Gene Expression Data Analysis. Qin Ma, Ph.D. December 10, 2017

Size: px
Start display at page:

Download "Gene Expression Data Analysis. Qin Ma, Ph.D. December 10, 2017"

Transcription

1 1 Gene Expression Data Analysis Qin Ma, Ph.D. December 10, 2017

2 2 Bioinformatics Systems biology This interdisciplinary science is about providing computational support to studies on linking the behavior of cells, organisms and populations to the information encoded in the genomes. Temple Smith, Current Topics in Computational Molecular Biology (2002) Omics data Genomics Transcriptomics Metabolomics Metagenomics Epigenomics Proteomics Interactomics Bioinformatics

3 3 Characteristics of Biological Big Data 36.8 million transactions per day on Amazon Biomedical Data (behavioral outcomes in observational study) Big Small Data v.s. Small Big Data Next Generation Sequencing Data

4 4 The Hierarchical Structure of Computational Techniques Models Algorithms Programs Tools Software

5 DNA à RNA à Protein Central Dogma Intro to gene expression (central dogma). (n.d.). Retrieved November 05, 2017, from 5/46

6 Information derivable from gene expression data 6 Inference: genes x, y are highly expressed under conditions W while genes a, b are not expressed Inference: gene X is significantly more highly expressed in diseased cell than in normal cell; hence gene X could potentially serve s a marker of the disease differentially expressed genes genome sequence Control Treatment genome sequence Inference: genes with similar expression patterns might be functionally related, e.g., working in the same pathway or co-regulated co-expression -> co-regulation

7 Gene Expression Measurement 7 Microarray (GEO) Read quality check (FastQC) RNA-seq (SRA) RNA-seq read mapping (BWA, Bowtie) RNA-seq Assembly with reference genome (Cufflinks) $ $ RNA-seq Assembly without reference genome (Trinity: De-novo assembly)

8 RNA-seq Process Purpose Analysis of Big Genomic Data Gene Expression Estimation Variations Differential Gene Expression Analysis Functional Enrichment Analysis Network Analysis Forde, B. M., & O Toole, P. W. (2013). Next-generation sequencing technologies and their impact on microbial genomics. Briefings in functional genomics, 12(5), /46

9 Non-trivial RNA-seq Analysis Pipeline RNA-seq Reads Quality Check Data Trimming Read Mapping (De-novo) Assembly Gene Read Count Operon Prediction Differential Expression Analysis Functional Enrichment Analysis De-novo (Bi)-Clustering Network Analysis & Modeling 9

10 Non-trivial RNA-seq Analysis Tools RNA-seq Reads FastQC Btrim HISAT Cufflinks Trinity HtSeq DOOR SeqTU EdgeR/DeSeq DAVID/GO MCL/QUBIC NCA/GtrieScanner 10

11 Existing RNA-seq Pipeline Tools 2009 GSNAP edger FastQC FastX 2011 Novoalign Bowtie DESeq kallisto BWA Bowti e TopHa t GNUM ap RSEM Cufflinks Cutadapt TopHat2 STAR Trinity HISAT2 Bridger HtSeq sleu th 11/46

12 ViDGER Tool to assist in interpreting and analyzing count matrices PCA, MDS, Clustering DGEA Visualizations Basic R package Shiny implementation 12/46

13 ViDGER Compatibility % Count & condition matrix Popular DGE tools by citation count Cuffdiff* edger DESeq2 DEGseq limma sleuth* % % DGE & Visualization Visualization Only None 13/46

14 Shiny Input Count Matrix Generates basic figures from matrix Initial Analyses PCA MDS 14/46

15 Differential Gene Expression Select DGE tool to analyze data Interactive results table DGE results visualizations for improved interpretation Interactivity between table & figures 15/46

16 27 Pitfall I: Popularity High Performance Human MapSplice2 (97.8%) CRAC (86.1%) GSNAP (98.9%) Novoalign (90.3%) TopHat2 (12.5%)

17 Pitfall II: Gene expression estimation RNA-seq Reads Quality Check Data Trimming Read Mapping Mapping uncertainty! (De-novo) Assembly Gene Read Count Operon Prediction Differential Expression Analysis Functional Enrichment Analysis De-novo (Bi)-Clustering Network Analysis & Modeling 28

18 29 Pitfall II: Gene expression estimation RNA-seq reads mapping uncertainty

19 Mapping Uncertainty Occurrences Plants Highly duplicative nature of genome Animals Alternative splicing Metagenomics Sequencing of entire microbial communities simultaneously Identical genes across different species Similar, mutated or evolved genes Currently other issues compounding mapping uncertainty 19/46

20 30 Pitfall II: How Serious? Diploid plants Polyploid plants Species Arabidopsis thaliana Vitis vinifera Solanum lycopersicum Solanum tuberosum Triticum aestivum Uniquemapped Multimapped Unmapped 77%~89% 55%~82% 49%~87% 55%~69% 62%~69% 8%~17% 10%~25% 6%~34% 18%~26% 18%~25% 2%~5% 8%~23% 5%~44% 12%~19% 9%~18% Similar things happen in Human (transcript) and Metagenome

21 Mapping Uncertainty in Real Data Diploid plants Polyploid plants Animal Species Arabidopsis thaliana Vitis vinifera Solanum Lycopersicum Panicum Virgatum Triticum Aestivum Human Genome Human Transcriptome Mus musculus Genome Mus musculus Transcriptome Total Datasets Size(G) Unique- Mapped 69%~89% 55%~82% 52%~88% 47%~66% 61%~69% 55%-65% 10%~15% 40%~70% 11%~27% 55% Multi- Mapped 8%~17% 9%~25% 5%~34% 17%~33% 17%~25% 21%-28% 23%-31% 10%~38% 9%~42% 22% Un-mapped 2%~17% 8%~23% 4%~16% 13%~25% 9%~18% 12%-21% 55%-65% 3%~31% 43%~67% 23% (Multi-mapped)/ (Total mapped) 8%-18% 10%-31% 6%-39% 22%-39% 21%-28% 25%-33% 61%-72% 13%~48% 29%~77% 29% 21/46

