Multidimensional (spatial) Data and Modelling (3)

Size: px
Start display at page:

Download "Multidimensional (spatial) Data and Modelling (3)"

Transcription

1 Multidimensional (spatial) Data and Modelling (3) 1

2 GIS-centric approach l Focus on management of spatial data l Goal: Creation of a solely spatial data representation like maps (spatial partition, map layers, layers) l Offering operations on these spatial data structures like overlay, fusion, projection, superimposition, windowing and so on. 2

3 GIS-centric approach l GIS-centric approaches are dedicated solely to the management of spatial data. Specialized data structures also are used to associate spatial with conventional data, but the handling of these structures takes place outside the GIS. l In an informal approach, map layers (termed simply maps) and operations on them are described at a conceptual level. l A map m can be seen as a set of pairs (p, v), where p is a location (a 2-d point in the plane) and v is a number assigned to p, which indicates a property of p. 3

4 GIS-centric approach l Distinct maps are used to record distinct properties of locations, such as height, degree of pollution, and so forth. l The approach enables recording properties of areas that change gradually from one location to another, termed continuous changes. l Spatial data types are not defined. A zone of m is a set of pairs Z = {(p1, v), (p2, v),..., (pk, v)} (adjacent or not) with identical values on the second coordinate. l An open-ended set of operations is proposed. They all apply to maps and produce a new map. 4

5 GIS-centric approach The approach classifies operations into four categories: l (i) Local: The value of each location p depends on value of the same location p in input maps. l (ii) Zonal: The result value of each location p depends on values of the locations contained in zone of p in one or more input maps. l (iii) Focal: The result value of each location p depends on values of the locations contained in neighbourhood of p in one or more input maps. l (iv) Incremental: They extend set of Focal operations by taking into account type of zone at each location. One of the local operations resembles Full Overlay. 5

6 Example: Mapping SD to ORDMBS l Three maps with simple spatial data: 6

7 Creation of OR-Types l create suitable object-relational data types //type declaration CREATE TYPE POINT AS OBJECT (x NUMBER,y NUMBER) CREATE TYPE POINT_TABLE AS TABLE OF POINT; CREATE TYPE POLYGON AS OBJECT( points POINT_TABLE, MEMBER FUNCTION intersects (p POLYGON) RETURN BOOLEAN ); CREATE TYPE LINE AS OBJECT (start_x NUMBER, start_y NUMBER, end_x NUMBER, end_y NUMBER); //functional predicate binding CREATE OPERATOR INTERSECTS(a POLYGON, b POLYGON) RETURN BOOLEAN BEGIN RETURN a.intersects(b); END; 7

8 Creation of OR-Tables l create object-relational types of tables //table declaration CREATE TABLE_TYPE CITIES( id NUMBER PRIMARY KEY, geom POINT ); CREATE TABLE_TYPE HIGHWAYS( id NUMBER PRIMARY KEY, geom LINE ); CREATE TABLE_TYPE COUNTIES( id NUMBER PRIMARY KEY, geom POLYGON ); 8

9 Actual mapping of data to ORDMBS l create specific objects from spatial data and store them into tables //create tables from table_types CREATE TABLE city_table AS TABLE_TYPE CITIES; CREATE TABLE highway_table AS TABLE_TYPE HIGHWAYS; CREATE TABLE counties_table AS TABLE_TYPE COUNTIES; //fill tables with objects from maps INSERT INTO city_table ((1,new POINT(5,7);2,new POINT(6,6);3,new POINT(8,6.5)); INSERT INTO highway_table ((1,new LINE(0,7.2,5,7);2,new LINE(5,7,8,6.5);3,new LINE (8,6.5,6,6);4,new LINE(6,6,2.5,0)); INSERT INTO counties_table (1,new POLYGON(points(new POINT(0,2.1),new POINT(8,6), new POINT(0,6)));2, new POLYGON(points(new POINT(0,6),new POINT(7,9)));3,new POLYGON(points(new POINT(11,8.5),new POINT(7,6)))); 9

10 Result in ORDBMS - tables TABLE city_table TABLE highway_table id geom id geom 1 POINT(5,7) 1 LINE(0,7.2,5,7) 2 POINT(6,6) 2 LINE(5,7,8,6.5) 3 POINT(8,6.5) 3 LINE(8,6.5,6,6) 4 LINE(6,6,2.5,0) TABLE county_table id geom 1 POLYGON(points(POINT(0,2.1),POINT(8,6), POINT(0,6))) 2 POLYGON(points(POINT(0,6), POINT(7,9))) 3 POLYGON(points(POINT(11,8.5), POINT(7,6))) all variables in italics in the above displayed tables are references (addresses) of the actual geom-objects saved in different meta-tables in the db. In fact, POLYGON( ) with id 1 consists of references to three lower objects: First the POLYGON-object itself, the underlying POINTS-table and within these table there are POINTS objects saved. 10

