ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

Size: px
Start display at page:

Download "ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino"

Transcription

1 ROBOTICS 01PEEQW DAUIN Politecnico di Torino

2 Mobile & Service Robotics Sensors for Robotics 4

3 Vision Vision is the most important sense in humans and is becoming important also in robotics not expensive rich of information Vision includes three steps Data recording and transformation in the retina Data transmission through the optical nerves Data elaboration by the brain 3

4 Vision sensors CCD (Coupled Charge Device, light-sensitive, discharging capacitors) CMOS (Complementary Metal Oxide Semiconductor technology) 4

5 CCD sensors A CCDsensor consists in a range of capacitors, each accumulating a charge proportional to the quantity of light that is hitting it. The charge in each capacitor is then turned into a numerical value by the camera inner system to produce a picture. Advantages/Features of CCD Sensors Conversion takes place in the chip without distortion CCDs have very high uniformity Good for HD quality images (not videos) These sensors are more sensitive Produce Better Images in Low Light CCD sensors produce cleaner and less grainy Images Low-noise images CCD sensors has been produced for a longer period of time Disadvantages of CCD Sensors CCD sensors consume much more power CCDs are interlaced Inferior HDvideos Less pixel rates CCDs are expensive as they require special manufacturing 5

6 CMOS sensors CMOS sensors can directly make the charge conversion on the generation photosite thanks to their pixel amplifier. Severaltransistors at each pixel amplify and move the charge using more traditional wires. Charge isthen turned into a numericalcal value which correspond to the image. This characteristic give them the ability to avoid several transfers and to increase the processing speed CMOS do not require any specialmanufacturing. Mostof the digital cameras these days use CMOSSensor as itreduces cost Advantages/ Features Of CMOS Sensor CMOS consumes less power (100 times less than CCD) CMOS sensors are cheaper Each pixel can be individually addressed. High reading rate They produce better HD videos Disadvantages Of CMOS Sensor CMOS sensors are also more susceptible sometimes images are grainy CMOS sensors need more light for better image Despite some disadvantages CMOSsensor is widely used in Mobile Phones, Tablets, PDAs and on most of the digital cameras. CCD cameras produce better images but CMOS sensors are catching up fast with its low power consumption. 6

7 Artificial vision issues Projection from a 3D world on a 2D plane: perspective projection (transformation matrices) Discretization effects due to pixels (CCD or CMOS) Misalignment errors (hardware) Parallel lines Converging lines Pixel discretization 7

8 Camera models Pinhole camera (aka perspective camera) 8

9 Pinhole camera image planes A hole diameter point images the image is reversed B point images Decreasing the image plane distance or the hole diameter makes the point images sharper Increasing the hole diameter makes the point images brighter Infinite depth-of-field Infinite depth-of-focus 9

10 Camera models Thin lens camera: the lenshas a thickness d that is negligible compared to the radii of curvatureof the lens surfaces R 1, R 2 Rays are refracted as they go through the lens (refraction index n) Thin lens equation ( n 1) ; R i > 0 if convex f R R

11 Thin lens camera Thin lens camera is reversible Rays parallel to the optical axis pass through the focus and viceversa Rays through the lens center are not refracted There are two symmetrical foci True lens shows aberration phenomena lens center optical axis f f 11

12 Aberration Spherical 12

13 Image formation Thin lens approximation Pinhole camera Principal image plane π Reversed image plane Optical axis π F π 3D object Focal Plane 13

14 Image formation and equations Lens equation ( p f) f = pq = f( p + q) + = f ( q f) p q f real object field of view angle focal plane image plane p object distance f f focal distance q image distance q pf = if p f then ( p f) q f the image plane is approx in the focal plane 14

15 Image formation P P i p x p= p y p z x i p = i y i k c i c C c f P i x i p x π F π P p z 15

16 Transformations Coordinate transformation between the world frame and the camera frame Projection of 3D point coordinates onto 2D image plane coordinates Coordinate transformation between possible choices of image coordinate frame 16

17 Transformations c c R t 0 0 = 1 T 0 T R 0 World frame c 0 R c Camera frame i T pix T c i = f pix R i R π Rescaling Optical correction Image plane 17

