8.3.1-8.3.2 - Memory Design Introduction Memories are one of the most useful VLSI building blocks. One reason for their utility is

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 201 Memories Lecture 14: 1 Announcements HW6 will be posted tonight Lab 4b next week: Debug your design before the in-lab exercise Lecture 14: 2 Review:

More information

Introduction to SRAM. Jasur Hanbaba

Introduction to SRAM. Jasur Hanbaba Introduction to SRAM Jasur Hanbaba Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Non-volatile Memory Manufacturing Flow Memory Arrays Memory Arrays Random Access Memory Serial

More information

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM)

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM) Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash (EEPROM) Static RAM (SRAM) Dynamic RAM (DRAM) Generic pin configuration: Address connection

More information

EECS150 - Digital Design Lecture 16 Memory 1

EECS150 - Digital Design Lecture 16 Memory 1 EECS150 - Digital Design Lecture 16 Memory 1 March 13, 2003 John Wawrzynek Spring 2003 EECS150 - Lec16-mem1 Page 1 Memory Basics Uses: Whenever a large collection of state elements is required. data &

More information

+1 (479)

+1 (479) Memory Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Memory Arrays Memory Arrays Random Access Memory Serial

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

Semiconductor Memory Classification

Semiconductor Memory Classification ESE37: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: November, 7 Memory Overview Today! Memory " Classification " Architecture " Memory core " Periphery (time permitting)!

More information

Lecture 11 SRAM Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 11 SRAM Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 11 SRAM Zhuo Feng 11.1 Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitryit Multiple Ports Outline Serial Access Memories 11.2 Memory Arrays

More information

CENG 4480 L09 Memory 2

CENG 4480 L09 Memory 2 CENG 4480 L09 Memory 2 Bei Yu Reference: Chapter 11 Memories CMOS VLSI Design A Circuits and Systems Perspective by H.E.Weste and D.M.Harris 1 v.s. CENG3420 CENG3420: architecture perspective memory coherent

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

CHAPTER X MEMORY SYSTEMS

CHAPTER X MEMORY SYSTEMS CHAPTER X-1 CHAPTER X CHAPTER X READ MEMORY NOTES ON COURSE WEBPAGE CONSIDER READING PAGES 285-310 FROM MANO AND KIME OTHER USEFUL RAM MATERIAL AT ARS TECHNICA CHAPTER X-2 INTRODUCTION -INTRODUCTION A

More information

! Memory Overview. ! ROM Memories. ! RAM Memory " SRAM " DRAM. ! This is done because we can build. " large, slow memories OR

! Memory Overview. ! ROM Memories. ! RAM Memory  SRAM  DRAM. ! This is done because we can build.  large, slow memories OR ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 2: April 5, 26 Memory Overview, Memory Core Cells Lecture Outline! Memory Overview! ROM Memories! RAM Memory " SRAM " DRAM 2 Memory Overview

More information

6. Latches and Memories

6. Latches and Memories 6 Latches and Memories This chapter . RS Latch The RS Latch, also called Set-Reset Flip Flop (SR FF), transforms a pulse into a continuous state. The RS latch can be made up of two interconnected

More information

FABRICATION TECHNOLOGIES

FABRICATION TECHNOLOGIES FABRICATION TECHNOLOGIES DSP Processor Design Approaches Full custom Standard cell** higher performance lower energy (power) lower per-part cost Gate array* FPGA* Programmable DSP Programmable general

More information

CMPEN411 Memory Chip Design Project Report

CMPEN411 Memory Chip Design Project Report THE PENNSYLVANIA STATE UNIVERSITY CMPEN411 Memory Chip Design Project Report RAM64X6,SERIAL RAM 64X4 and DPRAM64X4 Qianqian Zhang 3/9/2012 A chip fabricated through MOSIS 1 Table of Content Chapter 1 Introductory...