11 Ex: Operations on raster grids Possible implementation: l A map is modelled as a 2-d raster grid data structure, which represents a partition of a given rectangular area into a matrix of a finite set of squares, called cells or pixels. l Each cell represents one of locations. l All these approaches consider only surfaces. Examples of operations on grids are shown below. Note that the functionality of operation Combine (Figure 3(f)) resembles that of Full Overlay on surfaces. 11

12 Ex: Operations on raster grids 12

13 Ex: Operations on raster grids 13

14 Ex: Operations on raster grids of the spatio-temporal model (d Onofrio & Pourabbas, 2001). It considers 14 maps of surfaces or lines, but it does not achieve the functionality of all the operations

15 Ex: Functionality for maps l A map (called spatial partition) of a given area is defined as a set of non-overlapping, adjacent surfaces. l Each such surface is associated with a tuple of conventional data. l Surfaces associated with the same conventional data merge automatically into a single surface. l Point and Line types are not defined. l Three primitive operations are defined and, based on them, a representative functionality for map management is achieved (below). 15

16 Ex: Functionality for maps 16

17 Ex: Functionality for maps 17

18 Ex: Functionality for maps 18

19 Ex: relations and operations l Point, simple polyline and polygon data types (Figure 5(a-c)) are proposed as usually. l A map (called layer) M is defined as a mapping from a set of spatial values G to the Cartesian product of a set of conventional attributes (M: G C1,C2,...,Cn). Hence, a map can be seen as a relation with just one spatial attribute G. l Operations on maps also are defined. Operation Attribute derivation (Spatial computation) enables the application of conventional (spatial) functions and predicates. 19

20 Ex: relations and operations l Operation Reclassification merges into one all those tuples of a layer that have identical values in a given attribute and also are associated to adjacent spatial objects. l It can apply only to layers of type simple polyline or polygon. l Operation Overlay or Full Overlay applies to two maps L1 and L2 of any data type. l Its result is the union of three sets. 20

21 Ex: relations and operations l (i) I, consisting of the pieces of spatial objects l both in L1 and L2, l (ii) L, consisting of the pieces of spatial objects in L1 that are not inside the spatial objects in L2, l (iii) R, consisting of the pieces of spatial objects in L2 that are not inside the spatial objects in L1. 21

22 Representation of spatial objects in various approaches 22

23 Other approaches l ESRI (2003) approach considers data types of the form point, set of points, set of lines and set of surfaces and a large set of operations. l To illustrate operation Overlay, consider layer L1, with objects of any type; layer L2, consisting of only surfaces; and the sets I, L and R. l Then each of the Overlay operations is associated with one of the result sets I, I L, I R, I L R. l Operation Erase yields a new map with the pieces of the spatial objects in L1 that are outside all the surfaces in L2. 23

24 Other approaches l Update yields the Superimposition of two compatible maps. l Other functionalities are Buffer, Clipping, Cover, one that yields the Voronoi diagram of a set of points; and operation Reclassification. l In place of the ESRI (2003) point data type, the commercial GIS in Intergraph Corp. supports a type of the form set of spatial objects. l Set of spatial objects is the only one supported in MapInfo Corp. (2002) and Bentley Systems (2001). 24

Multidimensional Data and Modelling

Multidimensional Data and Modelling Multidimensional Data and Modelling 1 Problems of multidimensional data structures l multidimensional (md-data or spatial) data and their implementation of operations between objects (spatial data practically

More information

Multidimensional Data and Modelling - Operations

Multidimensional Data and Modelling - Operations Multidimensional Data and Modelling - Operations 1 Problems of multidimensional data structures l multidimensional (md-data or spatial) data and their implementation of operations between objects (spatial

More information

Multidimensional (spatial) Data and Modelling (2)

Multidimensional (spatial) Data and Modelling (2) Multidimensional (spatial) Data and Modelling (2) 1 Representative operations on maps l l l l l are operations on layers used in maps (all 2-d). Synonyms f. map: layer, spatial partition Def. properties:

More information

Multidimensional Data and Modelling - DBMS

Multidimensional Data and Modelling - DBMS Multidimensional Data and Modelling - DBMS 1 DBMS-centric approach Summary: l Spatial data is considered as another type of data beside conventional data in a DBMS. l Enabling advantages of DBMS (data

More information

Purpose: To explore the raster grid and vector map element concepts in GIS.