22 Mapping Uncertainty in Plant Data 22/46

23 Mapping Uncertainty in Animal Data 23/46

24 Pitfall II: How to Proceed? a) Ignore them: only consider unique mapping 30%-70% of reads are discarded from further analysis in plants b) Random mapping: If multiple equally best matches, choose one at random TopHat c) Report all: try to keep more information Cufflinks: distribute these multiple mapping reads uniformly or based on the expression level of unique mapping reads. 31

25 Pitfall II: How to Proceed? It is an OPEN and challenge problem! 32

26 Quantifying Mapping Uncertainty Gene Expression Quality Check (GeneQC) Computational program collecting relevant information from datasets Interprets information in meaningful way to provide quantification of mapping uncertainty Two levels of observations Genomic level: Sequence Similarity between two genomic locations Transcriptomic level: Proportion of shared ambiguous reads 26/46

27 C D GeneQC 0.5 A B C /46

28 D-score Allows for comparable metric of mapping uncertainty Combines three statistics Maximum proportion of shared ambiguous reads Maximum base-pair similarity Number of gene pair interactions Normalized between 0 and 1 for each dataset i /46

29 D. : Sequence Similarity * Match Length max 2 {ss 5,2 l 5,2 } ss 5,2 = sequence similirty of gene i and gene y l 5,2 = match length Variables: D. Additional Constraints for D. e-value < 10 KL SS*Match Length > 100 Mismatch < 5 Gap < 5 gene y. : ss 5,. = 65%; l 5,. = 100 gene y P : ss 5,P = 85%; l 5,. = 200 gene y S : ss 5,S = 85%; l 5,S = 350 gene y R : ss 5,R = 85%; l 5,R = 200 gene i 29/46

30 D P : Max MMR percentage U V X U V G 5 = reads aligned to gene i X = argmax G 5 Y ] Y. Variables: D P X G 5 G 5 X Y P 30/46

31 D S : Degree weight log.b S 5 M S 5 = {genomic locations where D. > 0} M 5 = {genomic locations where D P > 0} Variables: D S Separated into two populations D P = 0 D P 0 31/46

32 Variables by Species 32/46

33 D., D P, D S combined into one distinct value Regression-based approach to optimize effect of each parameter D = α. D. + α P D P + α S D S + α R D. D P + α j D. D S + α L D P D S + α k D. D P D S SD = D S (α. D. + α P D P ) D-score Development D used as dependent variable to represent mapping uncertainty G 5 = reads mapped to gene i (All matches) U 5 = reads uniquely mapped to gene i (Unique mapping) Real alignment falls somewhere between U 5 R 5 G 5 D = U V K r V U V D 1 Ṗ = 1 r V U V = 1 U V t u V P U V D regressed upon (D., D P, D S ) to determine optimized coefficients for each dataset Interpretations for each set of coefficients can be used to understand biological mechanisms behind species-specific mapping uncertainty 33/46

34 D-scores 34/46

35 Simplified D- score 35/46

36 Simplified D-score Distributions Density plots appear to show mixture distributions Individual distributions can help indicate categorizations for mapping uncertainty 36/46

37 Level of Mapping Uncertainty from D-scores Mixture model distributions fit to set of D-scores Indicates level of mapping uncertainty for each annotated gene Normal & Gamma distribution fitting Variable number of distributions Mixture Model Fitting using Expectation-Maximization Algorithm P X θ = z β z Y z X θ z X = x., x P,, x ~ represent the set of D-scores β z represent the weight for the k component with z β z = 1 Y z (X θ z ) represent the distribution of the k component θ z is the set of parameters for the k component 37/46

38 Assume Y z (X, θ z ) = N(X; μ z, σ z P ) Initial parameterization K-means clustering to separate into k components Mixture Model Fitting: Initialization θ z, β z calculated for each component using MLE based on N z MLE(μ z ) = Š ˆ ˆ, Š ˆ MLE σ z P = ˆ, KŒ β z =, with N z = number of data points in component k & z N z = N k = 4 38/46

39 Mixture Model Fitting: Expectation & Maximization Posterior Probability of containment within each component for each D-score is calculated P x k 5 x = P x x k 5 P k 5 P x = N x μ N z, σ z z N = β zn x μ z σ z z β z N x μ z, σ z z β z N x μ z σ z Parameters for each component calculated after Expectation Step μ z = P x k. 5 x x P x k 5 x. σ P z = P x k. 5 x x μ z P x k5 x. P β z =. N P x k 5 x 39/46

40 Expectation and Maximization steps repeated until no significant improvement achieved after each iteration log likelihood fails to substantially increase Mixture Model Fitting: Optimization k = 4 Implementation in R with k {1,, 9} Best model fitting determined by lowest Bayesian Information Criterion (BIC) 40/46

41 Mixture Model Fitting k = 4 The four distributions provide criteria for separating genes into 4 categorizations based on mapping uncertainty level 41/46

42 Addressing Mapping Uncertainty Co-expression Modules (CEMs) Genes typically co-expressed at certain rates with other genes forming co-expression modules Can use expression levels for known co-expressed genes (CEGs) to predict likely expression levels for the gene locations This information can be in turn used to determine which location is most likely for any particular ambiguous read Can use existing information to gain insight into the likelihood of the correct location for alignment If no prior CEMs are available, biclustering of data can provide dataset-specific CEMs. 42/46