More information

3. Implementing Logic in CMOS

3. Implementing Logic in CMOS 3. Implementing Logic in CMOS 3. Implementing Logic in CMOS Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 27 September, 27 ECE Department,

More information

EECS150 - Digital Design Lecture 16 - Memory

EECS150 - Digital Design Lecture 16 - Memory EECS150 - Digital Design Lecture 16 - Memory October 17, 2002 John Wawrzynek Fall 2002 EECS150 - Lec16-mem1 Page 1 Memory Basics Uses: data & program storage general purpose registers buffering table lookups

More information

PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES

PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES. psa. rom. fpga THE WAY THE MODULES ARE PROGRAMMED NETWORKS OF PROGRAMMABLE MODULES EXAMPLES OF USES Programmable

More information

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness EE 352 Unit 10 Memory System Overview SRAM vs. DRAM DMA & Endian-ness The Memory Wall Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology

More information

Read Only Memory ROM

Read Only Memory ROM Read Only Memory ROM A read only memory have address inputs and data outputs With m address lines you can access the 2 m different memory addresses At each address, there is one data word with n bits Usually,

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

SRAM. Introduction. Digital IC

SRAM. Introduction. Digital IC SRAM Introduction Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports Serial Access Memories Memory Arrays Memory Arrays Random Access Memory Serial Access Memory

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I) COMP3221: Microprocessors and Embedded Systems Lecture 23: Memory Systems (I) Overview Memory System Hierarchy RAM, ROM, EPROM, EEPROM and FLASH http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session

More information

Lecture 13: SRAM. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 13: SRAM. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture 13: SRAM Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports

More information

Picture of memory. Word FFFFFFFD FFFFFFFE FFFFFFFF

Picture of memory. Word FFFFFFFD FFFFFFFE FFFFFFFF Memory Sequential circuits all depend upon the presence of memory A flip-flop can store one bit of information A register can store a single word, typically 32-64 bits Memory allows us to store even larger

More information

Introduction to CMOS VLSI Design Lecture 13: SRAM

Introduction to CMOS VLSI Design Lecture 13: SRAM Introduction to CMOS VLSI Design Lecture 13: SRAM David Harris Harvey Mudd College Spring 2004 1 Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports Serial Access

More information

Design and Implementation of an AHB SRAM Memory Controller

Design and Implementation of an AHB SRAM Memory Controller Design and Implementation of an AHB SRAM Memory Controller 1 Module Overview Learn the basics of Computer Memory; Design and implement an AHB SRAM memory controller, which replaces the previous on-chip

More information

Digital Integrated Circuits Lecture 13: SRAM

Digital Integrated Circuits Lecture 13: SRAM Digital Integrated Circuits Lecture 13: SRAM Chih-Wei Liu VLSI Signal Processing LAB National Chiao Tung University cwliu@twins.ee.nctu.edu.tw DIC-Lec13 cwliu@twins.ee.nctu.edu.tw 1 Outline Memory Arrays

More information

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics Logic and Computer Design Fundamentals Memory Basics Overview Memory definitions Random Access Memory (RAM) Static RAM (SRAM) integrated circuits Arrays of SRAM integrated circuits Dynamic RAM (DRAM) Read

More information

Memory in Digital Systems

Memory in Digital Systems MEMORIES Memory in Digital Systems Three primary components of digital systems Datapath (does the work) Control (manager) Memory (storage) Single bit ( foround ) Clockless latches e.g., SR latch Clocked

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

Chapter Two - SRAM 1. Introduction to Memories. Static Random Access Memory (SRAM)

Chapter Two - SRAM 1. Introduction to Memories. Static Random Access Memory (SRAM) 1 3 Introduction to Memories The most basic classification of a memory device is whether it is Volatile or Non-Volatile (NVM s). These terms refer to whether or not a memory device loses its contents when

More information

GUIDELINES FOR USE SMIC 0.18 micron, 1.8 V high-density synchronous single port SRAM IP blocks compiler

GUIDELINES FOR USE SMIC 0.18 micron, 1.8 V high-density synchronous single port SRAM IP blocks compiler GUIDELINES FOR USE SMIC 0.18 micron, 1.8 V high-density synchronous single port SRAM IP blocks compiler Ver. 1.0 November 2010 www.ntlab.com CONTENT 1. DESCRIPTION OF THE COMPILER... 3 1.1 GENERAL CHARACTERISTICS

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

Chapter 3 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 3 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 3 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction Random Access Memories Content Addressable Memories Read

More information

Topic 21: Memory Technology

Topic 21: Memory Technology Topic 21: Memory Technology COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Old Stuff Revisited Mercury Delay Line Memory Maurice Wilkes, in 1947,

More information

Topic 21: Memory Technology

Topic 21: Memory Technology Topic 21: Memory Technology COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Old Stuff Revisited Mercury Delay Line Memory Maurice Wilkes, in 1947,