Purpose: To explore the raster grid and vector map element concepts in GIS. GIS INTRODUCTION TO RASTER GRIDS AND VECTOR MAP ELEMENTS c:wou:nssi:vecrasex.wpd Purpose: To explore the raster grid and vector map element concepts in GIS. PART A. RASTER GRID NETWORKS Task A- Examine

More information

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O TOPICS COVERED Spatial Analyst basics Raster / Vector conversion Raster data

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS WATS 4930/6920 WHERE WE RE GOING WATS 6915 welcome to tag along for any, all or none WEEK FIVE Lecture VECTOR ANALYSES Joe Wheaton HOUSEKEEPING

More information

layers in a raster model

layers in a raster model layers in a raster model Layer 1 Layer 2 layers in an vector-based model (1) Layer 2 Layer 1 layers in an vector-based model (2) raster versus vector data model Raster model Vector model Simple data structure

More information

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations,

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, readings, and hands on GIS lab exercises. Following the last

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 17: Geoprocessing and Spatial Analysis

GEOGRAPHIC INFORMATION SYSTEMS Lecture 17: Geoprocessing and Spatial Analysis GEOGRAPHIC INFORMATION SYSTEMS Lecture 17: and Spatial Analysis tools are commonly used tools that we normally use to prepare data for further analysis. In ArcMap, the most commonly used tools appear in

More information

Watershed Sciences 4930 & 6920 ADVANCED GIS

Watershed Sciences 4930 & 6920 ADVANCED GIS Slides by Wheaton et al. (2009-2014) are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License Watershed Sciences 4930 & 6920 ADVANCED GIS VECTOR ANALYSES Joe Wheaton

More information

M. Andrea Rodríguez-Tastets. I Semester 2008

M. Andrea Rodríguez-Tastets. I Semester 2008 M. -Tastets Universidad de Concepción,Chile andrea@udec.cl I Semester 2008 Outline refers to data with a location on the Earth s surface. Examples Census data Administrative boundaries of a country, state

More information

An Introduction to Spatial Databases

An Introduction to Spatial Databases An Introduction to Spatial Databases R. H. Guting VLDB Journal v3, n4, October 1994 Speaker: Giovanni Conforti Outline: a rather old (but quite complete) survey on Spatial DBMS Introduction & definition

More information

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University Lecture 6: GIS Spatial Analysis GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University 1 Spatial Data It can be most simply defined as information that describes the distribution

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 11 VECTOR DATA ANALYSIS 11.1 Buffering 11.1.1 Variations in Buffering Box 11.1 Riparian Buffer Width 11.1.2 Applications of Buffering 11.2 Overlay 11.2.1 Feature Type and Overlay 11.2.2 Overlay

More information

Vector-Based GIS Data Processing. Chapter 6

Vector-Based GIS Data Processing. Chapter 6 Vector-Based GIS Data Processing Chapter 6 Vector Data Model Feature Classes points lines polygons Layers limited to one class of data Figure p. 186 Vector Data Model Shapefiles ArcView non-topological

More information

Cell based GIS. Introduction to rasters

Cell based GIS. Introduction to rasters Week 9 Cell based GIS Introduction to rasters topics of the week Spatial Problems Modeling Raster basics Application functions Analysis environment, the mask Application functions Spatial Analyst in ArcGIS

More information

Raster GIS applications Columns

Raster GIS applications Columns Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface Thematic layer: cell value = category or measured value - In both cases, there is only one value per cell (in

More information

RASTER ANALYSIS GIS Analysis Fall 2013

RASTER ANALYSIS GIS Analysis Fall 2013 RASTER ANALYSIS GIS Analysis Fall 2013 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information. What

More information

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments Lecture 1 Core of GIS Thematic layers Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments Lecture 2 What is GIS? Info: value added data Data to solve

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki April 3, 2014 Lecture 11: Raster Analysis GIS Related? 4/3/2014 ENGRG 59910 Intro to GIS 2 1 Why we use Raster GIS In our previous discussion of data models,

More information

Raster model. Raster model. Resolution. Value and data types. Structure and storage. Cell. Values. Data

Raster model. Raster model. Resolution. Value and data types. Structure and storage. Cell. Values. Data Raster model. Resolution. Values and data types 3. Storage. Fitting rasters 5. Map algebra 6. Interpolation 7. Conversion vectorraster 8. Vector vs. raster Raster model Divides the space into a regular

More information

Announcements. Data Sources a list of data files and their sources, an example of what I am looking for:

Announcements. Data Sources a list of data files and their sources, an example of what I am looking for: Data Announcements Data Sources a list of data files and their sources, an example of what I am looking for: Source Map of Bangor MEGIS NG911 road file for Bangor MEGIS Tax maps for Bangor City Hall, may

More information

Lecturer 2: Spatial Concepts and Data Models

Lecturer 2: Spatial Concepts and Data Models Lecturer 2: Spatial Concepts and Data Models 2.1 Introduction 2.2 Models of Spatial Information 2.3 Three-Step Database Design 2.4 Extending ER with Spatial Concepts 2.5 Summary Learning Objectives Learning

