Surface Reconstruction. Vincent Rabaud

Size: px
Start display at page:

Download "Surface Reconstruction. Vincent Rabaud"

Transcription

1 Surface Reconstruction Vincent Rabaud November 03, 2011

2 Outline 1. Introduction 2. Plane Detection Problem definition Plane estimation Hull refinement 3. Moving least squares Problem Gist 4. Triangulation Meshing 5. Smoothing VTK smoother Poisson 6. Conclusion

3 Outline 1. Introduction 2. Plane Detection Problem definition Plane estimation Hull refinement 3. Moving least squares Problem Gist 4. Triangulation Meshing 5. Smoothing VTK smoother Poisson 6. Conclusion

4 Introduction Wanted: surface/mesh from a point cloud Why? the world is not sparse for better graphics/visualization for texture mapping CAD models compression

5 Introduction In robotics: object detection object grasping

6 Plane detection We are given a noisy point cloud and we want to find the best plane

7 Plane detection 1 // Define the RANSAC object 2 pcl::sacsegmentation<pcl::pointxyz> seg; 3 // Define its coefficients 4 seg.setoptimizecoefficients (true); 5 seg.setmethodtype (pcl::sac_ransac); 6 // Specify the plane parameters 7 seg.setmodeltype (pcl::sacmodel_plane); 8 seg.setdistancethreshold (0.01); 9 // Specify the input 10 seg.setinputcloud (cloud_filtered); 11 // Segment 12 pcl::modelcoefficients::ptr coefficients (new pcl:: ModelCoefficients); 13 pcl::pointindices::ptr inliers (new pcl:: PointIndices); 14 seg.segment (*inliers, *coefficients);

8 Hull refinement 1 // Create the projection structure 2 pcl::projectinliers<pcl::pointxyz> proj; 3 proj.setmodeltype (pcl::sacmodel_plane); 4 proj.setinputcloud (cloud_filtered); 5 proj.setmodelcoefficients (coefficients); 6 // Create the projected point cloud 7 pcl::pointcloud<pcl::pointxyz>::ptr cloud_projected (new pcl::pointcloud<pcl::pointxyz>); 8 proj.filter (*cloud_projected); 9 // Create a Convex Hull representation of the projected inliers 10 pcl::pointcloud<pcl::pointxyz>::ptr cloud_hull (new pcl::pointcloud<pcl::pointxyz>); 11 pcl::convexhull<pcl::pointxyz> chull; 12 chull.setinputcloud (cloud_projected); 13 chull.setalpha (0.1); 14 chull.reconstruct (*cloud_hull);

9 Plane detection What a nice convex hull!

10 Outline 1. Introduction 2. Plane Detection Problem definition Plane estimation Hull refinement 3. Moving least squares Problem Gist 4. Triangulation Meshing 5. Smoothing VTK smoother Poisson 6. Conclusion

11 Problem Noisy input cloud, normals are all over the place

12 Moving Least squares Input noisy cloud is named: cloud 1 // Moving least square object 2 pcl::movingleastsquares<pcl::pointxyz, pcl::normal> mls; 3 mls.setinputcloud (cloud); 4 mls.setpolynomialfit (true); 5 mls.setsearchradius (0.03); 6 // Define the tree to find the neighbors 7 pcl::search::kdtree<pcl::pointxyz>::ptr tree 8 (new pcl::search::kdtree<pcl::pointxyz>); 9 tree->setinputcloud (cloud); 10 mls.setsearchmethod (tree);

13 Performing the smoothing 1 // Define the output and the normals 2 pcl::pointcloud<pcl::pointxyz> mls_points; 3 pcl::pointcloud<pcl::normal>::ptr mls_normals (new 4 pcl::pointcloud<pcl::normal> ()); 5 mls.setoutputnormals (mls_normals); 6 // Compute the smoothed cloud 7 mls.reconstruct (mls_points); 8 // Extra: merge fields 9 pcl::pointcloud<pcl::pointnormal> mls_cloud; 10 pcl::concatenatefields (mls_points, *mls_normals, mls_cloud);

14 Result 1

15 Result 2 And even more smoothing

16 Outline 1. Introduction 2. Plane Detection Problem definition Plane estimation Hull refinement 3. Moving least squares Problem Gist 4. Triangulation Meshing 5. Smoothing VTK smoother Poisson 6. Conclusion