More information

Memory Arrays. Array Architecture. Chapter 16 Memory Circuits and Chapter 12 Array Subsystems from CMOS VLSI Design by Weste and Harris, 4 th Edition

Memory Arrays. Array Architecture. Chapter 16 Memory Circuits and Chapter 12 Array Subsystems from CMOS VLSI Design by Weste and Harris, 4 th Edition Chapter 6 Memory Circuits and Chapter rray Subsystems from CMOS VLSI Design by Weste and Harris, th Edition E E 80 Introduction to nalog and Digital VLSI Paul M. Furth New Mexico State University Static

More information

CpE 442. Memory System

CpE 442. Memory System CpE 442 Memory System CPE 442 memory.1 Outline of Today s Lecture Recap and Introduction (5 minutes) Memory System: the BIG Picture? (15 minutes) Memory Technology: SRAM and Register File (25 minutes)

More information

Review: Timing. EECS Components and Design Techniques for Digital Systems. Lec 13 Storage: Regs, SRAM, ROM. Outline.

Review: Timing. EECS Components and Design Techniques for Digital Systems. Lec 13 Storage: Regs, SRAM, ROM. Outline. Review: Timing EECS 150 - Components and Design Techniques for Digital Systems Lec 13 Storage: Regs,, ROM David Culler Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~culler

More information

ENEE 759H, Spring 2005 Memory Systems: Architecture and

ENEE 759H, Spring 2005 Memory Systems: Architecture and SLIDE, Memory Systems: DRAM Device Circuits and Architecture Credit where credit is due: Slides contain original artwork ( Jacob, Wang 005) Overview Processor Processor System Controller Memory Controller

More information

ECEN 449 Microprocessor System Design. Memories

ECEN 449 Microprocessor System Design. Memories ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM /C Flash 2 1 SRAM Static Random Access Memory 3 SRAM Static Random

More information

Lecture 8: Synthesis, Implementation Constraints and High-Level Planning

Lecture 8: Synthesis, Implementation Constraints and High-Level Planning Lecture 8: Synthesis, Implementation Constraints and High-Level Planning MAH, AEN EE271 Lecture 8 1 Overview Reading Synopsys Verilog Guide WE 6.3.5-6.3.6 (gate array, standard cells) Introduction We have

More information

ECE 341. Lecture # 16

ECE 341. Lecture # 16 ECE 341 Lecture # 16 Instructor: Zeshan Chishti zeshan@ece.pdx.edu November 24, 2014 Portland State University Lecture Topics The Memory System Basic Concepts Semiconductor RAM Memories Organization of

More information

10/24/2016. Let s Name Some Groups of Bits. ECE 120: Introduction to Computing. We Just Need a Few More. You Want to Use What as Names?!

10/24/2016. Let s Name Some Groups of Bits. ECE 120: Introduction to Computing. We Just Need a Few More. You Want to Use What as Names?! University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Memory Let s Name Some Groups of Bits I need your help. The computer we re going

More information

Topics. ! PLAs.! Memories: ! Datapaths.! Floor Planning ! ROM;! SRAM;! DRAM. Modern VLSI Design 2e: Chapter 6. Copyright 1994, 1998 Prentice Hall

Topics. ! PLAs.! Memories: ! Datapaths.! Floor Planning ! ROM;! SRAM;! DRAM. Modern VLSI Design 2e: Chapter 6. Copyright 1994, 1998 Prentice Hall Topics! PLAs.! Memories:! ROM;! SRAM;! DRAM.! Datapaths.! Floor Planning Programmable logic array (PLA)! Used to implement specialized logic functions.! A PLA decodes only some addresses (input values);

More information

Memory System Overview. DMA & Endian-ness. Technology. Architectural. Problem: The Memory Wall

Memory System Overview. DMA & Endian-ness. Technology. Architectural. Problem: The Memory Wall The Memory Wall EE 357 Unit 13 Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology targets density rather than speed) Large memories

More information

memories The world of Memories DEEP SUBMICRON CMOS DESIGN 10. Memories

memories The world of Memories DEEP SUBMICRON CMOS DESIGN 10. Memories 10 Memories This chapter described the memory cell architecture. After a general introduction, we detail the principles and implementation of static RAM, dynamic RAM, read-only memories, electrically erasable