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Outline of Today Last week, we learned: Characteristics of spatial data Types of spatial data

More information

Computational Geometry Algorithms Library. Geographic information Systems

Computational Geometry Algorithms Library. Geographic information Systems Computational Geometry Algorithms Library in Geographic information Systems Edward Verbree, Peter van Oosterom and Wilko Quak TU Delft, Department of Geodesy, Thijsseweg 11, 2629 JA Delft, the Netherlands

More information

GIS-Generated Street Tree Inventory Pilot Study

GIS-Generated Street Tree Inventory Pilot Study GIS-Generated Street Tree Inventory Pilot Study Prepared for: MSGIC Meeting Prepared by: Beth Schrayshuen, PE Marla Johnson, GISP 21 July 2017 Agenda 2 Purpose of Street Tree Inventory Pilot Study Evaluation

More information

4/7/2009. Model: Abstraction of reality following formal rules e.g. Euclidean space for physical space

4/7/2009. Model: Abstraction of reality following formal rules e.g. Euclidean space for physical space Model: Abstraction of reality following formal rules e.g. Euclidean space for physical space At different levels: mathematical model (Euclidean space) conceptual design model (ER model) data model (design)

More information

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz Computing Visibility BSP Trees Ray Casting Depth Buffering Quiz Power of Plane Equations We ve gotten a lot of mileage out of one simple equation. Basis for D outcode-clipping Basis for plane-at-a-time

More information

LECTURE 2 SPATIAL DATA MODELS

LECTURE 2 SPATIAL DATA MODELS LECTURE 2 SPATIAL DATA MODELS Computers and GIS cannot directly be applied to the real world: a data gathering step comes first. Digital computers operate in numbers and characters held internally as binary

More information

Review of Cartographic Data Types and Data Models

Review of Cartographic Data Types and Data Models Review of Cartographic Data Types and Data Models GIS Data Models Raster Versus Vector in GIS Analysis Fundamental element used to represent spatial features: Raster: pixel or grid cell. Vector: x,y coordinate

More information

Spatial Analysis (Vector) I

Spatial Analysis (Vector) I Spatial Analysis (Vector) I GEOG 300, Lecture 8 Dr. Anthony Jjumba 1 Spatial Analysis In a GIS, Data are usually grouped into layers (or themes). The analysis functions of a GIS use the spatial and non-spatial

More information

Making Yield Contour Maps Using John Deere Data

Making Yield Contour Maps Using John Deere Data Making Yield Contour Maps Using John Deere Data Exporting the Yield Data Using JDOffice 1. Data Format On Hard Drive 2. Start program JD Office. a. From the PC Card menu on the left of the screen choose

More information

EAT 233/3 GEOGRAPHIC INFORMATION SYSTEM (GIS)

EAT 233/3 GEOGRAPHIC INFORMATION SYSTEM (GIS) EAT 233/3 GEOGRAPHIC INFORMATION SYSTEM (GIS) CO3: Ability to produce detail mapping using geographic information systems (GIS) BY : AYU WAZIRA AZHARI SPATIAL DATA & THE MODELLING Spatial Data in GIS Spatial

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling

GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling Spatial Analysis in GIS (cont d) GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling - the basic types of analysis that can be accomplished with a GIS are outlined in The Esri Guide to GIS Analysis

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

GIS Data Models. 4/9/ GIS Data Models

GIS Data Models. 4/9/ GIS Data Models GIS Data Models 1 Conceptual models of the real world The real world can be described using two conceptually different models: 1. As discrete objects, possible to represent as points, lines or polygons.

More information

Unit 3: Proximity Analysis and Buffering. Lecture Outline

Unit 3: Proximity Analysis and Buffering. Lecture Outline Unit 3: Proximity Analysis and Buffering Lecture Outline I. Vector-Based Proximity 1. Proximity involves the calculation of distance between features in a single layer, or between features in multiple

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons attributes linked to feature ID explicit location every point has coordinates 2 Fields

More information

RASTER ANALYSIS GIS Analysis Winter 2016

RASTER ANALYSIS GIS Analysis Winter 2016 RASTER ANALYSIS GIS Analysis Winter 2016 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information.

More information

Spatial Analysis and Modeling (GIST 4302/5302) Database Fundaments. Database. Review: Bits and Bytes

Spatial Analysis and Modeling (GIST 4302/5302) Database Fundaments. Database. Review: Bits and Bytes Spatial Analysis and Modeling (GIST 4302/5302) Database Fundaments Guofeng Cao Department of Geosciences Texas Tech University Review: Bits and Bytes Data stored in a computer system is measured in bits

More information

Undo Button Clicking this tool will undo the last action. Clicking on this tool multiple times will undo all subsequent changes that were made.