17 Meshing method based on growing neighborhoods connect neighbors and increase the neighborhoods untill all points are connected works best for smooth regions

18 Code 1 // Initialize objects 2 pcl::greedyprojectiontriangulation<pcl::pointnormal> gp3; 3 4 // Set the maximum distance between connected points (maximum edge length) 5 gp3.setsearchradius (0.025); 6 7 // Set typical values for the parameters 8 gp3.setmu(2.5); 9 gp3.setmaximumnearestneighbors(100); 10 gp3.setmaximumsurfaceangle(m_pi/4); // 45 degrees 11 gp3.setminimumangle(m_pi/18); // 10 degrees 12 gp3.setmaximumangle(2*m_pi/3); // 120 degrees 13 gp3.setnormalconsistency(false);

19 Code2 1 // Create search tree* 2 pcl::search::kdtree<pcl::pointnormal>::ptr tree2 ( new pcl::search::kdtree<pcl::pointnormal>); 3 tree2->setinputcloud (cloud_with_normals); 4 // Define inputs to thetriangulation structure 5 gp3.setinputcloud (cloud_with_normals); 6 gp3.setsearchmethod (tree2); 7 // Copute the mesh 8 pcl::polygonmesh triangles; 9 gp3.reconstruct (triangles);

20

21 Outline 1. Introduction 2. Plane Detection Problem definition Plane estimation Hull refinement 3. Moving least squares Problem Gist 4. Triangulation Meshing 5. Smoothing VTK smoother Poisson 6. Conclusion

22 Smooth Works by subdivding triangles and fitting a polynomial to the new points. 1 pcl::surface::vtksmoother vtksmoother; 2 vtksmoother.converttovtk(mesh); 3 vtksmoother.smoothmeshwindowedsinc(); 4 vtksmoother.converttopcl(mesh);

23 Bunny

24 Smooth Only in trunk right now.

25 Conclusion faster plane detection code using CUDA: realtime, several planes at once. Poisson in trunk (GSOC: Greg Long) marching cubes in trunk (GSOC: Greg Long) PCL-TOCS with TOYOTA: code sprint for improving mesh reconstruction. more techniques (e.g. Poisson reconstruction, marching cubes).

PCL :: Segmentation. November 6, 2011

PCL :: Segmentation. November 6, 2011 PCL :: Segmentation November 6, 2011 Outline 1. Model Based Segmentation 2. Plane Fitting Example 3. Normal Estimation 4. Polygonal Prism 5. Euclidean Clustering RANSAC If we know what to expect, we can

More information

Plane Detection and Segmentation For DARPA Robotics Challange. Jacob H. Palnick

Plane Detection and Segmentation For DARPA Robotics Challange. Jacob H. Palnick Plane Detection and Segmentation For DARPA Robotics Challange A Major Qualifying Project Report submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

AUTOMATIC 3D RECONSTRUCTION OF BUILDINGS ROOF TOPS IN DENSELY URBANIZED AREAS

AUTOMATIC 3D RECONSTRUCTION OF BUILDINGS ROOF TOPS IN DENSELY URBANIZED AREAS National Technical University Of Athens School of Rural and Surveying Engineering AUTOMATIC 3D RECONSTRUCTION OF BUILDINGS ROOF TOPS IN DENSELY URBANIZED AREAS Maria Gkeli, Surveying Engineer, PhD student

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

: Mesh Processing. Chapter 8

: Mesh Processing. Chapter 8 600.657: Mesh Processing Chapter 8 Handling Mesh Degeneracies [Botsch et al., Polygon Mesh Processing] Class of Approaches Geometric: Preserve the mesh where it s good. Volumetric: Can guarantee no self-intersection.

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017 Multi-View Matching & Mesh Generation Qixing Huang Feb. 13 th 2017 Geometry Reconstruction Pipeline RANSAC --- facts Sampling Feature point detection [Gelfand et al. 05, Huang et al. 06] Correspondences

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

Organized Segmenta.on

Organized Segmenta.on Organized Segmenta.on Alex Trevor, Georgia Ins.tute of Technology PCL TUTORIAL @ICRA 13 Overview Mo.va.on Connected Component Algorithm Planar Segmenta.on & Refinement Euclidean Clustering Timing Results

