ADVANCED CAPABILITY USING LIDAR TECHNOLOGY IN GEODETIC SURVEY

Size: px
Start display at page:

Download "ADVANCED CAPABILITY USING LIDAR TECHNOLOGY IN GEODETIC SURVEY"

Transcription

1 ADVANCED CAPABILITY USING LIDAR TECHNOLOGY IN GEODETIC SURVEY 2015

2 LiDAR IT IS ONE OF THE MOST CONTEMPORARY TYPES OF SURVEY, WHICH ENABLES GETTING INFORMATION ABOUT THE AREA. IN THE LATEST DECADE DATA OF LIDAR ARE INCREASINGLY USED IN DESIGNING AND MONITORING DIFFERENT INFRASTRUCTURE OBJECTS AND NATURAL PROCESSES. THIS METHOD IS APPLIED IN CONSTRUCTION, MOTOR-WAY BRANCH, ARCHITECTURE, OIL AND GAS INDUSTRY, POWER ENGINEERING AND OTHER AREAS. TERRESTRIAL (TLS) AERIAL (ALS) MOBILE (MLS) Terrestrial laser scanning is used for scanning of small objects with maximum accuracy (units of millimeters). Аerial laser scanning is useful for scanning of vast objects from 1000 hectares, as well as extended corridor objects; Mobile laser scanning is usually required for extended corridor objects, like parts of motor and railways.

3 Aerial laser scanning NO DOUBT, IN COMBINATION WITH DIGITAL AERIAL SURVEY IT IS THE MOST EFFECTIVE METHOD OF SURVEY OF LARGE AREAS AND EXTENDED OBJECTS. It is reasonable to perform aerial laser scanning at survey and monitoring of extended corridor objects, like oil and gas pipelines, power supply lines, at survey of vast objects, at survey of forestcovered area, getting true relief of soil surface even under tree crowns without any loss of accuracy. Besides, ALS enables surveying such areas, surface survey thereof is very burdensome or practically impossible. For large volumes cost of ALS works is many times and even dozens of times lower, than traditional survey. For example, use of ALS enables surveying up to 140 km2 per hour at density up to 6 points per m2, thus ensuring significant time and costs saving for the customer.

4 Aerial laser scanning TECHNOLOGY GNSS antenna IMU pitch roll Laser beam Reflected laser beam heading

5 Aerial laser scanning TECHNICAL EQUIPMENT AERIAL SCAN SYSTEM RIEGL-780 LONG-RANGE LASER SCANNER LMS-Q780 THE MOST MODERN AERIAL LASER SCANNER TODAY FROM LEADING MANUFACTURER IN PRODUCTION OF LIDAR SYSTEMS POWERFUL LASER EMITTER. It may receive an unlimited number of returns (within limits of one impulse). LASER EMITTER POWER REGULATION with regard to purposes of scanning. It is designed for general mapping of vast objects, as well as corridor scanning of extended linear objects. FLYING ALTITUDE UP TO 4700 m above surface. Perfectly suits for LiDAR and aerial survey of comprehensive and high mountain relief of the area. Frequency does not fall down significantly, when flying altitude is increasing. Operating height range: Scanning mechanism: Scanner impulse frequency: Measurement frequency: Absolute accuracy: Measurement accuracy: Scanning frequency: Maximum field of view: Operating temperature range: (AGL) m rotating prism khz up to per second 1/12500 of altitude 20 mm lines per second 60 (at any frequency of scanning) from 10 С to +40 С NO NEED OF FOLLOWING THE TERRAIN and multiple scanning at different altitudes (for relief with sharp significant altitude drops). MAXIMUM SPEED OF DATA POSTPROCESSING AND DECODING. High quality of received primary materials is achieved due to automation of great number of operating processes and high density of laser returns. The reason is the use of fast opto-mechanical beam scanning and use of unique technology of rotating polygon mirror.

6 Mobile laser scanning THIS METHOD COMBINES THE HIGH PERFORMANCE OF AERIAL LASER SCANNING AND ACCURACY OF TERRESTRIAL LASER SCANNING. MLS PERFORMED ON MOVING GROUND VEHICLE AT SPEEDS UP TO 100 KM / H. MOBILE SCANNING SYSTEM CAN BE MOUNTED ON CARS, SHIPS, RAILWAY PLATFORMS AND OTHER VEHICLES. Quick, precise and eye-friendly lasers in combination with high-speed drives for scanning with wide FOV, enable getting great volumes of geodetic data with the highest extent of details on extended objects, regardless of cloud amount at any time of day and night. In a rugged terrain the system can be installed on a off-the-road vehicle.

7 Mobile laser scanning TECHNOLOGY If survey of a big built-up area by total stations may take several weeks, mobile LiDAR will cope with such task in a few hours. And quality of received data will be no worse than traditional methods of survey. The scanning performs along the trajectory, for a distance up to 800 m in all directions. The achievable accuracy of all the point cloud up to 1 cm, with the preparation of the corresponding geodetic network. Y X Z Radial scanning of laser scanner beam up to 800 m GNSS- antenna and IMU GNSS- receiver of basic station

8 Mobile laser scanning TECHNICAL EQUIPMENT MOBILE SCAN SYSTEM RIEGL VMX-450 MAXIMUM DETAIL EXTENT AND ACCURACY. Measurement frequency up to 1.1 mln/sec ensures maximum detail extent of data even at high speed of motion. The most full photofixation (frequency of survey 6 shots per second by every camera). Achieved relative accuracy up to 10 mm. ENABLES CREATING PANORAMIC RADIOGRAPHS on account of the use of 6 digital cameras with horizontal view angle of 80 degrees. SCANNING REMOTE OBJECTS. Maximum distance to the object from 300 to 800 m at respective variation of reflection factor. Number of scanners: Max. range of measurements: Minimum measured distance: Absolute accuracy (mean value): Accuracy of long-range measurements: Speed of scanning: Field of view: Laser class: Number of cameras: Camera matrix resolution: Maximum frequency of photographing: Field of view of every camera: 2 Up to 800 m 1.5 m mm (mean value) 8 mm measurements/sec (eye-friendly) 6 5 Mp (2452x2056) 18 shots/sec 80 х 65 (horizontally and vertically) COMPACT SIZE. Mobile LiDAR system is one of the most compact in its class. Quick and economic equipment installation, possible installation on various vehicles.

9 Mobile laser scanning MLS should be performed at geodetic survey and monitoring of: condition of motor and railways, estimation of technical condition of tunnels, 3D-modeling of municipal infrastructure and other objects along transport ways.

