Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision

Size: px
Start display at page:

Download "Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision"

Transcription

1 Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Part II of the sequel of 2 talks. Computation C/QC geometry was presented by Tony F. Chan Ronald Lok Ming Lui Department of Mathematics, The Chinese University of Hong Kong Jointly work with: Prof. Tony F. Chan, HKUST Prof. David Gu, CS, Stony Brook Dr. Alvin Wong, Math, UCI Prof. Shing-Tung Yau, MATH, Harvard, CUHK

2 Outline Of The Talk Motivation Definition of discrete QC geometry More applications of QC theory Medical morphometry; Computer graphics; Computer visions Conclusion

3 Outline Of The Talk Motivation Definition of discrete QC geometry More applications of QC theory Medical morphometry; Computer graphics; Computer visions Conclusion

4 Tasks in Imaging, Graphics & Vision These are related to Geometry! How computational Q.C. can help?

5 Quasi-conformal Geometry: A recap QC map Generalization of C maps Orientation preserving homeomorphism circle to ellipse f z f ( z) z

6 Quasi-conformal Geometry: A recap Existing theories are defined on continuous smooth surfaces!? One of our very First Goal: Give a discrete definition of QC geometry on triangulation meshes: well defined; analogous to continuous case Conformal Quasi-conformal

7 Outline Of The Talk Motivation Definition of discrete QC geometry More applications of QC theory Medical morphometry; Computer graphics; Computer visions Conclusion

8 Discrete Analogue of Quasi-conformal In practice, surfaces are represented discretely by triangulation meshes. We need a discrete analogue of Quasi-conformal geometry (Lui,Gu,Yau et al.). Main theorem to define discrete Quasi-conformal mappings: KEY IDEA: Quasi-conformal map can be converted to conformal map under suitable distorted metric

9 Discrete Analogue of Quasi-conformal Definition of Discrete Metric: Definition of Discrete Conformal Deformation:

10 Discrete Analogue of Quasi-conformal Definition of Discrete Quasi-conformal Mapping: Discrete QC Map and Continuous QC Map: Continuous QC theories can be extended to discrete case!

11 Computation of Discrete Quasi-conformal Discrete Quasi-Yamabe Flow Method STEP 1: Given the Beltrami differential, compute the associated auxiliary metric: STEP 2: Compute the conformal parameterization under the auxiliary metric via the Discrete Yamabe flow method: (Discrete Yamabe Flow) (Discrete Gaussian curvature)

12 Computation of Discrete Quasi-conformal Convergency of discrete Quasi-Yamabe Flow Method

13 Computation of Discrete Quasi-conformal Examples of Quasi-conformal parameterization

14 Computation of Discrete Quasi-conformal Examples of Quasi-conformal parameterization

15 Outline Of The Talk Motivation Definition of discrete QC geometry More applications of QC theory Medical morphometry; Computer graphics; Computer visions Conclusion

16 Beltrami representation of diffeomorphisms Coordinates functions representation f ( f1, f2, f3) Constraints: -1-1; -Onto; -Jacobian >0 -No linear structure 1-1 correspondence Beltrami representation 1 No other constraints

17 Quasiconformal for Compression Goal: Multiscale representation of diffeomorphisms. Applications: Storage; multiscale analysis of deformation pattern,... Algorithm: Fourier compression of Beltrami coefficients Other compressions such as wavelets may also be used. Advantages: Saves storage; Easy to preserve diffeomorphic property.

18 Quasiconformal for Compression Example: Compression of a hippocampal registration

19 Quasiconformal for Compression Example: Compression of a cortical surface registraion Diffeomorphic property is preserved with just a few Fourier coefficients in each channel.

20 Quasiconformal for Compression Comparison with Compression of Coordinate Functions

21 Quasiconformal for Refinement Goal: Refine diffeomorphisms with coarse resolution. Applications: Coarse to fine registration, multi-grid based registration, compression; texture mapping,... Algorithm: Find a diffeomorphism with a Beltrami coefficient refined by cubic interpolation, keeping its value on the coarser grid. Advantages: Restore the finest diffeomorphism possible with the least amount of data.