43 Pitfall III: T-test for differentially expression analysis Wilcoxon (nonparametric) test has better performance than T-test (parametric) Bioinformatics Nov;18(11): Cited by 308 P-value <

44 Pitfall IV: co-expression correlation Pearson or Spearman? chip1 chip2 chip3 chip4 chip5 chip6 chip7 chip8 Chip9 chip10 Gene Gene Pearson Spearman Pearson benchmarks linear relationship Spearman s rank correlation benchmarks monotonic relationship 35

45 Pitfall V: Co-expression in LARGE data set Conditions One dimensional clustering (genes or conditions) Genes more data!! Bi-clustering (genes & conditions) Genes are not necessarily co-expressed under all experimental conditions, when we have a large data set! 45

46 Computer Lab Requirement Recent version of following software R RStudio MiKTeX (or TeXLive) Install the following R packages on your personal computer EdgeR QUBIC sand 46

47 Final Report Presentation 12 teams, 3 person/team For each team, 15 mins team presentation 12 mins presentation 3 mins question-and-answer One score per team 47

Data Processing and Analysis in Systems Medicine. Milena Kraus Data Management for Digital Health Summer 2017

Data Processing and Analysis in Systems Medicine. Milena Kraus Data Management for Digital Health Summer 2017 Milena Kraus Digital Health Summer Agenda Real-world Use Cases Oncology Nephrology Heart Insufficiency Additional Topics Data Management & Foundations Biology Recap Data Sources Data Formats Business Processes

More information

RNA-Seq. Joshua Ainsley, PhD Postdoctoral Researcher Lab of Leon Reijmers Neuroscience Department Tufts University

RNA-Seq. Joshua Ainsley, PhD Postdoctoral Researcher Lab of Leon Reijmers Neuroscience Department Tufts University RNA-Seq Joshua Ainsley, PhD Postdoctoral Researcher Lab of Leon Reijmers Neuroscience Department Tufts University joshua.ainsley@tufts.edu Day four Quantifying expression Intro to R Differential expression

More information

ITMO Ecole de Bioinformatique Hands-on session: smallrna-seq N. Servant 21 rd November 2013

ITMO Ecole de Bioinformatique Hands-on session: smallrna-seq N. Servant 21 rd November 2013 ITMO Ecole de Bioinformatique Hands-on session: smallrna-seq N. Servant 21 rd November 2013 1. Data and objectives We will use the data from GEO (GSE35368, Toedling, Servant et al. 2011). Two samples were

More information

Differential gene expression analysis using RNA-seq

Differential gene expression analysis using RNA-seq https://abc.med.cornell.edu/ Differential gene expression analysis using RNA-seq Applied Bioinformatics Core, September/October 2018 Friederike Dündar with Luce Skrabanek & Paul Zumbo Day 3: Counting reads

More information

Our typical RNA quantification pipeline

Our typical RNA quantification pipeline RNA-Seq primer Our typical RNA quantification pipeline Upload your sequence data (fastq) Align to the ribosome (Bow>e) Align remaining reads to genome (TopHat) or transcriptome (RSEM) Make report of quality

More information

Galaxy workshop at the Winter School Igor Makunin

Galaxy workshop at the Winter School Igor Makunin Galaxy workshop at the Winter School 2016 Igor Makunin i.makunin@uq.edu.au Winter school, UQ, July 6, 2016 Plan Overview of the Genomics Virtual Lab Introduce Galaxy, a web based platform for analysis

More information

Analysis of ChIP-seq data

Analysis of ChIP-seq data Before we start: 1. Log into tak (step 0 on the exercises) 2. Go to your lab space and create a folder for the class (see separate hand out) 3. Connect to your lab space through the wihtdata network and

More information

Aligners. J Fass 21 June 2017

Aligners. J Fass 21 June 2017 Aligners J Fass 21 June 2017 Definitions Assembly: I ve found the shredded remains of an important document; put it back together! UC Davis Genome Center Bioinformatics Core J Fass Aligners 2017-06-21

More information

CLC Server. End User USER MANUAL

CLC Server. End User USER MANUAL CLC Server End User USER MANUAL Manual for CLC Server 10.0.1 Windows, macos and Linux March 8, 2018 This software is for research purposes only. QIAGEN Aarhus Silkeborgvej 2 Prismet DK-8000 Aarhus C Denmark

More information

ROTS: Reproducibility Optimized Test Statistic

ROTS: Reproducibility Optimized Test Statistic ROTS: Reproducibility Optimized Test Statistic Fatemeh Seyednasrollah, Tomi Suomi, Laura L. Elo fatsey (at) utu.fi March 3, 2016 Contents 1 Introduction 2 2 Algorithm overview 3 3 Input data 3 4 Preprocessing

More information

RNA-seq. Manpreet S. Katari

RNA-seq. Manpreet S. Katari RNA-seq Manpreet S. Katari Evolution of Sequence Technology Normalizing the Data RPKM (Reads per Kilobase of exons per million reads) Score = R NT R = # of unique reads for the gene N = Size of the gene

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 15: Microarray clustering http://compbio.pbworks.com/f/wood2.gif Some slides were adapted from Dr. Shaojie Zhang (University of Central Florida) Microarray

More information

EBSeqHMM: An R package for identifying gene-expression changes in ordered RNA-seq experiments

EBSeqHMM: An R package for identifying gene-expression changes in ordered RNA-seq experiments EBSeqHMM: An R package for identifying gene-expression changes in ordered RNA-seq experiments Ning Leng and Christina Kendziorski April 30, 2018 Contents 1 Introduction 1 2 The model 2 2.1 EBSeqHMM model..........................................