Undo Button Clicking this tool will undo the last action. Clicking on this tool multiple times will undo all subsequent changes that were made. SMS Featured Icons: Editor Window This document includes a brief description of the tools in the SMS Desktop Software Editor windows, as well as showing you the toolbar shortcuts to easily access these

More information

Lecture 20 - Chapter 8 (Raster Analysis, part1)

Lecture 20 - Chapter 8 (Raster Analysis, part1) GEOL 452/552 - GIS for Geoscientists I Lecture 20 - Chapter 8 (Raster Analysis, part) 4 lectures on rasters - but won t cover everything (Raster GIS course: Geol 588: GIS II (Spring 20) Today: Raster data,

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 12 RASTER DATA ANALYSIS 12.1 Data Analysis Environment Box 12.1 How to Make an Analysis Mask 12.2 Local Operations 12.2.1 Local Operations with a Single Raster 12.2.2 Reclassification 12.2.3 Local

More information

Raster GIS applications

Raster GIS applications Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface DEM: cell value = elevation (also slope/aspect/hillshade/curvature) Thematic layer: cell value = category or measured

More information

SPATIAL DATA MODELS Introduction to GIS Winter 2015

SPATIAL DATA MODELS Introduction to GIS Winter 2015 SPATIAL DATA MODELS Introduction to GIS Winter 2015 GIS Data Organization The basics Data can be organized in a variety of ways Spatial location, content (attributes), frequency of use Come up with a system

More information

Masking Lidar Cliff-Edge Artifacts

Masking Lidar Cliff-Edge Artifacts Masking Lidar Cliff-Edge Artifacts Methods 6/12/2014 Authors: Abigail Schaaf is a Remote Sensing Specialist at RedCastle Resources, Inc., working on site at the Remote Sensing Applications Center in Salt

More information

What we have covered?

What we have covered? What we have covered? Indexing and Hashing Data warehouse and OLAP Data Mining Information Retrieval and Web Mining XML and XQuery Spatial Databases Transaction Management 1 Lecture 6: Spatial Data Management

More information

Raster model. Alexandre Gonçalves, DECivil, IST

Raster model. Alexandre Gonçalves, DECivil, IST Raster model 1. Resolution 2. Values and data types 3. Storage 4. Fitting rasters 5. Map algebra 6. Interpolation 7. Conversion vector raster 8. Vector vs. raster 1 Raster model Divides the space into

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models Feature Types and Data Models How Does a GIS Work? - a GIS operates on the premise that all of the features in the real world can

More information

Chapter 7 Spatial Operation

Chapter 7 Spatial Operation 7.1 Introduction Chapter 7 Spatial Operation Q: What is spatial operation? A: Spatial operation is computational manipulation of spatial objects that deepen our understanding of spatial phenomena. In spatial

More information

Data handling 3: Alter Process

Data handling 3: Alter Process Introduction Geo information Science (GRS 10306) Data handling 3: Alter Process 2009/2010 CGI GIRS 2 Alter / process / analysis / operations definition Query a data handling class of operators which doesn

More information

Introduction to GIS. Geographic Information Systems SOCR-377 9/24/2015. R. Khosla Fall Semester The real world. What in the world is GIS?

Introduction to GIS. Geographic Information Systems SOCR-377 9/24/2015. R. Khosla Fall Semester The real world. What in the world is GIS? Introduction to GIS Geographic Information Systems SOCR-377 What in the world is GIS? GIS is simultaneously the telescope, the microscope, the computer and the Xerox machine of regional analysis and synthesis

More information

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi

Output Primitives. Dr. S.M. Malaek. Assistant: M. Younesi Output Primitives Dr. S.M. Malaek Assistant: M. Younesi Output Primitives Output Primitives: Basic geometric structures (points, straight line segment, circles and other conic sections, quadric surfaces,

More information

Computer Graphics Fundamentals. Jon Macey

Computer Graphics Fundamentals. Jon Macey Computer Graphics Fundamentals Jon Macey jmacey@bournemouth.ac.uk http://nccastaff.bournemouth.ac.uk/jmacey/ 1 1 What is CG Fundamentals Looking at how Images (and Animations) are actually produced in

More information

Combine Yield Data From Combine to Contour Map Ag Leader

Combine Yield Data From Combine to Contour Map Ag Leader Combine Yield Data From Combine to Contour Map Ag Leader Exporting the Yield Data Using SMS Program 1. Data format On Hard Drive. 2. Start program SMS Basic. a. In the File menu choose Open. b. Click on