More information

Introduction to PCL: The Point Cloud Library

Introduction to PCL: The Point Cloud Library Introduction to PCL: The Point Cloud Library Basic topics Alberto Pretto Thanks to Radu Bogdan Rusu, Bastian Steder and Jeff Delmerico for some of the slides! Point clouds: a definition A point cloud is

More information

Introduction to PCL: The Point Cloud Library

Introduction to PCL: The Point Cloud Library Introduction to PCL: The Point Cloud Library 1 - basic topics Alberto Pretto Thanks to Radu Bogdan Rusu, Bastian Steder and Jeff Delmerico for some of the slides! Contact Alberto Pretto, PhD Assistant

More information

Point Cloud Library - Toyota Code Sprint Final Report

Point Cloud Library - Toyota Code Sprint Final Report Point Cloud Library - Toyota Code Sprint Final Report Alexandru E. Ichim April 1, 2012 1 Work Done This section will present the work I have done in addition to the results presented in the midterm report.

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Robust Moving Least-squares Fitting with Sharp Features

Robust Moving Least-squares Fitting with Sharp Features Survey of Methods in Computer Graphics: Robust Moving Least-squares Fitting with Sharp Features S. Fleishman, D. Cohen-Or, C. T. Silva SIGGRAPH 2005. Method Pipeline Input: Point to project on the surface.

More information

Contours & Implicit Modelling 1

Contours & Implicit Modelling 1 Contouring & Implicit Modelling Visualisation Lecture 8 Institute for Perception, Action & Behaviour School of Informatics Contours & Implicit Modelling 1 Brief Recap Contouring Implicit Functions lecture

More information

ENHANCING PCL USABILITY: A GUI FRONT-END, INTERFACING WITH VTK, IMAGE PROCESSING ON POINT CLOUDS, AND MORE! David Doria

ENHANCING PCL USABILITY: A GUI FRONT-END, INTERFACING WITH VTK, IMAGE PROCESSING ON POINT CLOUDS, AND MORE! David Doria ENHANCING PCL USABILITY: A GUI FRONT-END, INTERFACING WITH VTK, IMAGE PROCESSING ON POINT CLOUDS, AND MORE! David Doria GSOC PROJECTS Object Reconstruction Web-based applications Recognition module improvements

More information

Robust Poisson Surface Reconstruction

Robust Poisson Surface Reconstruction Robust Poisson Surface Reconstruction V. Estellers, M. Scott, K. Tew, and S. Soatto Univeristy of California, Los Angeles Brigham Young University June 2, 2015 1/19 Goals: Surface reconstruction from noisy

More information

Advances in 3D data processing and 3D cameras

Advances in 3D data processing and 3D cameras Advances in 3D data processing and 3D cameras Miguel Cazorla Grupo de Robótica y Visión Tridimensional Universidad de Alicante Contents Cameras and 3D images 3D data compression 3D registration 3D feature

More information

Automatic Contact Surface Detection

Automatic Contact Surface Detection Automatic Contact Surface Detection Will Pryor Worcester Polytechnic Institute Email: jwpryor@wpi.edu Abstract Motion planners for humanoid robots search the space of all possible contacts the robot can

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Fundamental Algorithms and Advanced Data Representations

Fundamental Algorithms and Advanced Data Representations Fundamental Algorithms and Advanced Data Representations Anders Hast Outline Isosurfaces (Volume Data) Cuberille Contouring Marching Squares Linear Interpolation methods Marching Cubes Non Linear Interpolation

More information

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher http://alice.loria.fr/index.php/publications.html?redirect=0&paper=vsdm@2011&author=levy CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher µ R 3 µ R 2 http://upload.wikimedia.org/wikipedia/commons/b/bc/double_torus_illustration.png

More information

Contours & Implicit Modelling 4

Contours & Implicit Modelling 4 Brief Recap Contouring & Implicit Modelling Contouring Implicit Functions Visualisation Lecture 8 lecture 6 Marching Cubes lecture 3 visualisation of a Quadric toby.breckon@ed.ac.uk Computer Vision Lab.