More information

RNA-seq Data Analysis

RNA-seq Data Analysis Seyed Abolfazl Motahari RNA-seq Data Analysis Basics Next Generation Sequencing Biological Samples Data Cost Data Volume Big Data Analysis in Biology تحلیل داده ها کنترل سیستمهای بیولوژیکی تشخیص بیماریها

More information

Long Read RNA-seq Mapper

Long Read RNA-seq Mapper UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGENEERING AND COMPUTING MASTER THESIS no. 1005 Long Read RNA-seq Mapper Josip Marić Zagreb, February 2015. Table of Contents 1. Introduction... 1 2. RNA Sequencing...

More information

Exercise 1 Review. --outfiltermismatchnmax : max number of mismatch (Default 10) --outreadsunmapped fastx: output unmapped reads

Exercise 1 Review. --outfiltermismatchnmax : max number of mismatch (Default 10) --outreadsunmapped fastx: output unmapped reads Exercise 1 Review Setting parameters STAR --quantmode GeneCounts --genomedir genomedb -- runthreadn 2 --outfiltermismatchnmax 2 --readfilesin WTa.fastq.gz --readfilescommand zcat --outfilenameprefix WTa

More information

How to store and visualize RNA-seq data

How to store and visualize RNA-seq data How to store and visualize RNA-seq data Gabriella Rustici Functional Genomics Group gabry@ebi.ac.uk EBI is an Outstation of the European Molecular Biology Laboratory. Talk summary How do we archive RNA-seq

More information

Sequence Analysis Pipeline

Sequence Analysis Pipeline Sequence Analysis Pipeline Transcript fragments 1. PREPROCESSING 2. ASSEMBLY (today) Removal of contaminants, vector, adaptors, etc Put overlapping sequence together and calculate bigger sequences 3. Analysis/Annotation

More information

Introduction to Cancer Genomics

Introduction to Cancer Genomics Introduction to Cancer Genomics Gene expression data analysis part I David Gfeller Computational Cancer Biology Ludwig Center for Cancer research david.gfeller@unil.ch 1 Overview 1. Basic understanding

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2015 1 Sequence Alignment Dannie Durand Pairwise Sequence Alignment The goal of pairwise sequence alignment is to establish a correspondence between the

More information

BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14)

BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14) BGGN-213: FOUNDATIONS OF BIOINFORMATICS (Lecture 14) Genome Informatics (Part 1) https://bioboot.github.io/bggn213_f17/lectures/#14 Dr. Barry Grant Nov 2017 Overview: The purpose of this lab session is

More information

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg Established platforms HTS Platforms Illumina HiSeq, ABI SOLiD, Roche 454 Newcomers: Benchtop machines 454 GS Junior,

More information

srna Detection Results

srna Detection Results srna Detection Results Summary: This tutorial explains how to work with the output obtained from the srna Detection module of Oasis. srna detection is the first analysis module of Oasis, and it examines

More information

Introduction to GE Microarray data analysis Practical Course MolBio 2012

Introduction to GE Microarray data analysis Practical Course MolBio 2012 Introduction to GE Microarray data analysis Practical Course MolBio 2012 Claudia Pommerenke Nov-2012 Transkriptomanalyselabor TAL Microarray and Deep Sequencing Core Facility Göttingen University Medical

More information

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology 9/9/ I9 Introduction to Bioinformatics, Clustering algorithms Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Data mining tasks Predictive tasks vs descriptive tasks Example

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

High-throughout sequencing and using short-read aligners. Simon Anders

High-throughout sequencing and using short-read aligners. Simon Anders High-throughout sequencing and using short-read aligners Simon Anders High-throughput sequencing (HTS) Sequencing millions of short DNA fragments in parallel. a.k.a.: next-generation sequencing (NGS) massively-parallel

More information

TP RNA-seq : Differential expression analysis

TP RNA-seq : Differential expression analysis TP RNA-seq : Differential expression analysis Overview of RNA-seq analysis Fusion transcripts detection Differential expresssion Gene level RNA-seq Transcript level Transcripts and isoforms detection 2

More information

all M 2M_gt_15 2M_8_15 2M_1_7 gt_2m TopHat2

all M 2M_gt_15 2M_8_15 2M_1_7 gt_2m TopHat2 Pairs processed per second 6, 4, 2, 6, 4, 2, 6, 4, 2, 6, 4, 2, 6, 4, 2, 6, 4, 2, 72,318 418 1,666 49,495 21,123 69,984 35,694 1,9 71,538 3,5 17,381 61,223 69,39 55 19,579 44,79 65,126 96 5,115 33,6 61,787

More information

Anaquin - Vignette Ted Wong January 05, 2019

Anaquin - Vignette Ted Wong January 05, 2019 Anaquin - Vignette Ted Wong (t.wong@garvan.org.au) January 5, 219 Citation [1] Representing genetic variation with synthetic DNA standards. Nature Methods, 217 [2] Spliced synthetic genes as internal controls

More information

Automated Bioinformatics Analysis System on Chip ABASOC. version 1.1

Automated Bioinformatics Analysis System on Chip ABASOC. version 1.1 Automated Bioinformatics Analysis System on Chip ABASOC version 1.1 Phillip Winston Miller, Priyam Patel, Daniel L. Johnson, PhD. University of Tennessee Health Science Center Office of Research Molecular

More information

Dr. Gabriela Salinas Dr. Orr Shomroni Kaamini Rhaithata

Dr. Gabriela Salinas Dr. Orr Shomroni Kaamini Rhaithata Analysis of RNA sequencing data sets using the Galaxy environment Dr. Gabriela Salinas Dr. Orr Shomroni Kaamini Rhaithata Microarray and Deep-sequencing core facility 30.10.2017 RNA-seq workflow I Hypothesis