10 Benefits of LiDAR Quality, Speed, Cost saving, Convenience 1. COST OF WORKS Taking into account high productivity and accuracy of scan systems, cost of works performed with the use of scanning methods is lower than cost of works with survey by traditional methods approximately 3-5 times. 2. UNRIVALED SPEED OF SURVEY With regard to scanner type and range of tasks being solved speed of object survey is several times faster and in some case, e.g. during aerial laser scanning scanning of areas difficult to access dozens and hundreds of times. 3. DETAILS AND INFORMATION CONTENT OF DATA Data received by means of laser scanning enable reflecting geometric parameters of the objects and providing a detailed description of the shape, as well as nature of surveyed surface, what is impossible at survey by standard methods. 4. ACCURACY The accuracy of the laser scanning is comparable to the accuracy of ground-based surveying and much higher than the accuracy of the classical aerial photography. 5. UNIQUENESS OF THE METHOD ALS enables surveying such areas, surface survey thereof is very burdensome or practically impossible. As for, for example, hardly accessible areas: vast snow-covered, forest territories, wetlands, fenlands, and deserts, as well as remote high mountain areas. 6. SAFETY Due to application of reflectorless method of measurements laser scanning does not require human presence at the object of survey. It enables getting precise data even in hazardous or hardly accessible areas. 7. FLEXIBILITY Assured getting the true terrain even under dense vegetation, and the ability to conduct a survey on the complexity of any relief. 9. PROCESSING AUTOMATION. Fully digital data format enables maximum automating their processing and almost excludes influence of subjective aspects on the result.

11 Applications of LiDAR Long-distance corridor objects Railways Highways Pipelines Power lines

12 Applications of LiDAR Railways 1. Inventory of railway infrastructure; Building plans, longitudinal and transverse profiles; 2. Analysis of the parameters of infrastructure of railways and their comparison with the standard values ; 3. Implementation of an integrated GIS railway infrastructure.

13 Applications of LiDAR Railways 1. Aerial laser scanning for the design and reconstruction: ortophotoplans; digital terrain models; digital models of above-ground facilities; perspective survey; 2. Mobile laser scanning for creating a digital model of the way and infrastructure: creating contact network models; creating rails models; update of ballast prism geometry; 3. Terrain laser scanning for 3D-models and deformations measurement of Bridges and tunnels.

14 Applications of LiDAR Railways Definition of dimensions of infrastructure along the railway track; Definition of dangerous trees to falling on the road and damage to of contact network.

15 Applications of LiDAR Railways Designing of avalanche protection structures based on high detailed terrain model of slopes. Definition of landslides and deformation monitoring for railway subgrade.

16 Applications of LiDAR Highways Survey speed of roads is up to 250 km per day; Detailed and reliable information on the state of the road surface; Safety survey. No need to block or restrict a traffic.

17 Applications of LiDAR Highways Design, repairs, renovation and construction of roadways. Engineering land surveying of roadways. Analysis of the condition of roadway surfacing and profile, road kerb and rutting of roadway. Identification of visibility distances, road bend radius and superelevations. Roadway and road network certification. Compiling a list of road signs, message signs and billboards, street lights, traffic control signals and other road infrastructure. Arranging the monitoring and regular information update system. Traffic management planning

18 Applications of LiDAR Highways High detailed mobile laser scanning allows to detect road kerb and rutting of roadway 41 см 38 см А 0,73 м 2,12 м В Line AB profile 5 см 8, 1 см 5 см

19 Applications of LiDAR Pipelines Topographical survey for design of new pipelines and reconstruction of existing ones; Exploration of territory for a pipeline during design stage; Monitoring of a pipeline state in difficult terrain (finding places ascent and strains); Create 3D models; Create drawings, topographic plans and orthophotos; Construction of longitudinal profiles along the axis of the pipeline; Prediction of emergencies.

20 Applications of LiDAR Powerlines To identify clearance between phase and groundwires. To identify horizontal, vertical and internal clearance/ dimensions between the line and the ground, water bodies that the HVL crosses and various structures and objects. To detect defects of tower/ pylon elements. To define tower/ pylon centers and deviations from the vertical axis along and across the HVL. To determine the scope of extending the HVL right-of-way, dimensions of areas covered with shrubs, bush and trees.

21 Applications of LiDAR Powerlines To identify the locations and height of potentially dangerous trees posing threat to HVL elements. To monitor vegetation growth and plan allocation of funds for clearing HVL rights- of-way. To monitor the current situation (fallen and hazardous trees). To model mechanical leads on various HVL components affected by changing electrotechnical factors and weather conditions. To specify the HVL technical certificate, draw towers and crossings lists. To build PLS-CADD and risk models of the grid functioning. X Y Z м X Y Z 64.3

22 Applications of LiDAR Powerlines Distance to crossing Distance to ground Distance to vegetation

23 Applications of LiDAR Airports Design of Airports Identifying of runways deformations. Planning and optimization approach procedure based on a detailed terrain model and analyze the obstacles. A large area of survey data allows to use it in case of a complete redesign of the airport and runways. Distance to vegetation

24 Applications of LiDAR Airports

25 Applications of LiDAR Mining industry DESIGN AND JUSTIFICATION OF INVESTMENT FOR MINING ACTIVITIES MONITORING OF EXISTING OBJECTS MINE SURVEYING OF GROUND AND UNDERGROUND MINES

26 Applications of LiDAR Mining industry Carrying out engineering surveys on the territory of new fields (development of new sites); Precision survey of facilities, mine manufactories and adjacent areas for the design and reconstruction; Monitoring of ground surface;

27 Applications of LiDAR Mining industry 3D modeling of quarries; Assessment of displaced rock volume; Emergency assessment and survey of disasters; Virtual modeling of mining areas.