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES

REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES T. Yamakawa a, K. Fukano a,r. Onodera a, H. Masuda a, * a Dept. of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications,

More information

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds www.crs4.it/vic/ vcg.isti.cnr.it/ Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds R. Pintus, E. Gobbetti, M.Agus, R. Combet CRS4 Visual Computing M. Callieri

More information

Scientific Visualization Final Report

Scientific Visualization Final Report 1. Goal Scientific Visualization Final Report Suqin Zeng 00746736 This project is aimed to simulate a dynamic particle system, visualizing the density of the particles in real time. 2. System implementation

More information

3D Shape Modeling by Deformable Models. Ye Duan

3D Shape Modeling by Deformable Models. Ye Duan 3D Shape Modeling by Deformable Models Ye Duan Previous Work Shape Reconstruction from 3D data. Volumetric image datasets. Unorganized point clouds. Interactive Mesh Editing. Vertebral Dataset Vertebral

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Recovering Primitives in 3D CAD meshes

Recovering Primitives in 3D CAD meshes Recovering Primitives in 3D CAD / R.Bénière 1/17 Recovering Primitives in 3D CAD meshes Roseline Bénière G. Subsol, G. Gesquière, F. Le Breton and W. Puech LIRMM, Montpellier, France C4W, Montpellier,

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Elective in A.I. Robot Programming

Elective in A.I. Robot Programming Elective in A.I. Robot Programming 2014/2015 Prof: Daniele Nardi Perception with RGB D sensors Jacopo Serafin Point Cloud Library (PCL), Surface Normals, Generalized ICP Contact Jacopo Serafin Ph.D. Student

More information

Two Algorithms for Adaptive Approximation of Bivariate Functions by Piecewise Linear Polynomials on Triangulations

Two Algorithms for Adaptive Approximation of Bivariate Functions by Piecewise Linear Polynomials on Triangulations Two Algorithms for Adaptive Approximation of Bivariate Functions by Piecewise Linear Polynomials on Triangulations Nira Dyn School of Mathematical Sciences Tel Aviv University, Israel First algorithm from

More information

Introduction to Voronoi Diagrams and Delaunay Triangulations

Introduction to Voronoi Diagrams and Delaunay Triangulations Introduction to Voronoi Diagrams and Delaunay Triangulations Solomon Boulos Introduction to Voronoi Diagrams and Delaunay Triangulations p.1 Voronoi Diagrams Voronoi region: V (p i ) = {x R n p i x p j

More information

CS4495/6495 Introduction to Computer Vision

CS4495/6495 Introduction to Computer Vision CS4495/6495 Introduction to Computer Vision 9C-L1 3D perception Some slides by Kelsey Hawkins Motivation Why do animals, people & robots need vision? To detect and recognize objects/landmarks Is that a

More information

Watertight Planar Surface Reconstruction of Voxel Data

Watertight Planar Surface Reconstruction of Voxel Data Watertight Planar Surface Reconstruction of Voxel Data Eric Turner CS 284 Final Project Report December 13, 2012 1. Introduction There are many scenarios where a 3D shape is represented by a voxel occupancy

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15.

ICS 161 Algorithms Winter 1998 Final Exam. 1: out of 15. 2: out of 15. 3: out of 20. 4: out of 15. 5: out of 20. 6: out of 15. ICS 161 Algorithms Winter 1998 Final Exam Name: ID: 1: out of 15 2: out of 15 3: out of 20 4: out of 15 5: out of 20 6: out of 15 total: out of 100 1. Solve the following recurrences. (Just give the solutions;

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Q K 1 u v 1 What is pose estimation?

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Signed Distance Function Representation, Tracking, and Mapping. Tanner Schmidt

Signed Distance Function Representation, Tracking, and Mapping. Tanner Schmidt Signed Distance Function Representation, Tracking, and Mapping Tanner Schmidt Overview - Explicit and implicit surface representations SDF fusion SDF tracking Related research - KinectFusion Patch Volumes

More information

Manifold Surface Reconstruction of an Environment from Sparse Structure-from-Motion Data

Manifold Surface Reconstruction of an Environment from Sparse Structure-from-Motion Data Manifold Surface Reconstruction of an Environment from Sparse Structure-from-Motion Data Maxime LHUILLIER and Shuda YU Institut Pascal (ex. LASMEA), UMR 6602, CNRS/UBP/IFMA Campus Universitaire des Cézeaux,

More information

This lab exercise has two parts: (a) scan a part using a laser scanner, (b) construct a surface model from the scanned data points.