More information

Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

More information

Colorado State University Bioinformatics Algorithms Assignment 6: Analysis of High- Throughput Biological Data Hamidreza Chitsaz, Ali Sharifi- Zarchi

Colorado State University Bioinformatics Algorithms Assignment 6: Analysis of High- Throughput Biological Data Hamidreza Chitsaz, Ali Sharifi- Zarchi Colorado State University Bioinformatics Algorithms Assignment 6: Analysis of High- Throughput Biological Data Hamidreza Chitsaz, Ali Sharifi- Zarchi Although a little- bit long, this is an easy exercise

More information

srap: Simplified RNA-Seq Analysis Pipeline

srap: Simplified RNA-Seq Analysis Pipeline srap: Simplified RNA-Seq Analysis Pipeline Charles Warden October 30, 2017 1 Introduction This package provides a pipeline for gene expression analysis. The normalization function is specific for RNA-Seq

More information

Clustering Techniques

Clustering Techniques Clustering Techniques Bioinformatics: Issues and Algorithms CSE 308-408 Fall 2007 Lecture 16 Lopresti Fall 2007 Lecture 16-1 - Administrative notes Your final project / paper proposal is due on Friday,

More information

de.nbi and its Galaxy interface for RNA-Seq

de.nbi and its Galaxy interface for RNA-Seq de.nbi and its Galaxy interface for RNA-Seq Jörg Fallmann Thanks to Björn Grüning (RBC-Freiburg) and Sarah Diehl (MPI-Freiburg) Institute for Bioinformatics University of Leipzig http://www.bioinf.uni-leipzig.de/

More information

STREAMING FRAGMENT ASSIGNMENT FOR REAL-TIME ANALYSIS OF SEQUENCING EXPERIMENTS. Supplementary Figure 1

STREAMING FRAGMENT ASSIGNMENT FOR REAL-TIME ANALYSIS OF SEQUENCING EXPERIMENTS. Supplementary Figure 1 STREAMING FRAGMENT ASSIGNMENT FOR REAL-TIME ANALYSIS OF SEQUENCING EXPERIMENTS ADAM ROBERTS AND LIOR PACHTER Supplementary Figure 1 Frequency 0 1 1 10 100 1000 10000 1 10 20 30 40 50 60 70 13,950 Bundle

More information

CLUSTERING IN BIOINFORMATICS

CLUSTERING IN BIOINFORMATICS CLUSTERING IN BIOINFORMATICS CSE/BIMM/BENG 8 MAY 4, 0 OVERVIEW Define the clustering problem Motivation: gene expression and microarrays Types of clustering Clustering algorithms Other applications of

More information

Reference guided RNA-seq data analysis using BioHPC Lab computers

Reference guided RNA-seq data analysis using BioHPC Lab computers Reference guided RNA-seq data analysis using BioHPC Lab computers This document assumes that you already know some basics of how to use a Linux computer. Some of the command lines in this document are

More information

Differential Expression

Differential Expression Differential Expression Data In this practical, as before, we will work with RNA-Seq data from Arabidopsis seeds that matured at standard temperature (ST, 22 C day/18 C night) or at high temperature (HT,

More information

Short Read Alignment. Mapping Reads to a Reference

Short Read Alignment. Mapping Reads to a Reference Short Read Alignment Mapping Reads to a Reference Brandi Cantarel, Ph.D. & Daehwan Kim, Ph.D. BICF 05/2018 Introduction to Mapping Short Read Aligners DNA vs RNA Alignment Quality Pitfalls and Improvements

More information

What is clustering. Organizing data into clusters such that there is high intra- cluster similarity low inter- cluster similarity

What is clustering. Organizing data into clusters such that there is high intra- cluster similarity low inter- cluster similarity Clustering What is clustering Organizing data into clusters such that there is high intra- cluster similarity low inter- cluster similarity Informally, finding natural groupings among objects. High dimensional

More information

Mapping NGS reads for genomics studies

Mapping NGS reads for genomics studies Mapping NGS reads for genomics studies Valencia, 28-30 Sep 2015 BIER Alejandro Alemán aaleman@cipf.es Genomics Data Analysis CIBERER Where are we? Fastq Sequence preprocessing Fastq Alignment BAM Visualization

More information

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg

High-throughput sequencing: Alignment and related topic. Simon Anders EMBL Heidelberg High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg Established platforms HTS Platforms Illumina HiSeq, ABI SOLiD, Roche 454 Newcomers: Benchtop machines: Illumina MiSeq,

More information

EBSeq: An R package for differential expression analysis using RNA-seq data

EBSeq: An R package for differential expression analysis using RNA-seq data EBSeq: An R package for differential expression analysis using RNA-seq data Ning Leng, John A. Dawson, Christina Kendziorski October 9, 2012 Contents 1 Introduction 2 2 The Model 3 2.1 Two conditions............................

More information

Aligning reads: tools and theory

Aligning reads: tools and theory Aligning reads: tools and theory Genome Sequence read :LM-Mel-14neg :LM-Mel-42neg :LM-Mel-14neg :LM-Mel-14pos :LM-Mel-42neg :LM-Mel-14neg :LM-Mel-42neg :LM-Mel-14neg chrx: 152139280 152139290 152139300

More information

Centre (CNIO). 3rd Melchor Fernández Almagro St , Madrid, Spain. s/n, Universidad de Vigo, Ourense, Spain.