28 Results of the works DIGITAL ORTHOPHOTO WITH FINAL RESOLUTION FROM 5 CM PER PIXEL Digital orthophotos are used everywhere, where simultaneous visual estimation or monitoring of development of certain natural and development processes is required. Digital or thophoto is used as: 1. basis for creation of maps and plans; 2. online monitoring of the condition of objects and processes; 3. texture mapping of digital terrain models etc. DIGITAL TERRAIN MODELS AND RELIEF IN THE FORM OF POINT CLOUD OF LASER REFLECTIONS This type of product benefits in high speed of operation and high accuracy of received data. This type of products is a primary product of LiDAR scanning, nevertheless these materials provide a complete 3Dpicture of the area and object at the period of LiDAR scanning, what enables using it to solve application tasks: 1. Establishing any geometric parameters of the area and objects distances, dimensions, altitudes etc. 2. Construction of profiles and crosssections Decoding of objects. Performance of works on design and monitoring of conditions of the objects and area. 5. Using as basis to build maps and plans. TOPOGRAPHIC PLANS By results of LiDAR and digital aerial survey topographic plans, maps and profiles of the whole scale range are created. One or another scanning method is used with regard to dimensions, position of the object and required accuracy. For scales from 1:1000, inclusive, and less, aerial scanning is usually used in combination with aerial sur vey.

29 Results of the works 3D-MODELS OF AREAS AND OBJECTS One of the most popular results of works on LiDAR. On the basis of point cloud 3D-models reflecting actual dimensions and shape of the objects are created. By results of LiDAR models of industrial enterprises, municipal districts, architectural monuments, engineering constructions and other objects are created. 3D-imaging of the object is used: 1. for 3D-design; 2. for creation of GIS; 3. for creation of multi-media products. BUILDING DRAWINGS AND CROSS- SECTIONS OF EXISTING OBJECTS Based on scanning data (mobile and terrestrial) classic two-dimensional drawings and cross-sections are created. For significant volumes and objects of complex configuration use of LiDAR enables significant reducing costs for making drawings and cross- sections.

30 High detailed ortophoto

31 Raw laser data colored by photo

32 Raw laser data colored by elevation

33 Classified laser data

34 Digital surface model

35 Digital terrain model

36 Topographic plan

37 Topographic plan and profile

38 GeoProjectSurvey corporate branches Moscow Bldg 17, 26 Andronovskoe Shosse, , MOSCOW Tel.: +7 (495) , +7 (495) VOLGOGRAD 41 Rokossovskogo St, Tel.: +7 (8442) KRASNODAR 3 Sormovskaya St, Krasnodar, Krasnodar Territory Tel.: +7 (861) MIRNY 4a Stroiteley St, Mirny, Republic of Sakha (Yakutia) Tel.: +7 (985) NOVOSIBIRSK 36 Stantsionnaya St, Novosibirsk, Novosibirsk Region Tel.: +7 (383) SARATOV 187/213 Rakhov St, , Saratov, Saratov Region Tel.: +7 (8452) SURGUT 19 Domostroiteley St, Surgut, Khanty-Mansi Autonomous Area Yugra, Tyumen Region Tel.: +7 (985) ULYANOVSK 5 Spasskaya St, Ulyanovsk, Ulyanovsk Region Tel.: +7 (8422) KHABAROVSK 26a Turgeneva St, Khabarovsk, Khabarovsk Territory Tel.: +7 (4212) KHARKIV 199, Moskovskiy Prospekt, Kharkiv, Kharkiv Region, Ukraine ROSTOV-ON-DON 80 Budenovsky Prospekt, , Rostov-on-Don, Rostov Region Tel.: +7 (863)

39

Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI Desk

Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI Desk Jeffrey A. Schepers P.S. EIT Geospatial Services Holland Engineering Inc. 220 Hoover Blvd, Suite 2, Holland, MI 49423 616-594-5127 Desk 616-322-1724 Cell 616-392-5938 Office Mobile LiDAR - Laser Scanning

More information

LiDAR data overview. Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR)

LiDAR data overview. Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR) LiDAR data overview Dr. Keiko Saito Global Facility for Disaster Reduction and Recovery (GFDRR) LiDAR (Light Detecting And Ranging) 3D height profile Laser emitted from sensor onboard aircraft to measure

More information

ROAD-SCANNER COMPACT APPLICATION FIELDS MAIN FEATURES

ROAD-SCANNER COMPACT APPLICATION FIELDS MAIN FEATURES ROAD-SCANNER COMPACT Mobile Mapping System by GEXCEL & SITECO collaboration A smaller mobile system for asset management and cartography suited for ZOLLER & FRÖHLICH PROFILER 9012 laser scanner. 2 + 3

More information

Airborne and Mobile LiDAR for Transport Corridor Survey Dr. Bharat Lohani Director, Geokno India Pvt. Ltd. & Professor, Geoinformatics IIT Kanpur

Airborne and Mobile LiDAR for Transport Corridor Survey Dr. Bharat Lohani Director, Geokno India Pvt. Ltd. & Professor, Geoinformatics IIT Kanpur www.geokno.com Airborne and Mobile LiDAR for Transport Corridor Survey Dr. Bharat Lohani Director, Geokno India Pvt. Ltd. & Professor, Geoinformatics IIT Kanpur Geokno has executed and is executing multiple

More information

Mobile LiDAR in Road Surface Quality Control and Renovation - Latest Development of Terrasolid Software

Mobile LiDAR in Road Surface Quality Control and Renovation - Latest Development of Terrasolid Software Geodesy, Mine Survey and Aerial Topography. At the turn of the centuries. Moscow 14 15 February 2013 Mobile LiDAR in Road Surface Quality Control and Renovation - Latest Development of Terrasolid Software

More information

Aerial and Mobile LiDAR Data Fusion

Aerial and Mobile LiDAR Data Fusion Creating Value Delivering Solutions Aerial and Mobile LiDAR Data Fusion Dr. Srini Dharmapuri, CP, PMP What You Will Learn About LiDAR Fusion Mobile and Aerial LiDAR Technology Components & Parameters Project

More information

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI

Course Outline (1) #6 Data Acquisition for Built Environment. Fumio YAMAZAKI AT09.98 Applied GIS and Remote Sensing for Disaster Mitigation #6 Data Acquisition for Built Environment 9 October, 2002 Fumio YAMAZAKI yamazaki@ait.ac.th http://www.star.ait.ac.th/~yamazaki/ Course Outline

More information

ROAD SURFACE STRUCTURE MONITORING AND ANALYSIS USING HIGH PRECISION GPS MOBILE MEASUREMENT SYSTEMS (MMS)

ROAD SURFACE STRUCTURE MONITORING AND ANALYSIS USING HIGH PRECISION GPS MOBILE MEASUREMENT SYSTEMS (MMS) ROAD SURFACE STRUCTURE MONITORING AND ANALYSIS USING HIGH PRECISION GPS MOBILE MEASUREMENT SYSTEMS (MMS) Bonifacio R. Prieto PASCO Philippines Corporation, Pasig City, 1605, Philippines Email: bonifacio_prieto@pascoph.com