This lab exercise has two parts: (a) scan a part using a laser scanner, (b) construct a surface model from the scanned data points. 1 IIEM 215: Manufacturing Processes I Lab 4. Reverse Engineering: Laser Scanning and CAD Model construction This lab exercise has two parts: (a) scan a part using a laser scanner, (b) construct a surface

More information

Visualization Toolkit (VTK) An Introduction

Visualization Toolkit (VTK) An Introduction Visualization Toolkit (VTK) An Introduction An open source, freely available software system for 3D computer graphics, image processing, and visualization Implemented as a C++ class library, with interpreted

More information

Surface Simplification Using Quadric Error Metrics

Surface Simplification Using Quadric Error Metrics Surface Simplification Using Quadric Error Metrics Authors: Michael Garland & Paul Heckbert Presented by: Niu Xiaozhen Disclaimer: Some slides are modified from original slides, which were designed by

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Cedric Cagniart Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 Problem Statement Given several calibrated views of an object... can we automatically

More information

TSBK03 Screen-Space Ambient Occlusion

TSBK03 Screen-Space Ambient Occlusion TSBK03 Screen-Space Ambient Occlusion Joakim Gebart, Jimmy Liikala December 15, 2013 Contents 1 Abstract 1 2 History 2 2.1 Crysis method..................................... 2 3 Chosen method 2 3.1 Algorithm

More information

Basic Implementation and Measurements of Plane Detection in Point Clouds

Basic Implementation and Measurements of Plane Detection in Point Clouds Basic Implementation and Measurements of Plane Detection in Point Clouds A project of the 2017 Robotics Course of the School of Information Science and Technology (SIST) of ShanghaiTech University https://robotics.shanghaitech.edu.cn/teaching/robotics2017

More information

Page 1 of 7. Please contact you netfabb distributor for more information and ordering.

Page 1 of 7. Please contact you netfabb distributor for more information and ordering. Page 1 of 7 New Features in netfabb Professional 5 Overview based on netfabb Professional 5.1 including most important features from previous netfabb versions Usability improvements Automatic Repair one-click

More information

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry

Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Part I : Solid geometry Discrete representations of geometric objects: Features, data structures and adequacy for dynamic simulation. Surfaces Part I : Solid geometry hachar Fleishman Tel Aviv University David Levin Claudio T.

More information

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc.

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc. 3D Reconstruction with Tango Ivan Dryanovski, Google Inc. Contents Problem statement and motivation The Tango SDK 3D reconstruction - data structures & algorithms Applications Developer tools Problem formulation

More information

Chapter 4 Foundations And Representations ' 4

Chapter 4 Foundations And Representations ' 4 Chapter 4 Foundations And Representations w

More information

An Automatic Hole Filling Method of Point Cloud for 3D Scanning

An Automatic Hole Filling Method of Point Cloud for 3D Scanning An Automatic Hole Filling Method of Point Cloud for 3D Scanning Yuta MURAKI Osaka Institute of Technology Osaka, Japan yuta.muraki@oit.ac.jp Koji NISHIO Osaka Institute of Technology Osaka, Japan koji.a.nishio@oit.ac.jp

More information

Reconstruction of complete 3D object model from multi-view range images.

Reconstruction of complete 3D object model from multi-view range images. Header for SPIE use Reconstruction of complete 3D object model from multi-view range images. Yi-Ping Hung *, Chu-Song Chen, Ing-Bor Hsieh, Chiou-Shann Fuh Institute of Information Science, Academia Sinica,

More information

An Introduction to Geometric Modeling using Polygonal Meshes

An Introduction to Geometric Modeling using Polygonal Meshes An Introduction to Geometric Modeling using Polygonal Meshes Joaquim Madeira Version 0.2 October 2014 U. Aveiro, October 2014 1 Main topics CG and affine areas Geometric Modeling Polygonal meshes Exact

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images

Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images DOI 10.1186/s40064-016-2425-9 RESEARCH Open Access Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images Abhik Maiti * and

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Five Platonic Solids: Three Proofs

Five Platonic Solids: Three Proofs Five Platonic Solids: Three Proofs Vincent J. Matsko IMSA, Dodecahedron Day Workshop 18 November 2011 Convex Polygons convex polygons nonconvex polygons Euler s Formula If V denotes the number of vertices

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Understanding Gridfit

Understanding Gridfit Understanding Gridfit John R. D Errico Email: woodchips@rochester.rr.com December 28, 2006 1 Introduction GRIDFIT is a surface modeling tool, fitting a surface of the form z(x, y) to scattered (or regular)