Centre (CNIO). 3rd Melchor Fernández Almagro St , Madrid, Spain. s/n, Universidad de Vigo, Ourense, Spain. O. Graña *a,b, M. Rubio-Camarillo a, F. Fdez-Riverola b, D.G. Pisano a and D. Glez-Peña b a Bioinformatics Unit, Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO).

More information

The software and data for the RNA-Seq exercise are already available on the USB system

The software and data for the RNA-Seq exercise are already available on the USB system BIT815 Notes on R analysis of RNA-seq data The software and data for the RNA-Seq exercise are already available on the USB system The notes below regarding installation of R packages and other software

More information

Ballgown. flexible RNA-seq differential expression analysis. Alyssa Frazee Johns Hopkins

Ballgown. flexible RNA-seq differential expression analysis. Alyssa Frazee Johns Hopkins Ballgown flexible RNA-seq differential expression analysis Alyssa Frazee Johns Hopkins Biostatistics @acfrazee RNA-seq data Reads (50-100 bases) Transcripts (RNA) Genome (DNA) [use tool of your choice]

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

High throughput Data Analysis 2. Cluster Analysis

High throughput Data Analysis 2. Cluster Analysis High throughput Data Analysis 2 Cluster Analysis Overview Why clustering? Hierarchical clustering K means clustering Issues with above two Other methods Quality of clustering results Introduction WHY DO

More information

Expander 7.2 Online Documentation

Expander 7.2 Online Documentation Expander 7.2 Online Documentation Introduction... 2 Starting EXPANDER... 2 Input Data... 3 Tabular Data File... 4 CEL Files... 6 Working on similarity data no associated expression data... 9 Working on

More information

Correlation Motif Vignette

Correlation Motif Vignette Correlation Motif Vignette Hongkai Ji, Yingying Wei October 30, 2018 1 Introduction The standard algorithms for detecting differential genes from microarray data are mostly designed for analyzing a single

More information

Benchmarking of RNA-seq aligners

Benchmarking of RNA-seq aligners Lecture 17 RNA-seq Alignment STAR Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Benchmarking of RNA-seq aligners Based on this analysis the most reliable

More information

Quantification. Part I, using Excel

Quantification. Part I, using Excel Quantification In this exercise we will work with RNA-seq data from a study by Serin et al (2017). RNA-seq was performed on Arabidopsis seeds matured at standard temperature (ST, 22 C day/18 C night) or

More information

Tutorial:OverRepresentation - OpenTutorials

Tutorial:OverRepresentation - OpenTutorials Tutorial:OverRepresentation From OpenTutorials Slideshow OverRepresentation (about 12 minutes) (http://opentutorials.rbvi.ucsf.edu/index.php?title=tutorial:overrepresentation& ce_slide=true&ce_style=cytoscape)

More information

Expression Analysis with the Advanced RNA-Seq Plugin

Expression Analysis with the Advanced RNA-Seq Plugin Expression Analysis with the Advanced RNA-Seq Plugin May 24, 2016 Sample to Insight CLC bio, a QIAGEN Company Silkeborgvej 2 Prismet 8000 Aarhus C Denmark Telephone: +45 70 22 32 44 www.clcbio.com support-clcbio@qiagen.com

More information

RNA-Seq Analysis With the Tuxedo Suite

RNA-Seq Analysis With the Tuxedo Suite June 2016 RNA-Seq Analysis With the Tuxedo Suite Dena Leshkowitz Introduction In this exercise we will learn how to analyse RNA-Seq data using the Tuxedo Suite tools: Tophat, Cuffmerge, Cufflinks and Cuffdiff.

More information

Advanced RNA-Seq 1.5. User manual for. Windows, Mac OS X and Linux. November 2, 2016 This software is for research purposes only.

Advanced RNA-Seq 1.5. User manual for. Windows, Mac OS X and Linux. November 2, 2016 This software is for research purposes only. User manual for Advanced RNA-Seq 1.5 Windows, Mac OS X and Linux November 2, 2016 This software is for research purposes only. QIAGEN Aarhus Silkeborgvej 2 Prismet DK-8000 Aarhus C Denmark Contents 1 Introduction

More information

Data: ftp://ftp.broad.mit.edu/pub/users/bhaas/rnaseq_workshop/rnaseq_workshop_dat a.tgz. Software:

Data: ftp://ftp.broad.mit.edu/pub/users/bhaas/rnaseq_workshop/rnaseq_workshop_dat a.tgz. Software: A Tutorial: De novo RNA- Seq Assembly and Analysis Using Trinity and edger The following data and software resources are required for following the tutorial: Data: ftp://ftp.broad.mit.edu/pub/users/bhaas/rnaseq_workshop/rnaseq_workshop_dat

More information

Aligners. J Fass 23 August 2017

Aligners. J Fass 23 August 2017 Aligners J Fass 23 August 2017 Definitions Assembly: I ve found the shredded remains of an important document; put it back together! UC Davis Genome Center Bioinformatics Core J Fass Aligners 2017-08-23

More information

Bioinformatics Services for HT Sequencing

Bioinformatics Services for HT Sequencing Bioinformatics Services for HT Sequencing Tyler Backman, Rebecca Sun, Thomas Girke December 19, 2008 Bioinformatics Services for HT Sequencing Slide 1/18 Introduction People Service Overview and Rates

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

10. Clustering. Introduction to Bioinformatics Jarkko Salojärvi. Based on lecture slides by Samuel Kaski

10. Clustering. Introduction to Bioinformatics Jarkko Salojärvi. Based on lecture slides by Samuel Kaski 10. Clustering Introduction to Bioinformatics 30.9.2008 Jarkko Salojärvi Based on lecture slides by Samuel Kaski Definition of a cluster Typically either 1. A group of mutually similar samples, or 2. A

More information

One-Shot Learning with a Hierarchical Nonparametric Bayesian Model

One-Shot Learning with a Hierarchical Nonparametric Bayesian Model One-Shot Learning with a Hierarchical Nonparametric Bayesian Model R. Salakhutdinov, J. Tenenbaum and A. Torralba MIT Technical Report, 2010 Presented by Esther Salazar Duke University June 10, 2011 E.