More information

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Lienhart, W. Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria Abstract

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

Airborne LiDAR Surveys and Data Delivery in the Pipeline Industry

Airborne LiDAR Surveys and Data Delivery in the Pipeline Industry Airborne LiDAR Surveys and Data Delivery in the Pipeline Industry Carlos Femmer Faron Olivier October 25, 2011 October 25, 2011 GITA GIS for Oil and Gas Pipeline 2011 Organization Fugro is a decentralized

More information

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems Lidar Sensors, Today & Tomorrow Christian Sevcik RIEGL Laser Measurement Systems o o o o Online Waveform technology Stand alone operation no field computer required Remote control through wireless network

More information

Geospatial Engineering Problems & Solutions Associated With NDP Roads, Tunnelling & Civil Engineering Projects Use of HDS Leica Laser Scanners

Geospatial Engineering Problems & Solutions Associated With NDP Roads, Tunnelling & Civil Engineering Projects Use of HDS Leica Laser Scanners Geospatial Engineering Problems & Solutions Associated With NDP Roads, Tunnelling & Civil Engineering Projects Use of HDS Leica Laser Scanners Laser Scanning Laser Scanning is a method of collecting large

More information

UAS based laser scanning for forest inventory and precision farming

UAS based laser scanning for forest inventory and precision farming UAS based laser scanning for forest inventory and precision farming M. Pfennigbauer, U. Riegl, P. Rieger, P. Amon RIEGL Laser Measurement Systems GmbH, 3580 Horn, Austria Email: mpfennigbauer@riegl.com,

More information

Mobile LiDAR for Ground Applications. Spar 2006, March Paul Mrstik, Terrapoint Canada Inc. Craig Glennie, Terrapoint USA LLC

Mobile LiDAR for Ground Applications. Spar 2006, March Paul Mrstik, Terrapoint Canada Inc. Craig Glennie, Terrapoint USA LLC Mobile LiDAR for Ground Applications Spar 2006, March 27 2006 Paul Mrstik, Terrapoint Canada Inc. Craig Glennie, Terrapoint USA LLC Agenda Introduction to Terrapoint What is mobile LiDAR? Advantages of

More information

Overview of the Trimble TX5 Laser Scanner

Overview of the Trimble TX5 Laser Scanner Overview of the Trimble TX5 Laser Scanner Trimble TX5 Revolutionary and versatile scanning solution Compact / Lightweight Efficient Economical Ease of Use Small and Compact Smallest and most compact 3D

More information

Case studies about using Mobile Mapping System (MMS) on traffic network mapping

Case studies about using Mobile Mapping System (MMS) on traffic network mapping HUNGARIAN GEODETIC AND MAPPING CORPORATION LTD. Case studies about using Mobile Mapping System (MMS) on traffic network mapping Peter Csörgits Chief Engineer Hungarian Geodetic and Mapping co. Ltd. What

More information

Integrating the Generations, FIG Working Week 2008,Stockholm, Sweden June 2008

Integrating the Generations, FIG Working Week 2008,Stockholm, Sweden June 2008 H. Murat Yilmaz, Aksaray University,Turkey Omer Mutluoglu, Selçuk University, Turkey Murat Yakar, Selçuk University,Turkey Cutting and filling volume calculation are important issues in many engineering

More information

The Use of UAV s for Gathering Spatial Information. James Van Rens CEO MAPPS Winter Conference January, 2015

The Use of UAV s for Gathering Spatial Information. James Van Rens CEO MAPPS Winter Conference January, 2015 The Use of UAV s for Gathering Spatial Information James Van Rens CEO MAPPS Winter Conference January, 2015 1 UAV Technological Timeline 1980 s RPV (Remotely Piloted Vehicle) Operator on ground, almost

More information

2/9/2016. Session Agenda: Implementing new Geospatial Technologies for more efficient data capture

2/9/2016. Session Agenda: Implementing new Geospatial Technologies for more efficient data capture Implementing new Geospatial Technologies for more efficient data capture Jay Haskamp Applied Geospatial Engineer Steve Richter VP Sales Session Agenda: Today s changing technologies and what lies ahead

More information

2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE

2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE Co-Host Host 2-4 April 2019 Taets Art and Event Park, Amsterdam CLICK TO KNOW MORE Presentation Outline review modern survey methodologies available to support railway requirements measuring everything

More information

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad

Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology. Maziana Muhamad Terrain Modeling and Mapping for Telecom Network Installation Using Scanning Technology Maziana Muhamad Summarising LiDAR (Airborne Laser Scanning) LiDAR is a reliable survey technique, capable of: acquiring

More information

Trimble MX2 mobile mapping

Trimble MX2 mobile mapping Trimble MX2 mobile mapping user applications Point clouds within your reach The Trimble MX2 is a vehicle-mounted spatial imaging system which combines high resolution laser scanning and panoramic cameras

More information

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications

N.J.P.L.S. An Introduction to LiDAR Concepts and Applications N.J.P.L.S. An Introduction to LiDAR Concepts and Applications Presentation Outline LIDAR Data Capture Advantages of Lidar Technology Basics Intensity and Multiple Returns Lidar Accuracy Airborne Laser

More information

RIEGL LMS-Q780. The Versatile, High Altitude Airborne LIDAR Sensor

RIEGL LMS-Q780. The Versatile, High Altitude Airborne LIDAR Sensor RIEGL LMS-Q780 4700m 400kHz The full waveform airborne laser scanner offers great versatility, accuracy, and data quality. The scanner enables you to successfully deliver your projects with industry leading

More information

LIDAR MAPPING FACT SHEET

LIDAR MAPPING FACT SHEET 1. LIDAR THEORY What is lidar? Lidar is an acronym for light detection and ranging. In the mapping industry, this term is used to describe an airborne laser profiling system that produces location and

More information

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN OVERVIEW National point clouds Airborne laser scanning in the Netherlands Quality control Developments in lidar

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

An Overview of Applanix.