22 Quasiconformal for Refinement Example: Refinement of an artificial diffeomorphism Coarse Diffeomorphism

23 Quasiconformal for Refinement Example: Refinement of an artificial diffeomorphism Coarse Beltrami Coefficient Refined Beltrami Coefficient by Cubic Interpolation Refined Diffeomorphism

24 Quasiconformal for Refinement Example: Refinement of a coarse 3D texture mapping Original Coarse Texture Mapping Undesired artifact observed! Refined Texture Mapping

25 Quasiconformal for 2D Shape Analysis Goal: Find a shape signature for 2D multiplyconnected objects with natural metric. Applications: Shape recognition, classification, Image searching: Find a shape from a large dataset of objects. Find the object which looks like the contour

26 Shape Representation: What is needed? An effective representation of shapes and a reliable shape fingerprint that identifies an object. Shape Analysis: A stable shape index measuring the distance between two different fingerprints.

27 Recent Shape Signatures: What is needed? Zhu et al.: medial axis and compare their skeletal graphs; Liu et al.: shape axis trees (locus of midpoints of optimally corresponding boundary points) Mokhtarian: multi-scale, curvature based shape representation technique for planar curves Mumford et al. : conformal approach for simple closed curve (captured subtle variability of shapes up to scaling and translation)

28 Signature by Conformal Welding Shape Signature for MC shapes: (Lui & Gu 2011) Conformal welding (Diffeomorphisms of the unit circles) + Conformal modules (radii and centers)

29 Signature by Conformal Welding

30 Signature by Conformal Welding

31 Why is it a complete shape representation? Answer: Given a shape signature, we can reconstruct a unique shape! Our shape signature is really a FINGERPRINT for 2D MC shapes! Reconstruction Scheme from shape signature Idea: Conformal welding Goal: Find the map F from disk to disk (such that inner circles maps to the desired shapes)? Method: Glue the circle domains using the shape signatures (circle to circle diff)

32 Reconstruction from Shape Signature

33 Conclusion Discrete analogue of Quasi-conformal Geometry can be defined on discrete mesh More applications on Quasi-conformal geometry in Medical Imaging and computer graphics are presented. THANK YOU!

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

arxiv: v1 [cs.cg] 29 Aug 2014

arxiv: v1 [cs.cg] 29 Aug 2014 Noname manuscript No. (will be inserted by the editor) Fast Disk Conformal Parameterization of Simply-connected Open Surfaces Pui Tung Choi Lok Ming Lui the date of receipt and acceptance should be inserted

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

COMPUTATION OF QUASICONFORMAL SURFACE MAPS USING DISCRETE BELTRAMI FLOW

COMPUTATION OF QUASICONFORMAL SURFACE MAPS USING DISCRETE BELTRAMI FLOW COMPUTATION OF QUASICONFORMAL SURFACE MAPS USING DISCRETE BELTRAMI FLOW Abstract. The manipulation of surface homeomorphisms is an important aspect in 3D modeling and surface processing. Every homeomorphic

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Texture Map and Video Compression Using Beltrami Representation

Texture Map and Video Compression Using Beltrami Representation SIAM J. IMAGING SCIENCES Vol. 6, No. 4, pp. 1880 1902 c 2013 Society for Industrial and Applied Mathematics Texture Map and Video Compression Using Beltrami Representation Lok Ming Lui, Ka Chun Lam, Tsz

More information

Non-Differentiable Image Manifolds

Non-Differentiable Image Manifolds The Multiscale Structure of Non-Differentiable Image Manifolds Michael Wakin Electrical l Engineering i Colorado School of Mines Joint work with Richard Baraniuk, Hyeokho Choi, David Donoho Models for

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Manifold Learning Theory and Applications