More information

Module 7 Raster operations

Module 7 Raster operations Introduction Geo-Information Science Practical Manual Module 7 Raster operations 7. INTRODUCTION 7-1 LOCAL OPERATIONS 7-2 Mathematical functions and operators 7-5 Raster overlay 7-7 FOCAL OPERATIONS 7-8

More information

Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Dr. Michael Wimmer wimmer@cg.tuwien.ac.at Visibility Overview Basics about visibility Basics about occlusion culling View-frustum culling / backface culling Occlusion

More information

Spatial Analysis and Modeling (GIST 4302/5302) Representation of Spatial Data. Representation of Spatial Data Models 3/5/18

Spatial Analysis and Modeling (GIST 4302/5302) Representation of Spatial Data. Representation of Spatial Data Models 3/5/18 3/5/8 Spatial Analysis and Modeling (GIST 432/532) Representation of Spatial Data Guofeng Cao Department of Geosciences Texas Tech University Representation of Spatial Data Models Object-based model: treats

More information

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater.

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater. Overview: In this week's lab you will identify areas within Webster Township that are most vulnerable to surface and groundwater contamination by conducting a risk analysis with raster data. You will create

More information

Class #2. Data Models: maps as models of reality, geographical and attribute measurement & vector and raster (and other) data structures

Class #2. Data Models: maps as models of reality, geographical and attribute measurement & vector and raster (and other) data structures Class #2 Data Models: maps as models of reality, geographical and attribute measurement & vector and raster (and other) data structures Role of a Data Model Levels of Data Model Abstraction GIS as Digital

More information

Figure 1: Workflow of object-based classification

Figure 1: Workflow of object-based classification Technical Specifications Object Analyst Object Analyst is an add-on package for Geomatica that provides tools for segmentation, classification, and feature extraction. Object Analyst includes an all-in-one

More information

Raster Data Model & Analysis

Raster Data Model & Analysis Topics: 1. Understanding Raster Data 2. Adding and displaying raster data in ArcMap 3. Converting between floating-point raster and integer raster 4. Converting Vector data to Raster 5. Querying Raster

More information

Module 10 Data-action models

Module 10 Data-action models Introduction Geo-Information Science Practical Manual Module 10 Data-action models 10. INTRODUCTION 10-1 DESIGNING A DATA-ACTION MODEL 10-2 REPETITION EXERCISES 10-6 10. Introduction Until now you have

More information

Feature-based cartographic modelling

Feature-based cartographic modelling International Journal of Geographical Information Science Vol., No., Month 8, 1 24 Research Article Feature-based cartographic modelling International Journal of Geographical Information Science gis17324.3d

More information

4.0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA

4.0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA .0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA The process of digitizing existing maps is a transformation from one analog) form of information to another digital) form. Data input is the operation

More information

Accuracy, Support, and Interoperability. Michael F. Goodchild University of California Santa Barbara

Accuracy, Support, and Interoperability. Michael F. Goodchild University of California Santa Barbara Accuracy, Support, and Interoperability Michael F. Goodchild University of California Santa Barbara The traditional view Every object has a true position and set of attributes with enough time and resources

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO Solid Modelling Graphics Systems / Computer Graphics and Interfaces 1 Solid Modelling In 2D, one set 2D line segments or curves does not necessarily form a closed area. In 3D, a collection of surfaces

More information

GIS in the Social and Natural Sciences. Last Lecture. Today s Outline 5/14/2017. GEOG 4110/5100 Special Topics in Geography

GIS in the Social and Natural Sciences. Last Lecture. Today s Outline 5/14/2017. GEOG 4110/5100 Special Topics in Geography GEOG 4110/5100 Special Topics in Geography GIS in the Social and Natural Sciences Working with Vector Data in a GIS Last Lecture We talked about the main types of vector data models (CDS, TDS, TIN, Networks)

More information

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University

Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Spatial Analysis and Modeling (GIST 4302/5302) Guofeng Cao Department of Geosciences Texas Tech University Representation of Spatial Data Representation of Spatial Data Models Object-based model: treats

More information

Introduction to Spatial Database Systems. Outline

Introduction to Spatial Database Systems. Outline Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 1 Outline Introduction & definition Modeling Querying Data structures and algorithms

More information

3.2 TIPS FOR USING MATLAB

3.2 TIPS FOR USING MATLAB 3.2 TIPS FOR USING MATLAB 3.2.1 Exporting Graphics from MATLAB to WORD and Editing Details Given a graphical plot in MATLAB, say graph.fig, the following procedure allows this graph to be imported into

More information

Unit 4: Vector Overlay Analysis. Lecture Outline. Possible background reading material: McHarg, Ian 1992 Design with Nature. Wiley and Sons, New York.