An Overview of Applanix. An Overview of Applanix The Company The Industry Leader in Developing Aided Inertial Technology Founded on Canadian Aerospace and Defense Industry Expertise Providing Precise Position and Orientation Systems

More information

Mobile Mapping Solutions for Ohio s Integrated Transportation Network. Brian Foster, CP

Mobile Mapping Solutions for Ohio s Integrated Transportation Network. Brian Foster, CP Mobile Mapping Solutions for Ohio s Integrated Transportation Network Brian Foster, CP About Woolpert Established in 1911 Over 600 Professionals 25 Offices $12,000,000 invested in new technology in last

More information

LiDAR & Orthophoto Data Report

LiDAR & Orthophoto Data Report LiDAR & Orthophoto Data Report Tofino Flood Plain Mapping Data collected and prepared for: District of Tofino, BC 121 3 rd Street Tofino, BC V0R 2Z0 Eagle Mapping Ltd. #201 2071 Kingsway Ave Port Coquitlam,

More information

THE RAILMAPPER - A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS

THE RAILMAPPER - A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS THE RAILMAPPER - A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS Jens Kremer & Albrecht Grimm IGI mbh, Langenauer Straße 46, 57223 Kreuztal, Germany (j.kremer, a.grimm)@igi-systems.com ICWG

More information

Wildfire Risk Assessment using PLS-CADD and LiDAR Surveys

Wildfire Risk Assessment using PLS-CADD and LiDAR Surveys Wildfire Risk Assessment using PLS-CADD and LiDAR Surveys Power Line Systems Introduction Utilities around the world have been using the Power Line Systems (PLS) suite of software for the design of overhead

More information

RIEGL LMS-Q780. The Versatile, High Altitude Airborne LIDAR Sensor

RIEGL LMS-Q780. The Versatile, High Altitude Airborne LIDAR Sensor RIEGL LMS-Q780 3050m 400kHz The full waveform airborne laser scanner offers great versatility, accuracy, and data quality. The scanner enables you to successfully deliver your projects with industry leading

More information

UAS for Surveyors. An emerging technology for the Geospatial Industry. Ian Murgatroyd : Technical Sales Rep. Trimble

UAS for Surveyors. An emerging technology for the Geospatial Industry. Ian Murgatroyd : Technical Sales Rep. Trimble UAS for Surveyors An emerging technology for the Geospatial Industry Ian Murgatroyd : Technical Sales Rep. Trimble Project Overview Voyager Quarry, located near Perth Australia Typical of hard rock mines,

More information

REMOTE SENSING LiDAR & PHOTOGRAMMETRY 19 May 2017

REMOTE SENSING LiDAR & PHOTOGRAMMETRY 19 May 2017 REMOTE SENSING LiDAR & PHOTOGRAMMETRY 19 May 2017 SERVICES Visual Inspections Digital Terrain Models Aerial Imagery Volume Computations Thermal Inspections Photo maps Aerial Video Training & Consultancy

More information

Intelligent photogrammetry. Agisoft

Intelligent photogrammetry. Agisoft Intelligent photogrammetry Agisoft Agisoft Metashape is a cutting edge software solution, with its engine core driving photogrammetry to its ultimate limits, while the whole system is designed to deliver

More information

Efficient and Large Scale Monitoring of Retaining Walls along Highways using a Mobile Mapping System W. Lienhart 1, S.Kalenjuk 1, C. Ehrhart 1.

Efficient and Large Scale Monitoring of Retaining Walls along Highways using a Mobile Mapping System W. Lienhart 1, S.Kalenjuk 1, C. Ehrhart 1. The 8 th International Conference on Structural Health Monitoring of Intelligent Infrastructure Brisbane, Australia 5-8 December 2017 Efficient and Large Scale Monitoring of Retaining Walls along Highways

More information

2/19/2018. Who are we? Who am I? What is Scanning? How does scanning work? How does scanning work? Scanning for Today s Surveyors

2/19/2018. Who are we? Who am I? What is Scanning? How does scanning work? How does scanning work? Scanning for Today s Surveyors 2/19/2018 Who are we? Scanning for Today s Surveyors Survey, GIS, and Construction dealer Founded in 1988 Employee Owned Headquartered in Bismarck, ND States covered: ND, SD, MN, MT, WY, CO, UT, ID, WA,

More information

SPAR, ELMF 2013, Amsterdam. Laser Scanning on the UK Highways Agency Network. Hamish Grierson Blom Uk

SPAR, ELMF 2013, Amsterdam. Laser Scanning on the UK Highways Agency Network. Hamish Grierson Blom Uk SPAR, ELMF 2013, Amsterdam Laser Scanning on the UK Highways Agency Network Hamish Grierson Blom Uk www.blomasa.com www.blom-uk.co.uk Blom UK Part of the Blom Group Blom Group - Europe s largest aerial

More information

GEO 6895: Airborne laser scanning - workflow, applications, value. Christian Hoffmann

GEO 6895: Airborne laser scanning - workflow, applications, value. Christian Hoffmann GEO 6895: Airborne laser scanning - workflow, applications, value. Christian Hoffmann Agenda Why LiDAR? The value of an end-to-end workflow The Trimble AX-Series Data processing & modelling Information

More information

Siberian State Academy of Geodesy

Siberian State Academy of Geodesy Siberian State Academy of Geodesy USING LASER SCANNING FOR ESTIMATING MINES OUTPUT VOLUMES AND 3D MODELING OF GEOLOGICAL SITUATION Vladimir A. Seredovich, Alexander V. Seredovich, Michael D. Kozoriz Russian

More information

Creating Value. Delivering Solutions

Creating Value. Delivering Solutions Creating Value Delivering Solutions LIDAR...Light Detection and Ranging Technology from the military (1960 s) Rapid, highly accurate DEM coverage of large to medium sized project areas Feature extraction

More information

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference

Case Study for Long- Range Beyond Visual Line of Sight Project. March 15, 2018 RMEL Transmission and Planning Conference Case Study for Long- Range Beyond Visual Line of Sight Project March 15, 2018 RMEL Transmission and Planning Conference 2014 HDR Architecture, 2016 2014 HDR, Inc., all all rights reserved. Helicopters

More information

LiDAR AT PennDOT Michael Loose, C.P. BOPD Photogrammetry and Surveys

LiDAR AT PennDOT Michael Loose, C.P. BOPD Photogrammetry and Surveys LiDAR AT PennDOT Michael Loose, C.P. BOPD Photogrammetry and Surveys 2 I. What is LiDAR? II. Benefits of LiDAR III. PennDOT Case Studies IV. Best Practices/Lessons Learned V. Questions 3 4 LiDAR for Engineering

More information

MONITORING COASTAL INSTABILITY USING AIRBORNE AND TERRESTRIAL LIDAR

MONITORING COASTAL INSTABILITY USING AIRBORNE AND TERRESTRIAL LIDAR MONITORING COASTAL INSTABILITY USING AIRBORNE AND TERRESTRIAL LIDAR A Coastal Challenge Monitoring coastlines is a challenging task, especially due to the typically inaccessible nature of the coastal terrain.