Manifold Learning Theory and Applications Manifold Learning Theory and Applications Yunqian Ma and Yun Fu CRC Press Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Contents

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Brain Surface Conformal Parameterization with Algebraic Functions

Brain Surface Conformal Parameterization with Algebraic Functions Brain Surface Conformal Parameterization with Algebraic Functions Yalin Wang 1,2, Xianfeng Gu 3, Tony F. Chan 1, Paul M. Thompson 2, and Shing-Tung Yau 4 1 Mathematics Department, UCLA, Los Angeles, CA

More information

Curves-on-Surface: A General Shape Comparison Framework

Curves-on-Surface: A General Shape Comparison Framework Curves-on-Surface: A General Shape Comparison Framework Xin Li Ying He Xianfeng Gu Hong Qin Stony Brook University, Stony Brook, NY 11794, USA {xinli, yhe, gu, qin}@cs.sunysb.edu Abstract We develop a

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

A linear formulation for disk conformal parameterization of simply-connected open surfaces

A linear formulation for disk conformal parameterization of simply-connected open surfaces Adv Comput Math (2018) 44:87 114 DOI 10.1007/s10444-017-9536-x A linear formulation for disk conformal parameterization of simply-connected open surfaces Gary Pui-Tung Choi 1 Lok Ming Lui 2 Received: 1

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Landmark Constrained Genus-one Surface Teichmüller Map Applied to Surface Registration in Medical Imaging

Landmark Constrained Genus-one Surface Teichmüller Map Applied to Surface Registration in Medical Imaging Landmark Constrained Genus-one Surface Teichmüller Map Applied to Surface Registration in Medical Imaging Ka Chun Lam a, Xianfeng Gu b, Lok Ming Lui a, a Department of Mathematics, The Chinese University

More information

Image Segmentation Techniques for Object-Based Coding

Image Segmentation Techniques for Object-Based Coding Image Techniques for Object-Based Coding Junaid Ahmed, Joseph Bosworth, and Scott T. Acton The Oklahoma Imaging Laboratory School of Electrical and Computer Engineering Oklahoma State University {ajunaid,bosworj,sacton}@okstate.edu

More information

Discrete Ricci Flow and Its Applications

Discrete Ricci Flow and Its Applications Discrete Ricci Flow and Its Applications State University of New York 1 Motivation Ricci flow is a powerful tool for designing Riemannian metrics, which lays down the theoretic foundation for many crucial

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

CSE 5559 Computational Topology: Theory, algorithms, and applications to data analysis. Lecture 0: Introduction. Instructor: Yusu Wang

CSE 5559 Computational Topology: Theory, algorithms, and applications to data analysis. Lecture 0: Introduction. Instructor: Yusu Wang CSE 5559 Computational Topology: Theory, algorithms, and applications to data analysis Lecture 0: Introduction Instructor: Yusu Wang Lecture 0: Introduction What is topology Why should we be interested

More information

Computational Conformal Geometry and Its Applications

Computational Conformal Geometry and Its Applications Computational Conformal Geometry and Its Applications Wei Zeng Institute of Computing Technology Chinese Academy of Sciences zengwei@cs.sunysb.edu Thesis Proposal Advisor: Harry Shum Co-advisor: Xianfeng

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Geometry Processing What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry Processing? Understanding the math of 3D shape and applying

More information

VOLUMETRIC HARMONIC MAP

VOLUMETRIC HARMONIC MAP COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2004 International Press Vol. 3, No. 3, pp. 191-202, March 2004 004 VOLUMETRIC HARMONIC MAP YALIN WANG, XIANFENG GU, AND SHING-TUNG YAU Abstract. We develop

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Ripplet: a New Transform for Feature Extraction and Image Representation

Ripplet: a New Transform for Feature Extraction and Image Representation Ripplet: a New Transform for Feature Extraction and Image Representation Dr. Dapeng Oliver Wu Joint work with Jun Xu Department of Electrical and Computer Engineering University of Florida Outline Motivation

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Geometry Processing What is Geometry Processing? Understanding the math of 3D shape What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Computer Graphics / Animation

Computer Graphics / Animation Computer Graphics / Animation Artificial object represented by the number of points in space and time (for moving, animated objects). Essential point: How do you interpolate these points in space and time?