More information

Memory in Digital Systems

Memory in Digital Systems MEMORIES Memory in Digital Systems Three primary components of digital systems Datapath (does the work) Control (manager) Memory (storage) Single bit ( foround ) Clockless latches e.g., SR latch Clocked

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems Advanced Embedded Systems Lecture 2: Memory and Programmable Logic Dr. Mohamed Abd El Ghany, Memory Random Access Memory (RAM) Can be read and written Static Random Access Memory (SRAM) Data stored so

More information

UMBC D 7 -D. Even bytes 0. 8 bits FFFFFC FFFFFE. location in addition to any 8-bit location. 1 (Mar. 6, 2002) SX 16-bit Memory Interface

UMBC D 7 -D. Even bytes 0. 8 bits FFFFFC FFFFFE. location in addition to any 8-bit location. 1 (Mar. 6, 2002) SX 16-bit Memory Interface 8086-80386SX 16-bit Memory Interface These machines differ from the 8088/80188 in several ways: The data bus is 16-bits wide. The IO/M pin is replaced with M/IO (8086/80186) and MRDC and MWTC for 80286

More information

ECEN 449 Microprocessor System Design. Memories. Texas A&M University

ECEN 449 Microprocessor System Design. Memories. Texas A&M University ECEN 449 Microprocessor System Design Memories 1 Objectives of this Lecture Unit Learn about different types of memories SRAM/DRAM/CAM Flash 2 SRAM Static Random Access Memory 3 SRAM Static Random Access

More information

Chip Core. Final Assembly. Core Sizes. Connecting Core to Pads. Core. Pad Ring The connection to the outside world

Chip Core. Final Assembly. Core Sizes. Connecting Core to Pads. Core. Pad Ring The connection to the outside world Final Assembly Your final project chip consists of a core and a pad ring Core is the guts Pad ring (or pad frame) connects the guts to the outside world It s critical to do a functional simulation of your

More information

A Configurable Radiation Tolerant Dual-Ported Static RAM macro, designed in a 0.25 µm CMOS technology for applications in the LHC environment.

A Configurable Radiation Tolerant Dual-Ported Static RAM macro, designed in a 0.25 µm CMOS technology for applications in the LHC environment. A Configurable Radiation Tolerant Dual-Ported Static RAM macro, designed in a 0.25 µm CMOS technology for applications in the LHC environment. 8th Workshop on Electronics for LHC Experiments 9-13 Sept.

More information

Prototype of SRAM by Sergey Kononov, et al.

Prototype of SRAM by Sergey Kononov, et al. Prototype of SRAM by Sergey Kononov, et al. 1. Project Overview The goal of the project is to create a SRAM memory layout that provides maximum utilization of the space on the 1.5 by 1.5 mm chip. Significant

More information

Final Assembly. Chip Core

Final Assembly. Chip Core Final Assembly Your final project chip consists of a core and a pad ring Core is the guts Pad ring (or pad frame) connects the guts to the outside world It s critical to do a functional simulation of your

More information

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI CHAPTER 2 ARRAY SUBSYSTEMS [2.4-2.9] MANJARI S. KULKARNI OVERVIEW Array classification Non volatile memory Design and Layout Read-Only Memory (ROM) Pseudo nmos and NAND ROMs Programmable ROMS PROMS, EPROMs,

More information

Introduction read-only memory random access memory

Introduction read-only memory random access memory Memory Interface Introduction Simple or complex, every microprocessorbased system has a memory system. Almost all systems contain two main types of memory: read-only memory (ROM) and random access memory

More information

Design Methodologies. Full-Custom Design

Design Methodologies. Full-Custom Design Design Methodologies Design styles Full-custom design Standard-cell design Programmable logic Gate arrays and field-programmable gate arrays (FPGAs) Sea of gates System-on-a-chip (embedded cores) Design

More information

Spiral 2-9. Tri-State Gates Memories DMA

Spiral 2-9. Tri-State Gates Memories DMA 2-9.1 Spiral 2-9 Tri-State Gates Memories DMA 2-9.2 Learning Outcomes I understand how a tri-state works and the rules for using them to share a bus I understand how SRAM and DRAM cells perform reads and

More information

TSEA22, DIGITALTEKNIK LECTURE 7

TSEA22, DIGITALTEKNIK LECTURE 7 LINKÖPING UNIVERSITY Department of Electrical Engineering TSEA22, DIGITALTEKNIK LECTURE 7 Mario Garrido Gálvez mario.garrido.galvez@liu.se Linköping, 2018 1 FEEDBACK: POSITIVE Course: Good / Interesting

More information

The Memory Hierarchy Part I

The Memory Hierarchy Part I Chapter 6 The Memory Hierarchy Part I The slides of Part I are taken in large part from V. Heuring & H. Jordan, Computer Systems esign and Architecture 1997. 1 Outline: Memory components: RAM memory cells

More information

Digital Integrated Circuits (83-313) Lecture 7: SRAM. Semester B, Lecturer: Dr. Adam Teman Itamar Levi, Robert Giterman.