Unit 4: Vector Overlay Analysis. Lecture Outline. Possible background reading material: McHarg, Ian 1992 Design with Nature. Wiley and Sons, New York. Unit 4: Vector Overlay Analysis Lecture Outline Possible background reading material: McHarg, Ian 1992 Design with Nature. Wiley and Sons, New York. Introduction: The idea of overlay originated when maps

More information

YRERFS GIS WORKFLOW AND MODELING PROCESS

YRERFS GIS WORKFLOW AND MODELING PROCESS YRERFS GIS WORKFLOW AND MODELING PROCESS Presenter Name Presenter Title Duty Location Date of Presentation US Army Corps of Engineers YRERFS Downy Woodpecker Riparian Forest (RF) Habitat Determination

More information

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4 Data Assembly, Part II GIS Cyberinfrastructure Module Day 4 Objectives Continuation of effective troubleshooting Create shapefiles for analysis with buffers, union, and dissolve functions Calculate polygon

More information

Geographic Information Systems. using QGIS

Geographic Information Systems. using QGIS Geographic Information Systems using QGIS 1 - INTRODUCTION Generalities A GIS (Geographic Information System) consists of: -Computer hardware -Computer software - Digital Data Generalities GIS softwares

More information

Geometric and Thematic Integration of Spatial Data into Maps

Geometric and Thematic Integration of Spatial Data into Maps Geometric and Thematic Integration of Spatial Data into Maps Mark McKenney Department of Computer Science, Texas State University mckenney@txstate.edu Abstract The map construction problem (MCP) is defined

More information

MAPLOGIC CORPORATION. GIS Software Solutions. Getting Started. With MapLogic Layout Manager

MAPLOGIC CORPORATION. GIS Software Solutions. Getting Started. With MapLogic Layout Manager MAPLOGIC CORPORATION GIS Software Solutions Getting Started With MapLogic Layout Manager Getting Started with MapLogic Layout Manager 2011 MapLogic Corporation All Rights Reserved 330 West Canton Ave.,

More information

Building and Analyzing Topology in Autodesk Map GI21-1

Building and Analyzing Topology in Autodesk Map GI21-1 December 2-5, 2003 MGM Grand Hotel Las Vegas Building and Analyzing Topology in Autodesk Map GI21-1 Alex Penney ISD Training Content Manager, Autodesk Professional Services, Autodesk Inc. Topology is one

More information

GEOSPATIAL ENGINEERING COMPETENCIES. Geographic Information Science

GEOSPATIAL ENGINEERING COMPETENCIES. Geographic Information Science GEOSPATIAL ENGINEERING COMPETENCIES Geographic Information Science The character and structure of spatial information, its methods of capture, organisation, classification, qualification, analysis, management,

More information

Digitizing and Editing Polygons in the STS Gypsy Moth Project. M. Dodd 2/10/04

Digitizing and Editing Polygons in the STS Gypsy Moth Project. M. Dodd 2/10/04 Digitizing and Editing Polygons in the STS Gypsy Moth Project M. Dodd 2/10/04 Digitizing and Editing Polygons in the STS Gypsy Moth Project OVERVIEW OF DIGITIZING IN STS 3 THE DIGITIZING WINDOW 4 DIGITIZING

More information

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation.

(a) rotating 45 0 about the origin and then translating in the direction of vector I by 4 units and (b) translating and then rotation. Code No: R05221201 Set No. 1 1. (a) List and explain the applications of Computer Graphics. (b) With a neat cross- sectional view explain the functioning of CRT devices. 2. (a) Write the modified version

More information

3D Cadastral System Functionalities for 5D Multi- Purpose LIS

3D Cadastral System Functionalities for 5D Multi- Purpose LIS 3D Cadastral System Functionalities for 5D Multi- Purpose LIS ΕΣΠΑ 2007-2013, Δράση«Διμερής Ε&Τ Συνεργασία Ελλάδας- Ισραήλ 2013-2015» YΠOYPΓEIO ΠAΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Γ.Γ.Ε.Τ. ΕΥΔΕ - ΕΤΑΚ Outline 5DMuPLIS

More information

Zonal Statistics in PostGIS a Tutorial

Zonal Statistics in PostGIS a Tutorial 2014 Brian J McGill. You are welcome to link to this tutorial but not copy or repost. Feedback is welcome and should be sent to mail AT brianmcgill DOT org Zonal Statistics in PostGIS a Tutorial Zonal

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

Relational Database: The Relational Data Model; Operations on Database Relations

Relational Database: The Relational Data Model; Operations on Database Relations Relational Database: The Relational Data Model; Operations on Database Relations Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Overview

More information

Feature Enhancements by Release

Feature Enhancements by Release Autodesk Map Feature Enhancements by Release This document highlights the feature enhancements that have occurred with each release of Autodesk Map software from Release 4 (2000i) through the current 2004

More information

Mid-term exam. GIS and Forest Engineering Applications. Week 5. FE 257. GIS and Forest Engineering Applications. Week 5

Mid-term exam. GIS and Forest Engineering Applications. Week 5. FE 257. GIS and Forest Engineering Applications. Week 5 FE 257. GIS and Forest Engineering Applications Week 5 Week 5 Last week (Chapter 3): Acquiring, creating, and editing GIS s Examining Error Chapter 7 Buffering and other proximity operations Questions?