More information

RESEARCH STATEMENT Ronald Lok Ming Lui

RESEARCH STATEMENT Ronald Lok Ming Lui Ronald Lok Ming Lui 1/11 RESEARCH STATEMENT Ronald Lok Ming Lui (malmlui@math.harvard.edu) The main focus of my research has been on problems in computational conformal geometry and human brain mapping.

More information

Erasing Haar Coefficients

Erasing Haar Coefficients Recap Haar simple and fast wavelet transform Limitations not smooth enough: blocky How to improve? classical approach: basis functions Lifting: transforms 1 Erasing Haar Coefficients 2 Page 1 Classical

More information

Registration of Deformable Objects

Registration of Deformable Objects Registration of Deformable Objects Christopher DeCoro Includes content from: Consistent Mesh Parameterizations, Praun et. al, Siggraph 2001 The Space of Human Body Shapes, Allen et. al, Siggraph 2003 Shape-based

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES

CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2007 International Press Vol. 7, No. 3, pp. 273-286, 2007 004 CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES WEI ZENG, XIN LI, SHING-TUNG YAU, AND

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING THE GEOMETRIC HEAT EQUATION AN SURFACE FAIRING ANREW WILLIS BROWN UNIVERSITY, IVISION OF ENGINEERING, PROVIENCE, RI 02912, USA 1. INTROUCTION This paper concentrates on analysis and discussion of the heat

More information

3D Surface Matching and Registration through Shape Images

3D Surface Matching and Registration through Shape Images 3D Surface Matching and Registration through Shape Images Zhaoqiang Lai and Jing Hua Department of Computer Science, Wayne State University, Detroit, MI 48202, USA Abstract. In this paper, we present a

More information

3D Shape Registration using Regularized Medial Scaffolds

3D Shape Registration using Regularized Medial Scaffolds 3D Shape Registration using Regularized Medial Scaffolds 3DPVT 2004 Thessaloniki, Greece Sep. 6-9, 2004 Ming-Ching Chang Frederic F. Leymarie Benjamin B. Kimia LEMS, Division of Engineering, Brown University

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

Conformal Geometry of the Visual Cortex

Conformal Geometry of the Visual Cortex Ma191b Winter 2017 Geometry of Neuroscience Functional Architecture of the V1 visual cortex Filtering of optical signals by visual neurons and local differential data; integration of local differential

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

Graph-Constrained Surface Registration Based on Tutte Embedding

Graph-Constrained Surface Registration Based on Tutte Embedding Graph-Constrained Surface Registration Based on Tutte Embedding Wei Zeng Yi-Jun Yang Muhammad Razib Florida International University Shandong University {wzeng, mrazi003}@cs.fiu.edu yyj@sdu.edu.cn Abstract

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Conformal Spherical Parametrization for High Genus Surfaces

Conformal Spherical Parametrization for High Genus Surfaces Conformal Spherical Parametrization for High Genus Surfaces Wei Zeng Chinese Academy of Sciences Stony Brook University Xin Li Stony Brook University Shing-Tung Yau Harvard University Xianfeng Gu Stony

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Leaf Classification from Boundary Analysis

Leaf Classification from Boundary Analysis Leaf Classification from Boundary Analysis Anne Jorstad AMSC 663 Midterm Progress Report Fall 2007 Advisor: Dr. David Jacobs, Computer Science 1 Outline Background, Problem Statement Algorithm Validation

More information

Matching 3D Shapes Using 2D Conformal Representations

Matching 3D Shapes Using 2D Conformal Representations Matching 3D Shapes Using 2D Conformal Representations Xianfeng Gu 1 and Baba C. Vemuri 2 Computer and Information Science and Engineering, Gainesville, FL 32611-6120, USA {gu,vemuri}@cise.ufl.edu Abstract.