More information

Voxel Planes: Rapid Visualization and Meshification of Point Cloud Ensembles

Voxel Planes: Rapid Visualization and Meshification of Point Cloud Ensembles Voxel Planes: Rapid Visualization and Meshification of Point Cloud Ensembles Julian Ryde, Vikas Dhiman and Robert Platt Jr. Abstract Conversion of unorganized point clouds to surface reconstructions is

More information

Convex Polygon Generation

Convex Polygon Generation Convex Polygon Generation critterai.org /projects/nmgen_study/polygen.html This page describes the forth stage in building a navigation mesh, the generation of convex polygons from the simple polygons

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Point-Based Rendering

Point-Based Rendering Point-Based Rendering Kobbelt & Botsch, Computers & Graphics 2004 Surface Splatting (EWA: Elliptic Weighted Averaging) Main Idea Signal Processing Basics Resampling Gaussian Filters Reconstruction Kernels

More information

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem 10/03/11 Model Fitting Computer Vision CS 143, Brown James Hays Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem Fitting: find the parameters of a model that best fit the data Alignment:

More information

Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight

Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight cameras Dipl.-Ing. Georg Arbeiter Fraunhofer Institute for Manufacturing Engineering

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Interpolating and Approximating Implicit Surfaces from Polygon Soup Interpolating and Approimating Implicit Surfaces from Polygon Soup Chen Shen, James F. O Brien, Jonathan R. Shewchuk University of California, Berkeley Geometric Algorithms Seminar CS 468 Fall 2005 Overview

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Volume Illumination and Segmentation

Volume Illumination and Segmentation Volume Illumination and Segmentation Computer Animation and Visualisation Lecture 13 Institute for Perception, Action & Behaviour School of Informatics Overview Volume illumination Segmentation Volume

More information

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS 1 Introduction Two-dimensional geostatistics (interpolation) can be performed in GMS using the 2D Scatter Point module. The module is used to interpolate from sets of 2D scatter points

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Shape from LIDAR Data. Univ. of Florida

Shape from LIDAR Data. Univ. of Florida Shape from LIDAR Data Yusuf Sahillioğlu Alper Üngör Univ. of Florida 1. Introduction LIght Detection And Ranging systems, LIDAR, are capable of acquiring data to produce accurate digital elevation models

More information

Shape modeling Modeling technique Shape representation! 3D Graphics Modeling Techniques

Shape modeling Modeling technique Shape representation! 3D Graphics   Modeling Techniques D Graphics http://chamilo2.grenet.fr/inp/courses/ensimag4mmgd6/ Shape Modeling technique Shape representation! Part : Basic techniques. Projective rendering pipeline 2. Procedural Modeling techniques Shape

More information

Mission Statement. Make the large body of geometric algorithms developed in the field of computational geometry available for industrial applications

Mission Statement. Make the large body of geometric algorithms developed in the field of computational geometry available for industrial applications Mission Statement Make the large body of geometric algorithms developed in the field of computational geometry available for industrial applications CGAL EU Project Proposal, 1996 Project = «Planned Undertaking»

More information

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Shape Modeling International 2003 Seoul, Korea A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Yutaa Ohtae Alexander Belyaev Hans-Peter Seidel Objective

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Oblique Image Processing in SURE - First Experiments and Results

Oblique Image Processing in SURE - First Experiments and Results EuroSDR / ISPRS Workshop, Southampton 2015 Oblique Image Processing in SURE - First Experiments and Results Mathias Rothermel Outline» General Workflow» 2.5D Meshing» Mesh Texturing» 3D Workflow» First

More information

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava 3D Computer Vision Dense 3D Reconstruction II Prof. Didier Stricker Christiano Gava Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Efficient Surface and Feature Estimation in RGBD

Efficient Surface and Feature Estimation in RGBD Efficient Surface and Feature Estimation in RGBD Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München RGB-D Workshop on 3D Perception

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

CSCI 5980/8980: Assignment #4. Fundamental Matrix

CSCI 5980/8980: Assignment #4. Fundamental Matrix Submission CSCI 598/898: Assignment #4 Assignment due: March 23 Individual assignment. Write-up submission format: a single PDF up to 5 pages (more than 5 page assignment will be automatically returned.).

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion

High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion High-resolution Shape Reconstruction from Multiple Range Images based on Simultaneous Estimation of Surface and Motion Yoshihiro Watanabe, Takashi Komuro and Masatoshi Ishikawa Graduate School of Information

More information