More information

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Deciphering the information contained in DNA sequences began decades ago since the time of Sanger sequencing.

More information

SVM Classification in -Arrays

SVM Classification in -Arrays SVM Classification in -Arrays SVM classification and validation of cancer tissue samples using microarray expression data Furey et al, 2000 Special Topics in Bioinformatics, SS10 A. Regl, 7055213 What

More information

Customizable information fields (or entries) linked to each database level may be replicated and summarized to upstream and downstream levels.

Customizable information fields (or entries) linked to each database level may be replicated and summarized to upstream and downstream levels. Manage. Analyze. Discover. NEW FEATURES BioNumerics Seven comes with several fundamental improvements and a plethora of new analysis possibilities with a strong focus on user friendliness. Among the most

More information

Galaxy Platform For NGS Data Analyses

Galaxy Platform For NGS Data Analyses Galaxy Platform For NGS Data Analyses Weihong Yan wyan@chem.ucla.edu Collaboratory Web Site http://qcb.ucla.edu/collaboratory Collaboratory Workshops Workshop Outline ü Day 1 UCLA galaxy and user account

More information

mrna-seq Basic processing Read mapping (shown here, but optional. May due if time allows) Gene expression estimation

mrna-seq Basic processing Read mapping (shown here, but optional. May due if time allows) Gene expression estimation mrna-seq Basic processing Read mapping (shown here, but optional. May due if time allows) Tophat Gene expression estimation cufflinks Confidence intervals Gene expression changes (separate use case) Sample

More information

Read Mapping. Slides by Carl Kingsford

Read Mapping. Slides by Carl Kingsford Read Mapping Slides by Carl Kingsford Bowtie Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg, Genome Biology

More information

Standard output. Some of the output files can be redirected into the standard output, which may facilitate in creating the pipelines:

Standard output. Some of the output files can be redirected into the standard output, which may facilitate in creating the pipelines: Lecture 18 RNA-seq Alignment Standard output Some of the output files can be redirected into the standard output, which may facilitate in creating the pipelines: Filtering of the alignments STAR performs

More information

Sequence alignment algorithms

Sequence alignment algorithms Sequence alignment algorithms Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 23 rd 27 After this lecture, you can decide when to use local and global sequence alignments

More information

Goal: Learn how to use various tool to extract information from RNAseq reads. 4.1 Mapping RNAseq Reads to a Genome Assembly

Goal: Learn how to use various tool to extract information from RNAseq reads. 4.1 Mapping RNAseq Reads to a Genome Assembly ESSENTIALS OF NEXT GENERATION SEQUENCING WORKSHOP 2014 UNIVERSITY OF KENTUCKY AGTC Class 4 RNAseq Goal: Learn how to use various tool to extract information from RNAseq reads. Input(s): magnaporthe_oryzae_70-15_8_supercontigs.fasta

More information

ECS 234: Data Analysis: Clustering ECS 234

ECS 234: Data Analysis: Clustering ECS 234 : Data Analysis: Clustering What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

MSCBIO 2070/02-710: Computational Genomics, Spring A4: spline, HMM, clustering, time-series data analysis, RNA-folding

MSCBIO 2070/02-710: Computational Genomics, Spring A4: spline, HMM, clustering, time-series data analysis, RNA-folding MSCBIO 2070/02-710:, Spring 2015 A4: spline, HMM, clustering, time-series data analysis, RNA-folding Due: April 13, 2015 by email to Silvia Liu (silvia.shuchang.liu@gmail.com) TA in charge: Silvia Liu

More information

SEEK User Manual. Introduction

SEEK User Manual. Introduction SEEK User Manual Introduction SEEK is a computational gene co-expression search engine. It utilizes a vast human gene expression compendium to deliver fast, integrative, cross-platform co-expression analyses.

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-31-017 Outline Background Defining proximity Clustering methods Determining number of clusters Comparing two solutions Cluster analysis as unsupervised Learning

More information

Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients

Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients 1 Gene signature selection to predict survival benefits from adjuvant chemotherapy in NSCLC patients 1,2 Keyue Ding, Ph.D. Nov. 8, 2014 1 NCIC Clinical Trials Group, Kingston, Ontario, Canada 2 Dept. Public

More information

Similarity measures in clustering time series data. Paula Silvonen

Similarity measures in clustering time series data. Paula Silvonen Similarity measures in clustering time series data Paula Silvonen paula.silvonen@vtt.fi Introduction Clustering: determine the similarity or distance between profiles group the expression profiles according

More information

Gene regulation. DNA is merely the blueprint Shared spatially (among all tissues) and temporally But cells manage to differentiate

Gene regulation. DNA is merely the blueprint Shared spatially (among all tissues) and temporally But cells manage to differentiate Gene regulation DNA is merely the blueprint Shared spatially (among all tissues) and temporally But cells manage to differentiate Especially but not only during developmental stage And cells respond to

More information

Gene expression & Clustering (Chapter 10)

Gene expression & Clustering (Chapter 10) Gene expression & Clustering (Chapter 10) Determining gene function Sequence comparison tells us if a gene is similar to another gene, e.g., in a new species Dynamic programming Approximate pattern matching