Digital Integrated Circuits (83-313) Lecture 7: SRAM. Semester B, Lecturer: Dr. Adam Teman Itamar Levi, Robert Giterman. Digital Integrated Circuits (83-313) Lecture 7: SRAM Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 16 May 2017 Disclaimer: This course was prepared, in its entirety, by

More information

I 4 I 3 I 2 I 1 I 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 T-125. ROM Truth Table (Partial) 1997 by Prentice-Hall, Inc.

I 4 I 3 I 2 I 1 I 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 T-125. ROM Truth Table (Partial) 1997 by Prentice-Hall, Inc. 997 by Prentice-Hall, Inc. ano & Kime Upper Saddle River, New Jersey 7458 T-5 Inputs Outputs I 4 I 3 I I I A 7 A 6 A 5 A 4 A 3 A A A...... RO Truth Table (Partial) 997 by Prentice-Hall, Inc. ano & Kime

More information

Laboratory 6. - Using Encounter for Automatic Place and Route. By Mulong Li, 2013

Laboratory 6. - Using Encounter for Automatic Place and Route. By Mulong Li, 2013 CME 342 (VLSI Circuit Design) Laboratory 6 - Using Encounter for Automatic Place and Route By Mulong Li, 2013 Reference: Digital VLSI Chip Design with Cadence and Synopsys CAD Tools, Erik Brunvand Background

More information

MEMORIES. Memories. EEC 116, B. Baas 3

MEMORIES. Memories. EEC 116, B. Baas 3 MEMORIES Memories VLSI memories can be classified as belonging to one of two major categories: Individual registers, single bit, or foreground memories Clocked: Transparent latches and Flip-flops Unclocked:

More information

CENG 4480 L09 Memory 3

CENG 4480 L09 Memory 3 CENG 4480 L09 Memory 3 Bei Yu Chapter 11 Memories Reference: CMOS VLSI Design A Circuits and Systems Perspective by H.E.Weste and D.M.Harris 1 Memory Arrays Memory Arrays Random Access Memory Serial Access

More information

CS152 Computer Architecture and Engineering Lecture 16: Memory System

CS152 Computer Architecture and Engineering Lecture 16: Memory System CS152 Computer Architecture and Engineering Lecture 16: System March 15, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

Introduction to CMOS VLSI Design (E158) Lecture 7: Synthesis and Floorplanning

Introduction to CMOS VLSI Design (E158) Lecture 7: Synthesis and Floorplanning Harris Introduction to CMOS VLSI Design (E158) Lecture 7: Synthesis and Floorplanning David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University

More information

EECS150 - Digital Design Lecture 13 - Project Description, Part 2: Memory Blocks. Project Overview

EECS150 - Digital Design Lecture 13 - Project Description, Part 2: Memory Blocks. Project Overview EECS150 - igital esign Lecture 13 - Project escription, Part 2: Memory Blocks Mar 2, 2010 John Wawrzynek Spring 2010 EECS150 - Lec13-proj2 Page 1 Project Overview A. MIPS150 pipeline structure B. Serial

More information

ECSE-2610 Computer Components & Operations (COCO)

ECSE-2610 Computer Components & Operations (COCO) ECSE-2610 Computer Components & Operations (COCO) Part 18: Random Access Memory 1 Read-Only Memories 2 Why ROM? Program storage Boot ROM for personal computers Complete application storage for embedded

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

Memory. Lecture 22 CS301

Memory. Lecture 22 CS301 Memory Lecture 22 CS301 Administrative Daily Review of today s lecture w Due tomorrow (11/13) at 8am HW #8 due today at 5pm Program #2 due Friday, 11/16 at 11:59pm Test #2 Wednesday Pipelined Machine Fetch