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Matching 3D Shapes Using 2D Conformal Representations

Matching 3D Shapes Using 2D Conformal Representations Matching 3D Shapes Using 2D Conformal Representations Xianfeng Gu 1 and Baba C. Vemuri 2 Computer and Information Science and Engineering, Gainesville, FL 32611-6120, USA {gu,vemuri}@cise.ufl.edu Matching

More information

Asymptotic Error Analysis

Asymptotic Error Analysis Asymptotic Error Analysis Brian Wetton Mathematics Department, UBC www.math.ubc.ca/ wetton PIMS YRC, June 3, 2014 Outline Overview Some History Romberg Integration Cubic Splines - Periodic Case More History:

More information

CS 534: Computer Vision Texture

CS 534: Computer Vision Texture CS 534: Computer Vision Texture Ahmed Elgammal Dept of Computer Science CS 534 Texture - 1 Outlines Finding templates by convolution What is Texture Co-occurrence matrices for texture Spatial Filtering

More information

Object Recognition. The Chair Room

Object Recognition. The Chair Room Object Recognition high-level interpretations objects scene elements image elements raw images Object recognition object recognition is a typical goal of image analysis object recognition includes - object

More information

Hierarchical Matching of Deformable Shapes

Hierarchical Matching of Deformable Shapes Hierarchical Matching of Deformable Shapes Pedro Felzenszwalb University of Chicago pff@cs.uchicago.edu Joshua Schwartz University of Chicago vegan@cs.uchicago.edu Abstract We introduce a new representation

More information

ADAPTIVE FINITE ELEMENT

ADAPTIVE FINITE ELEMENT Finite Element Methods In Linear Structural Mechanics Univ. Prof. Dr. Techn. G. MESCHKE SHORT PRESENTATION IN ADAPTIVE FINITE ELEMENT Abdullah ALSAHLY By Shorash MIRO Computational Engineering Ruhr Universität

More information

Geometric Registration Based on Distortion Estimation

Geometric Registration Based on Distortion Estimation 2013 IEEE International Conference on Computer Vision Geometric Registration Based on Distortion Estimation Wei Zeng Florida International University wzeng@cs.fiu.edu Feng Luo Rutgers University fluo@math.rutgers.edu

More information

Basic Algorithms for Digital Image Analysis: a course

Basic Algorithms for Digital Image Analysis: a course Institute of Informatics Eötvös Loránd University Budapest, Hungary Basic Algorithms for Digital Image Analysis: a course Dmitrij Csetverikov with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi,

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

Raghuraman Gopalan Center for Automation Research University of Maryland, College Park

Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 2D Shape Matching (and Object Recognition) Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 1 Outline What is a shape? Part 1: Matching/ Recognition Shape contexts

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Mesh Generation for Aircraft Engines based on the Medial Axis

Mesh Generation for Aircraft Engines based on the Medial Axis Mesh Generation for Aircraft Engines based on the Medial Axis J. Barner, F. Buchegger,, D. Großmann, B. Jüttler Institute of Applied Geometry Johannes Kepler University, Linz, Austria MTU Aero Engines

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Application of partial differential equations in image processing. Xiaoke Cui 1, a *

Application of partial differential equations in image processing. Xiaoke Cui 1, a * 3rd International Conference on Education, Management and Computing Technology (ICEMCT 2016) Application of partial differential equations in image processing Xiaoke Cui 1, a * 1 Pingdingshan Industrial

More information

Justin Solomon MIT, Spring

Justin Solomon MIT, Spring Justin Solomon MIT, Spring 2017 http://www.gogeometry.com Instructor: Justin Solomon Email: jsolomon@mit.edu Office: 32-D460 Office hours: Wednesdays, 1pm-3pm Geometric Data Processing