More information

IP-S2 HD HD IP-S2. 3D Mobile Mapping System. 3D Mobile Mapping System

IP-S2 HD HD IP-S2. 3D Mobile Mapping System. 3D Mobile Mapping System HD HD 3D Mobile Mapping System 3D Mobile Mapping System Capture Geo-referenced, Time-Stamped Point Clouds and Imagery 3D Scanning of Roadside Features 360º Camera for Spherical Image Capture Dual Frequency

More information

Trimble GeoSpatial Products

Trimble GeoSpatial Products Expanding Solutions for Photogrammetric and Remote Sensing Professionals 55 th Photogrammetric Week in Stuttgart September 7 th 2015 Tobias Heuchel, Trimble Stuttgart, Germany Trimble GeoSpatial Products

More information

QUALITY CONTROL METHOD FOR FILTERING IN AERIAL LIDAR SURVEY

QUALITY CONTROL METHOD FOR FILTERING IN AERIAL LIDAR SURVEY QUALITY CONTROL METHOD FOR FILTERING IN AERIAL LIDAR SURVEY Y. Yokoo a, *, T. Ooishi a, a Kokusai Kogyo CO., LTD.,Base Information Group, 2-24-1 Harumicho Fuchu-shi, Tokyo, 183-0057, JAPAN - (yasuhiro_yokoo,

More information

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration JAMIE YOUNG Senior Manager LiDAR Solutions Topics Terrestrial GPS reference Planning and Collection Considerations

More information

Bringing Singapore to life in 3D

Bringing Singapore to life in 3D Bringing Singapore to life in 3D Dr Victor Khoo, Deputy Director Singapore Land Authority Bringing Singapore to life in 3D ESRI Singapore UC 2016 Dr. Victor Khoo Singapore Land Authority SLA 2016 RESTRICTED

More information

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller

Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller Terrestrial Laser Scanning: Applications in Civil Engineering Pauline Miller School of Civil Engineering & Geosciences Newcastle University Overview Laser scanning overview Research applications geometric

More information

RIEGL VMX-250. Mobile Laser Scanning. Compact Mobile Laser Scanning System. visit our website

RIEGL VMX-250. Mobile Laser Scanning. Compact Mobile Laser Scanning System. visit our website Compact Mobile Laser Scanning System RIEGL VMX-250 The RIEGL VMX-250 is an extremely compact and user-friendly Mobile Laser Scanning System. 2 RIEGL VQ-250 scanners smoothly integrated with IMU/GNSS unit

More information

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR)

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR) Airborne LiDAR Data Acquisition for Forestry Applications Mischa Hey WSI (Corvallis, OR) WSI Services Corvallis, OR Airborne Mapping: Light Detection and Ranging (LiDAR) Thermal Infrared Imagery 4-Band

More information

Control System International a.s., Papírenská 114/5, Praha 6, Czech Republic Web site: www. controlsystem.cz,

Control System International a.s., Papírenská 114/5, Praha 6, Czech Republic Web site: www. controlsystem.cz, 129 Consequences of a complex using of 3D approach in the implementation of the road reconstruction - usage of TLS stop&go and usage of paving control system for milling machines Přikryl, M. and Kutil,

More information

3D Data Acquisition in Tunnels Optimizing Track Time Using Terrestrial Mobile LiDAR. Scanning. Michael R. Frecks, PLS.

3D Data Acquisition in Tunnels Optimizing Track Time Using Terrestrial Mobile LiDAR. Scanning. Michael R. Frecks, PLS. 3D Data Acquisition in Tunnels Optimizing Track Time Using Terrestrial Mobile LiDAR Scanning Michael R. Frecks, PLS President/CEO AREMA 2013 1207 Understanding mobile 3D LiDAR? light detection and ranging

More information

Integrated Multi-Source LiDAR and Imagery

Integrated Multi-Source LiDAR and Imagery Figure 1: AirDaC aerial scanning system Integrated Multi-Source LiDAR and Imagery The derived benefits of LiDAR scanning in the fields of engineering, surveying, and planning are well documented. It has

More information

Measuring the potential impact of offshore mining on coastal instability through integrated time-series laser scanning and photography

Measuring the potential impact of offshore mining on coastal instability through integrated time-series laser scanning and photography Measuring the potential impact of offshore mining on coastal instability through integrated time-series laser scanning and photography by Neil Slatcher, Roberto Vargas, Chris Cox and Liene Starka, 3D Laser

More information

Hamilton County Enhances GIS Base Mapping with 1-foot Contours

Hamilton County Enhances GIS Base Mapping with 1-foot Contours Hamilton County Enhances GIS Base Mapping with 1-foot Contours Presented by Larry Stout, Hamilton County GIS Manager Brad Fugate, Woolpert Inc. Today s Presentation Hamilton County s 2004 Base Mapping

More information

A New Protocol of CSI For The Royal Canadian Mounted Police

A New Protocol of CSI For The Royal Canadian Mounted Police A New Protocol of CSI For The Royal Canadian Mounted Police I. Introduction The Royal Canadian Mounted Police started using Unmanned Aerial Vehicles to help them with their work on collision and crime

More information

IP-S2 HD. High Definition 3D Mobile Mapping System

IP-S2 HD. High Definition 3D Mobile Mapping System IP-S2 HD High Definition 3D Mobile Mapping System Integrated, turnkey solution Georeferenced, Time-Stamped, Point Clouds and Imagery High Density, Long Range LiDAR sensor for ultimate in visual detail

More information

NEW RIEGL. Triple Scanner Mobile Mapping System Specifically Designed for Rail Application. Typical Applications

NEW RIEGL. Triple Scanner Mobile Mapping System Specifically Designed for Rail Application. Typical Applications NEW RIEGL VMX -RAIL 3 MHz pulse repetition rate, and 750 lines per second resulting in up to 7000 pts/m 2 in 3m range at 80 km/h platform speed 420m 3 MHz optional The is a fully integrated Mobile Laser

More information

LiDAR Applications in Surveying and Engineering

LiDAR Applications in Surveying and Engineering LiDAR Applications in Surveying and Engineering 2013 NC GIS Conference Raleigh, NC Frank A. Alex Rankin, III PE, PLS What is LiDAR? Light Detection and Ranging Analogous to RADAR, but using a different