18 Reference frames f World frame R 0 p 0 i c p c P i p i i i k c C c R i Optical axis P p c R c Focal plane j c π F u R pix O i p pix v π j i Image plane translation translation+scale R R R c i pix 18

19 Vector notation in 3D R R R p = x y x p = x y x p = x y x c c c c c c c c c c T T T in 2D R R i i i i pix p = x y T p = u v pix T in pixel units 19

20 Camera projections Perspective projection Orthographic projection p x p = x = f if p const x =αp z i x p f x i x i p z z large compared to the distance from the camera small compared to the distance from the camera The pixel height of similar subject is different if the distance from the camera varies a lot. On the left the persons have different pixel height while on the right they have approximately similar heights, since their distance from the camera is high and does not vary much 20

21 Projections 21

22 Perspective projection i c p z P i k c C c x i C i All points give the same image P p x P P i π π π F f f p x p = p = f p f x x i x z z i Usually the negative sign is avoided considering the reversed image plane 22

23 Perspective projection P p x p = p c y p z p i px f p x z i p f y P p = f = y c p i z perspective projection pz f p z f f 0 0 i p = p p p p = = 0 f 0 p Pp z i c z i c c c arbitrary positive constant λ f 0 0 f i p = 0 f 0 p = = 0 f p Pp i c c c c 23

24 Perspective projection Homogeneous coordinates pɶ = p p p 1 c x y z T pɶ = x y 1 i i i T Homogeneous perspective/projection matrix f x i p = p i z i p y p = z i p x f x i p y i i c pɶ = z i z i = = = c c c 0 0 p Πpɶ ΠTpɶ z p p y f λp = ΠTpɶ i i c c 0 0 f x i y i 24

25 Perspective projection this is the ideal case Canonical projection matrix ΠT i c c 0 f c c f R t = T 25

26 Perspective projection PP is studied by projective geometry PP preserves linearity; lines in 3D correspond to lines in 2D and viceversa PP does not preserve parallelism The intersection points in 2D of parallel lines in 3D define vanishing points (points infinitely far away) 26

27 Camera parameters Intrinsic parameters: the parameters that link the pixel coordinates of an image point to the corresponding (metric) coordinates in the camera reference frames Extrinsic parameters: the parameter that define the location and orientation of the camera reference frame with respect to a known world reference frame T W c W W R t c c = 1 6 parameters 0 T Camera calibration: the procedure to estimate these parameters 27

28 Camera intrinsic parameters s y R pix ncolumns s x c pix u i pix pix sx, sy in m s s x y aspect ratio mrows v R i i i uv, in pixel units j pix j i ( u= 6, v= 8) c pix o = x oy camera center in pixel units 28

29 Camera intrinsic parameters Focal length f Transformation between pixel coordinates and camera coordinates Geometric distortion introduced by the optical lens systems 29

30 Camera intrinsic parameters Transformation between pixel coordinates and camera coordinates (scaling + translation) in homogeneous coordinates = x i+ x = y i + y u sx o v sy o x i sx 0 so x px x pi y i = 0 sy so y py y pi pɶ i 30

31 Lens distorsion Types Pincushion distortion Radial distortion Barrel distortion Non radial distortion (tangential) Radial distortion is modelled by a function D(r) that affects each point vin the projected plane relative to the principal point p, where D(r) is normally a non-linear scalar function and pis close to the midpoint of the projected image. Barrel projections are characterized by a positive gradient of the distortion function, whereas pincushion by a negative gradient v = Dv ( pv ) + p d 31

32 Lens distortion Radial distortion is approximated by i i id id ( kr kr kr ) x = x ( kr kr kr ) y= y where xid, yid are the coordinates of the distorted image points r = x + y id id is the square of the distance from the camera image center k1, k2, k3 are intrinsic parameters 32

33 Other image sensor errors Errors are due to the imperfect orthogonalityof pixel elements in CCD or CMOS sensors 33

34 Optical sensors Optical distance sensors Depth from focus Stereo vision ToF cameras Motion and optical flow 34

35 Depth from focus The method consists in measuring the distance of objects in a scene evaluating from two or more images the focal length adjustment necessary to bring objects in focus Short distance focused Medium distance focused Far distance focused 35