More information

Mid-West ESRI Utility User s Group Conference. March 26, 2014

Mid-West ESRI Utility User s Group Conference. March 26, 2014 Mid-West ESRI Utility User s Group Conference March 26, 2014 Presented by: Hillary Bjorstrom, GIS Analyst STAR Energy Services LLC 1 What are Data Driven Pages? Data Driven Pages Workflow Creating an Index

More information

Steps for Modeling a Proposed New Reservoir in GIS

Steps for Modeling a Proposed New Reservoir in GIS Steps for Modeling a Proposed New Reservoir in GIS Requirements: ArcGIS ArcMap, ArcScene, Spatial Analyst, and 3D Analyst There s a new reservoir proposed for Right Hand Fork in Logan Canyon. I wanted

More information

ArcGIS Pro: Image Segmentation, Classification, and Machine Learning. Jeff Liedtke and Han Hu

ArcGIS Pro: Image Segmentation, Classification, and Machine Learning. Jeff Liedtke and Han Hu ArcGIS Pro: Image Segmentation, Classification, and Machine Learning Jeff Liedtke and Han Hu Overview of Image Classification in ArcGIS Pro Overview of the classification workflow Classification tools

More information

IST 210. Introduction to Spatial Databases

IST 210. Introduction to Spatial Databases Introduction to Spatial Databases Evolution of acronym GIS Geographic Information Systems (1980s) Geographic Information Science (1990s) Geographic Information Services (2000s) GISystems GIServices GIScience

More information

Chapter 2: Spatial Concepts and Data Models 2.1 Introduction 2.2 Models of Spatial Information. 2.4 Extending ER with Spatial Concepts 2.

Chapter 2: Spatial Concepts and Data Models 2.1 Introduction 2.2 Models of Spatial Information. 2.4 Extending ER with Spatial Concepts 2. Chapter 2: Spatial Concepts and Data Models 2. Introduction 2.2 Models of Spatial Information 2.3 Three-Step Database Design 2.4 Extending ER with Spatial Concepts 2.5 Summary What is a Data Model? What

More information

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault Spatial Analysis of Raster Data 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 2 4 4 4 2 4 5 5 4 2 4 4 4 2 5 5 4 4 2 4 5 4 3 5 4 4 4 2 5 5 5 3 + = 0 = shale 1 = limestone 2 = fault 4 = no fault 2 =Fault in shale 3 =

More information

Introduction to 3D Analysis. Jinwu Ma Jie Chang Khalid Duri

Introduction to 3D Analysis. Jinwu Ma Jie Chang Khalid Duri Introduction to 3D Analysis Jinwu Ma Jie Chang Khalid Duri Area & Volume 3D Analyst Features Detect Change Determine Cut/Fill Calculate Surface Area & Volume Data Management Data Creation Data Conversion

More information

Spatial Analysis 2. Basic operations Béla Márkus

Spatial Analysis 2. Basic operations Béla Márkus Spatial Analysis 2. Basic operations Béla Márkus Spatial Analysis 2.: Basic operations Béla Márkus Lector: János Tamás This module was created within TÁMOP - 4.1.2-08/1/A-2009-0027 "Tananyagfejlesztéssel

More information

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK

17/07/2013 RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES RASTER DATA MODEL& STRUCTURE TIN- TRIANGULAR IRREGULAR NETWORK RASTER DATA STRUCTURE GIS LECTURE 4 GIS DATA MODELS AND STRUCTURES Space is subdivided into regular grids of square grid cells or other forms of polygonal meshes known as picture elements (pixels) the

More information

YRERFS GIS WORKFLOW AND MODELING PROCESS

YRERFS GIS WORKFLOW AND MODELING PROCESS YRERFS GIS WORKFLOW AND MODELING PROCESS Presenter Name Presenter Title Duty Location Date of Presentation US Army Corps of Engineers YRERFS Yellow Warbler Riparian Scrub Shrub (RSS) Habitat Determination

More information

Topic 5: Raster and Vector Data Models

Topic 5: Raster and Vector Data Models Geography 38/42:286 GIS 1 Topic 5: Raster and Vector Data Models Chapters 3 & 4: Chang (Chapter 4: DeMers) 1 The Nature of Geographic Data Most features or phenomena occur as either: discrete entities

More information