More information

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2004 International Press Vol. 3, No. 3, pp. 153-170, March 2004 001 COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES XIANFENG GU, YALIN WANG, AND SHING-TUNG YAU

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Simple Formulas for Quasiconformal Plane Deformations

Simple Formulas for Quasiconformal Plane Deformations Simple Formulas for Quasiconformal Plane Deformations by Yaron Lipman, Vladimir Kim, and Thomas Funkhouser ACM TOG 212 Stephen Mann Planar Shape Deformations Used in Mesh parameterization Animation shape

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I)

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Fred Park UCI icamp 2011 Outline 1. Motivation and Shape Definition 2. Shape Descriptors 3. Classification 4. Applications: Shape Matching,

More information

Curvature Estimation on Smoothed 3-D Meshes

Curvature Estimation on Smoothed 3-D Meshes Curvature Estimation on Smoothed 3-D Meshes Peter Yuen, Nasser Khalili and Farzin Mokhtarian Centre for Vision, Speech and Signal Processing School of Electronic Engineering, Information Technology and

More information

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium Curve and Surface Fitting with Splines PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium CLARENDON PRESS OXFORD 1995 - Preface List of Figures List of Tables

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

Survey of the Mathematics of Big Data

Survey of the Mathematics of Big Data Survey of the Mathematics of Big Data Issues with Big Data, Mathematics to the Rescue Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Math & Big Data Fall 2015 1 / 28 Introduction We survey some

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation , pp.162-167 http://dx.doi.org/10.14257/astl.2016.138.33 A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation Liqiang Hu, Chaofeng He Shijiazhuang Tiedao University,

More information

Conformal Slit Mapping and Its Applications to Brain Surface Parameterization

Conformal Slit Mapping and Its Applications to Brain Surface Parameterization Conformal Slit Mapping and Its Applications to Brain Surface Parameterization Yalin Wang 1,2,XianfengGu 3,TonyF.Chan 2,PaulM.Thompson 1, and Shing-Tung Yau 4 1 Lab. of Neuro Imaging, UCLA School of Medicine,

More information

GEOMETRIC LIBRARY. Maharavo Randrianarivony

GEOMETRIC LIBRARY. Maharavo Randrianarivony GEOMETRIC LIBRARY Maharavo Randrianarivony During the last four years, I have maintained a numerical geometric library. The constituting routines, which are summarized in the following list, are implemented

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology 1 Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology Xin Li, Yunfan Bao, Xiaohu Guo, Miao Jin, Xianfeng Gu, and Hong Qin Abstract Computing smooth and optimal one-to-one maps between

More information

Progressive Geometry Compression. Andrei Khodakovsky Peter Schröder Wim Sweldens

Progressive Geometry Compression. Andrei Khodakovsky Peter Schröder Wim Sweldens Progressive Geometry Compression Andrei Khodakovsky Peter Schröder Wim Sweldens Motivation Large (up to billions of vertices), finely detailed, arbitrary topology surfaces Difficult manageability of such

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Multiscale 3D Feature Extraction and Matching

Multiscale 3D Feature Extraction and Matching Multiscale 3D Feature Extraction and Matching Hadi Fadaifard and George Wolberg Graduate Center, City University of New York May 18, 2011 Hadi Fadaifard and George Wolberg Multiscale 3D Feature Extraction

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Over Some Open 2D/3D Shape Features Extraction and Matching Problems

Over Some Open 2D/3D Shape Features Extraction and Matching Problems Over Some Open 2D/3D Shape Features Extraction and Matching Problems Dr. Nikolay Metodiev Sirakov Dept. of CS and Dept. of Math Texas A&M University Commerce Commerce, TX 75 429 E-mail: Nikolay_Sirakov@tamu-commerce.edu

More information

Scaled representations

Scaled representations Scaled representations Big bars (resp. spots, hands, etc.) and little bars are both interesting Stripes and hairs, say Inefficient to detect big bars with big filters And there is superfluous detail in

More information