More information

Rigorous Scan Data Adjustment for kinematic LIDAR systems

Rigorous Scan Data Adjustment for kinematic LIDAR systems Rigorous Scan Data Adjustment for kinematic LIDAR systems Paul Swatschina Riegl Laser Measurement Systems ELMF Amsterdam, The Netherlands 13 November 2013 www.riegl.com Contents why kinematic scan data

More information

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning 1 ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning Petri Rönnholm Aalto University 2 Learning objectives To recognize applications of laser scanning To understand principles

More information

Merging LiDAR Data with Softcopy Photogrammetry Data

Merging LiDAR Data with Softcopy Photogrammetry Data Merging LiDAR Data with Softcopy Photogrammetry Data Cindy McCallum WisDOT\Bureau of Technical Services Surveying & Mapping Section Photogrammetry Unit Overview Terms and processes Why use data from LiDAR

More information

Advanced point cloud processing

Advanced point cloud processing Advanced point cloud processing George Vosselman ITC Enschede, the Netherlands INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Laser scanning platforms Airborne systems mounted

More information

A New Way to Control Mobile LiDAR Data

A New Way to Control Mobile LiDAR Data A New Way to Control Mobile LiDAR Data Survey control has always been a critically important issue when conducting mobile LiDAR surveys. While the accuracies currently being achieved with the most capable

More information

Dot-to-dot recent progress in UAS LiDAR: calibration, accuracy assessment, and application

Dot-to-dot recent progress in UAS LiDAR: calibration, accuracy assessment, and application Dot-to-dot recent progress in UAS LiDAR: calibration, accuracy assessment, and application Arko Lucieer, Colin McCoull, Richard Ballard, Steve Harwin, Deepak Gautam, Darren Turner Surveying and Spatial

More information

MOBILE INSPECTION SYSTEM FOR HIGH-RESOLUTION ASSESSMENT OF TUNNELS

MOBILE INSPECTION SYSTEM FOR HIGH-RESOLUTION ASSESSMENT OF TUNNELS MOBILE INSPECTION SYSTEM FOR HIGH-RESOLUTION ASSESSMENT OF TUNNELS M. Gavilán*, F. Sánchez, J.A. Ramos and O. Marcos EUROCONSULT GROUP Avenida Montes de Oca 9-11, 28703, Madrid, Spain *Corresponding author:

More information

InteLAS Family of Mobile LiDAR Systems

InteLAS Family of Mobile LiDAR Systems InteLAS Family of Mobile LiDAR Systems September 2015 What we do ilinks Geosolutions LLC Hydrographic surveying and seabed modeling Topographic surveying and mobile mapping Systems engineering and integration

More information

Photogrammetry: DTM Extraction & Editing

Photogrammetry: DTM Extraction & Editing Photogrammetry: DTM Extraction & Editing How can one determine the x, y, and z of a location? Approaches to DTM Extraction Ground surveying Digitized topographic maps Traditional photogrammetry Hardcopy

More information

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY Jacobsen, K. University of Hannover, Institute of Photogrammetry and Geoinformation, Nienburger Str.1, D30167 Hannover phone +49

More information

Using Mobile LiDAR To Efficiently Collect Roadway Asset and Condition Data. Pierre-Paul Grondin, B.Sc. Surveying

Using Mobile LiDAR To Efficiently Collect Roadway Asset and Condition Data. Pierre-Paul Grondin, B.Sc. Surveying Using Mobile LiDAR To Efficiently Collect Roadway Asset and Condition Data Pierre-Paul Grondin, B.Sc. Surveying LIDAR (Light Detection and Ranging) The prevalent method to determine distance to an object

More information

Seabed Mapping with LiDAR

Seabed Mapping with LiDAR Seabed Mapping with LiDAR 2011 Jakarta David Jonas Lt Cdr Rupert Forester-Bennett RN (ret( ret d) October 18 th 2011 Mapping in South East Asia Field Survey Aerial Photography LiDAR Pleased to Introduce

More information

Terrasolid European Training Event

Terrasolid European Training Event Terrasolid European Training Event February 13 th 18 th, 2012 - Levi / Finland Nikolaus STUDNICKA Business Development Manager RIEGL Laser Measurement Systems GmbH Content Mobile Laser Scanning System

More information

A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces.

A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces. A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces. Ε. Lambrou, G. Pantazis Lecturers at NTUA School of Rural and Surveying Engineering National Technical

More information

SPS ZOOM D Laser Scanner SPS ZOOM 300

SPS ZOOM D Laser Scanner SPS ZOOM 300 3D Laser Scanner 3D Laser Scanner A 3D laser scanner is a device that collects precise spatial data of objects or environments. The collected point cloud data can then be used to construct digital three

More information

Unmanned Aerial Systems: A Look Into UAS at ODOT

Unmanned Aerial Systems: A Look Into UAS at ODOT Ohio Department of Transportation John R. Kasich, Governor Jerry Wray, Director Unmanned Aerial Systems: Tim Burkholder, PS Mapping Manager Division of Engineering Office of CADD and Mapping Services Kyle

More information

Corridor Survey of Both Existing and New to be Built Pipelines on Land Using LiDAR Scanning

Corridor Survey of Both Existing and New to be Built Pipelines on Land Using LiDAR Scanning Corridor Survey of Both Existing and New to be Built Pipelines on Land Using LiDAR Scanning 1. Introduction For good monitoring and planning an onshore pipeline and to feed the Geographic Information System,

More information

Surveying like never before

Surveying like never before CAD functionalities GCP Mapping and Aerial Image Processing Software for Land Surveying Specialists Surveying like never before www.3dsurvey.si Modri Planet d.o.o., Distributors: info@3dsurvey.si +386

More information

TERRESTRIAL LASER SCANNER DATA PROCESSING

TERRESTRIAL LASER SCANNER DATA PROCESSING TERRESTRIAL LASER SCANNER DATA PROCESSING L. Bornaz (*), F. Rinaudo (*) (*) Politecnico di Torino - Dipartimento di Georisorse e Territorio C.so Duca degli Abruzzi, 24 10129 Torino Tel. +39.011.564.7687

More information

Open Pit Mines. Terrestrial LiDAR and UAV Aerial Triangulation for. Figure 1: ILRIS at work

Open Pit Mines. Terrestrial LiDAR and UAV Aerial Triangulation for. Figure 1: ILRIS at work Terrestrial LiDAR and UAV Aerial Triangulation for Open Pit Mines Figure 1: ILRIS at work Figure 2: Geo-Copter X-8000 taking off ay what you will about the past few years, it has produced some useful tools