More information

Introduction to Systems Biology II: Lab

Introduction to Systems Biology II: Lab Introduction to Systems Biology II: Lab Amin Emad NIH BD2K KnowEnG Center of Excellence in Big Data Computing Carl R. Woese Institute for Genomic Biology Department of Computer Science University of Illinois

More information

Package EBglmnet. January 30, 2016

Package EBglmnet. January 30, 2016 Type Package Package EBglmnet January 30, 2016 Title Empirical Bayesian Lasso and Elastic Net Methods for Generalized Linear Models Version 4.1 Date 2016-01-15 Author Anhui Huang, Dianting Liu Maintainer

More information

KisSplice. Identifying and Quantifying SNPs, indels and Alternative Splicing Events from RNA-seq data. 29th may 2013

KisSplice. Identifying and Quantifying SNPs, indels and Alternative Splicing Events from RNA-seq data. 29th may 2013 Identifying and Quantifying SNPs, indels and Alternative Splicing Events from RNA-seq data 29th may 2013 Next Generation Sequencing A sequencing experiment now produces millions of short reads ( 100 nt)

More information

CompClustTk Manual & Tutorial

CompClustTk Manual & Tutorial CompClustTk Manual & Tutorial Brandon King Copyright c California Institute of Technology Version 0.1.10 May 13, 2004 Contents 1 Introduction 1 1.1 Purpose.............................................

More information

Predict Outcomes and Reveal Relationships in Categorical Data

Predict Outcomes and Reveal Relationships in Categorical Data PASW Categories 18 Specifications Predict Outcomes and Reveal Relationships in Categorical Data Unleash the full potential of your data through predictive analysis, statistical learning, perceptual mapping,

More information

Drug versus Disease (DrugVsDisease) package

Drug versus Disease (DrugVsDisease) package 1 Introduction Drug versus Disease (DrugVsDisease) package The Drug versus Disease (DrugVsDisease) package provides a pipeline for the comparison of drug and disease gene expression profiles where negatively

More information

Clustering. Lecture 6, 1/24/03 ECS289A

Clustering. Lecture 6, 1/24/03 ECS289A Clustering Lecture 6, 1/24/03 What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

Single/paired-end RNAseq analysis with Galaxy

Single/paired-end RNAseq analysis with Galaxy October 016 Single/paired-end RNAseq analysis with Galaxy Contents: 1. Introduction. Quality control 3. Alignment 4. Normalization and read counts 5. Workflow overview 6. Sample data set to test the paired-end

More information

Nature Methods: doi: /nmeth Supplementary Figure 1

Nature Methods: doi: /nmeth Supplementary Figure 1 Supplementary Figure 1 Schematic representation of the Workflow window in Perseus All data matrices uploaded in the running session of Perseus and all processing steps are displayed in the order of execution.

More information

Analyzing ChIP- Seq Data in Galaxy

Analyzing ChIP- Seq Data in Galaxy Analyzing ChIP- Seq Data in Galaxy Lauren Mills RISS ABSTRACT Step- by- step guide to basic ChIP- Seq analysis using the Galaxy platform. Table of Contents Introduction... 3 Links to helpful information...

More information

Services Performed. The following checklist confirms the steps of the RNA-Seq Service that were performed on your samples.

Services Performed. The following checklist confirms the steps of the RNA-Seq Service that were performed on your samples. Services Performed The following checklist confirms the steps of the RNA-Seq Service that were performed on your samples. SERVICE Sample Received Sample Quality Evaluated Sample Prepared for Sequencing

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

- with application to cluster and significance analysis

- with application to cluster and significance analysis Selection via - with application to cluster and significance of gene expression Rebecka Jörnsten Department of Statistics, Rutgers University rebecka@stat.rutgers.edu, http://www.stat.rutgers.edu/ rebecka

More information

Cyverse tutorial 1 Logging in to Cyverse and data management. Open an Internet browser window and navigate to the Cyverse discovery environment:

Cyverse tutorial 1 Logging in to Cyverse and data management. Open an Internet browser window and navigate to the Cyverse discovery environment: Cyverse tutorial 1 Logging in to Cyverse and data management Open an Internet browser window and navigate to the Cyverse discovery environment: https://de.cyverse.org/de/ Click Log in with your CyVerse

More information

RNA-seq. Read mapping and Quantification. Genomics: Lecture #12. Institut für Medizinische Genetik und Humangenetik Charité Universitätsmedizin Berlin

RNA-seq. Read mapping and Quantification. Genomics: Lecture #12. Institut für Medizinische Genetik und Humangenetik Charité Universitätsmedizin Berlin (1) Read and Quantification Institut für Medizinische Genetik und Humangenetik Charité Universitätsmedizin Berlin Genomics: Lecture #12 Today (1) Gene Expression Previous gold standard: Basic protocol

More information

CANCER PREDICTION USING PATTERN CLASSIFICATION OF MICROARRAY DATA. By: Sudhir Madhav Rao &Vinod Jayakumar Instructor: Dr.

CANCER PREDICTION USING PATTERN CLASSIFICATION OF MICROARRAY DATA. By: Sudhir Madhav Rao &Vinod Jayakumar Instructor: Dr. CANCER PREDICTION USING PATTERN CLASSIFICATION OF MICROARRAY DATA By: Sudhir Madhav Rao &Vinod Jayakumar Instructor: Dr. Michael Nechyba 1. Abstract The objective of this project is to apply well known

More information

The ISB Cancer Genomics Cloud

The ISB Cancer Genomics Cloud The ISB Cancer Genomics Cloud www.isb-cgc.org David L Gibbs david.gibbs@systemsbiology.org April 3, 2018 ISB-CGC Mission is to democratize the NCI cancer genomics data sets, with tools and compute-power,

More information