More information

Fig. 6-1 Conventional and Array Logic Symbols for OR Gate

Fig. 6-1 Conventional and Array Logic Symbols for OR Gate 6- (a) Conventional symbol (b) Array logic symbol Fig. 6- Conventional and Array Logic Symbols for OR Gate 2 Prentice Hall, Inc. 6-2 k address lines Read n data input lines emory unit 2 k words n bits

More information

Building your First Image Processing ASIC

Building your First Image Processing ASIC Building your First Image Processing ASIC CS250 Laboratory 2 (Version 092312) Written by Rimas Avizienis (2012) Overview The goal of this assignment is to give you some experience implementing an image

More information

CS310 Embedded Computer Systems. Maeng

CS310 Embedded Computer Systems. Maeng 1 INTRODUCTION (PART II) Maeng Three key embedded system technologies 2 Technology A manner of accomplishing a task, especially using technical processes, methods, or knowledge Three key technologies for

More information

CMOS Logic Circuit Design Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計

CMOS Logic Circuit Design   Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計 CMOS Logic Circuit Design http://www.rcns.hiroshima-u.ac.jp Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計 Memory Circuits (Part 1) Overview of Memory Types Memory with Address-Based Access Principle of Data Access

More information

Lay ay ut Design g R ules

Lay ay ut Design g R ules HPTER 5: Layout esign Rules Introduction ny circuit physical mask layout must conform to a set of geometric constraints or rules called as Layout esign rules before it can be manufactured using particular

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 30 Random Access Memory (RAM) Overview Memory is a collection of storage cells with associated input and output circuitry Possible to read

More information

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories Digital Electronics. CHAPTER THIRTY TWO Semiconductor Read-Only Memories Introduction Diode circuits, BJT circuits, and MOSFET circuits are used to provide memory semiconductor circuits consisting of both

More information

The Xilinx XC6200 chip, the software tools and the board development tools

The Xilinx XC6200 chip, the software tools and the board development tools The Xilinx XC6200 chip, the software tools and the board development tools What is an FPGA? Field Programmable Gate Array Fully programmable alternative to a customized chip Used to implement functions

More information

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable.

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable. PLDs, ASICs and FPGAs FPGA definition: Digital integrated circuit that contains configurable blocks of logic and configurable interconnects between these blocks. Key points: Manufacturer does NOT determine

More information

Programmable Logic Devices Introduction CMPE 415. Programmable Logic Devices

Programmable Logic Devices Introduction CMPE 415. Programmable Logic Devices Instructor: Professor Jim Plusquellic Programmable Logic Devices Text: The Design Warrior s Guide to FPGAs, Devices, Tools and Flows, Clive "Max" Maxfield, ISBN: 0-7506-7604-3 Modeling, Synthesis and Rapid

More information

Design Methodologies and Tools. Full-Custom Design

Design Methodologies and Tools. Full-Custom Design Design Methodologies and Tools Design styles Full-custom design Standard-cell design Programmable logic Gate arrays and field-programmable gate arrays (FPGAs) Sea of gates System-on-a-chip (embedded cores)

More information

An overview of standard cell based digital VLSI design

An overview of standard cell based digital VLSI design An overview of standard cell based digital VLSI design Implementation of the first generation AsAP processor Zhiyi Yu and Tinoosh Mohsenin VCL Laboratory UC Davis Outline Overview of standard cellbased

More information

Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Computer Memory Basic Concepts Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University The Memory Component The memory stores the instructions and data for an

More information

The DRAM Cell. EEC 581 Computer Architecture. Memory Hierarchy Design (III) 1T1C DRAM cell

The DRAM Cell. EEC 581 Computer Architecture. Memory Hierarchy Design (III) 1T1C DRAM cell EEC 581 Computer Architecture Memory Hierarchy Design (III) Department of Electrical Engineering and Computer Science Cleveland State University The DRAM Cell Word Line (Control) Bit Line (Information)

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Year III Computer Sci. English 1-st Semester Lecture 12: Memory interfacing Typical Memory Hierarchy [1] On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Building Memory

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Building Memory Computer Science 324 Computer rchitecture Mount Holyoke College Fall 2007 Topic Notes: Building Memory We ll next look at how we can use the devices we ve been looking at to construct memory. Tristate

More information

Memory. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Memory. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Memory Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu PC +4 +4 new pc offset target imm control extend =? cmp

More information