More information

Mayden VP of Business Development Surdex Corporation

Mayden VP of Business Development Surdex Corporation Making Sense of Sensors Randy Mayden, Mayden VP of Business Development Surdex Corporation randym@surdex.com EARLYAERIAL PHOTOGRAPHY 2 FIRSTAERIAL CAMERA 3 AERIAL CAMERA SYSTEM DEVELOPMENT Aerial Camera

More information

Leica ALS70. Airborne Laser Scanners Performance for diverse Applications

Leica ALS70. Airborne Laser Scanners Performance for diverse Applications Leica ALS70 Airborne Laser Scanners Performance for diverse Applications Three Models, One Result. Highest Productivity in all Applications. Imagine an affordable 500 khz pulse rate city-mapping LIDAR

More information

VMX -2HA RIEGL. High Speed, High Performance Dual Scanner Mobile Mapping System. Typical Applications

VMX -2HA RIEGL. High Speed, High Performance Dual Scanner Mobile Mapping System. Typical Applications RIEGL 420m 2 MHz VMX -2HA optional High-Speed 10 GigE Link for acquisition of 2 million measurements/sec and image data of up to 9 different high-end cameras The is a High Speed, High Performance Dual

More information

Lecture 11. LiDAR, RADAR

Lecture 11. LiDAR, RADAR NRMT 2270, Photogrammetry/Remote Sensing Lecture 11 Calculating the Number of Photos and Flight Lines in a Photo Project LiDAR, RADAR Tomislav Sapic GIS Technologist Faculty of Natural Resources Management

More information

UAS Campus Survey Project

UAS Campus Survey Project ARTICLE STUDENTS CAPTURING SPATIAL INFORMATION NEEDS UAS Campus Survey Project Texas A&M University- Corpus Christi, home to the largest geomatics undergraduate programme in Texas, USA, is currently undergoing

More information

LiDAR Engineering and Design Applications. Sample Data

LiDAR Engineering and Design Applications. Sample Data LiDAR Engineering and Design Applications Sample Data High density LiDAR will return points on any visible part of a structure. Modeling of Existing Structures 2 The distance between any two positions

More information

GEODETIC MEASURING METHODS AND SHAPE ESTIMATION OF CONCRETE THIN SHELL SURFACE

GEODETIC MEASURING METHODS AND SHAPE ESTIMATION OF CONCRETE THIN SHELL SURFACE GEODETIC MEASURING METHODS AND SHAPE ESTIMATION OF CONCRETE THIN SHELL SURFACE M. Woźniak, K. Woźniak Warsaw University of Technology ABSTRACT The geodetic measurements of surface geometry can be performed

More information

LiDAR data pre-processing for Ghanaian forests biomass estimation. Arbonaut, REDD+ Unit, Joensuu, Finland

LiDAR data pre-processing for Ghanaian forests biomass estimation. Arbonaut, REDD+ Unit, Joensuu, Finland LiDAR data pre-processing for Ghanaian forests biomass estimation Arbonaut, REDD+ Unit, Joensuu, Finland Airborne Laser Scanning principle Objectives of the research Prepare the laser scanning data for

More information

Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) Light Detection and Ranging (LiDAR) http://code.google.com/creative/radiohead/ Types of aerial sensors passive active 1 Active sensors for mapping terrain Radar transmits microwaves in pulses determines

More information

Airborne Laser Scanning: Remote Sensing with LiDAR

Airborne Laser Scanning: Remote Sensing with LiDAR Airborne Laser Scanning: Remote Sensing with LiDAR ALS / LIDAR OUTLINE Laser remote sensing background Basic components of an ALS/LIDAR system Two distinct families of ALS systems Waveform Discrete Return

More information

Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory

Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory Wojciech Jaśkowski 1,*, Tomasz Lipecki 1, Wojciech Matwij 1, Mateusz Jabłoński 1 1 AGH University of Science and

More information

Deriving Appropriate Digital Elevation Model (DEM) from Airborne LIDAR Data and Evaluating the Horizontal Highway Geometry for Transportation Planning

Deriving Appropriate Digital Elevation Model (DEM) from Airborne LIDAR Data and Evaluating the Horizontal Highway Geometry for Transportation Planning Deriving Appropriate Digital Elevation Model (DEM) from Airborne LIDAR Data and Evaluating the Horizontal Highway Geometry for Transportation Planning Nursu TUNALIOĞLU, Metin SOYCAN, KutalmıGÜMÜ and Taylan

More information

Re: Developing Requirements for Mobile LiDAR Data (#1015)

Re: Developing Requirements for Mobile LiDAR Data (#1015) TM Tech Notes Certainty 3D April 10, 2012 To: General Release From: Ted Knaak Certainty 3D, Inc. Re: Developing Requirements for Mobile LiDAR Data (#1015) Introduction Recent discussions within the industry

More information

Airborne Laser Survey Systems: Technology and Applications

Airborne Laser Survey Systems: Technology and Applications Abstract Airborne Laser Survey Systems: Technology and Applications Guangping HE Lambda Tech International, Inc. 2323B Blue Mound RD., Waukesha, WI-53186, USA Email: he@lambdatech.com As mapping products

More information

RIEGL VMX-450. Mobile Laser Scanning. Compact Mobile Laser Scanning System. visit our website

RIEGL VMX-450. Mobile Laser Scanning. Compact Mobile Laser Scanning System. visit our website Compact Mobile Laser Scanning System RIEGL VMX-450 2 RIEGL VQ-450 scanners smoothly integrated with IMU/GNSS unit very high measurement rate up to 1.1 million meas./sec scanning rate up to 400 lines/sec

More information

Third Rock from the Sun

Third Rock from the Sun Geodesy 101 AHD LiDAR Best Practice The Mystery of LiDAR Best Practice Glenn Jones SSSi GIS in the Coastal Environment Batemans Bay November 9, 2010 Light Detection and Ranging (LiDAR) Basic principles

More information

HAWAII KAUAI Survey Report. LIDAR System Description and Specifications

HAWAII KAUAI Survey Report. LIDAR System Description and Specifications HAWAII KAUAI Survey Report LIDAR System Description and Specifications This survey used an Optech GEMINI Airborne Laser Terrain Mapper (ALTM) serial number 06SEN195 mounted in a twin-engine Navajo Piper

More information