36 Depth from focus 36

37 Depth from focus Near focusing Far focusing 37

38 Depth from focus = + f f D e D L D (, x y, z) image plane ( x, y) i i focal plane δ e bx ( ) L( d+ e D )1 1 1 = 2 f ( d+ e) sx ( ) blur radius shape 38

39 Stereo Cameras 39

40 Stereo disparity ( x, y, z) left lens f z x right lens image plane ( x, y) l l ( x, y) r r b baseline (known) 40

41 Stereo disparity 41

42 Stereo disparity Idealized camera geometry for stereo vision x /2 x l x+ b r x b/2 =, = f z f z x x l r b = f z ( x + x) /2 l r x= b x x l r ( y + y) /2 l r y= b y y l r f z= b x x l r Disparity between two images Depth computation 42

43 Stereo vision Distance is inversely proportional to disparity closer objects can be measured more accurately Disparity is proportional to baseline For a given disparity error, the accuracy of the depth estimate increases with increasing baseline b However, as bis increased, some objects may appear in one camera, but not in the other A point visible from both cameras produces a conjugate pair Conjugate pairs lie on epipolar line(parallel to the x-axis for the arrangement in the figure above) 43

44 Stereo vision 44

45 Stereo points correspondence These two points are corresponding: how do you find them in the two images? Left image Right image Right Left Disparity 45

46 Epipolar lines P corresponding points stay on the epipolar lines π τ τ 1 2 q 1 q 2 l 1 l 2 C 1 epipolar lines e 1 Rt, e 2 these two points are known and fixed (they are called epipoles) C 2 46

47 Stereo vision Depth calculation The key problem in stereo vision is how to optimally solve the correspondence problem Corresponding points lie on the epipolar lines Gray-Level Matching Match gray-level features on corresponding epipolar lines Zero-crossing of Laplacian of Gaussians is a widely used approach for identifying the same feature in the left and right images Brightness = image irradiance or intensity I(x,y) is computed and used as shown below 47

48 Depth images 48

49 Time of Flight (ToF) Cameras Range imaging systems based on the known speed of light They measure the time-of-flight, i.e., the time from the emission to the return of the signal The measurement is performed for each point of the image (different from Lidars) The distance resolution is 1 cm (larger than Lidars ) The simplest version of a time-of-flight camera useslight pulses 49

50 Time of Flight (ToF) Cameras Modulated light is emitted by a transmitter. This light is reflected by the object to be detected. The returning light is sampled by an on-chip photosensitive TOF CCD array. The receiver compares the phase difference between the emitted and the received light and computes the time difference of the "Time-of-Flight" individually per pixel. This value multiplied by the speed of light (ca. 300'000km/sec) and divided by 2 corresponds directly linearly to the distance. 50

51 Time of Flight (ToF) Cameras The single pixelconsists of a photo diode that converts the incoming light into a current In analog solutions fast switches are connected to the photo diode, which sends the current to one of two memory elements (capacitors) that act as summation elements In digital solutions a time counter, running at several gigahertz, is connected to each pixel and stops counting when light is sensed 51

52 Time of Flight (ToF) Cameras Pros Simplicity In contrast tostereo vision ortriangulation systems, the whole system is very compact: the illumination is placed just next to the lens, whereas the other systems need a certain minimum base line. In contrast tolaser scanning systems, no mechanical moving parts are needed Efficient distance algorithm It is very easy to extract the distance information out of the output signals of the TOF sensor, therefore this task uses only a small amount of processing power, again in contrast to stereo vision, where complex correlation algorithms have to be implemented. After the distance data has been extracted, object detection, for example, is also easy to carry out because the algorithms are not disturbed by patterns on the object Speed Time-of-flight cameras are able to measure the distances within a complete scene with one shot. As the cameras reach up to 160 frames per second, they are ideally suited to be used in real-time applications 52

53 Time of Flight (ToF) Cameras Cons Background light When using CMOS or other integrating detectors or sensors that use visible or near visible light (400nm -700nm), although most of the background light coming from artificial lighting or the sun is suppressed, the pixel still has to provide a highdynamic range. The background light also generates electrons, which have to be stored. For example, the illumination units in many of today's TOF cameras can provide an illumination level of about 1 watt. The Sun has an illumination power of about 50 watts per square meter after the optical band-pass filter. Therefore, if the illuminated scene has a size of 1 square meter, the light from the sun is 50 times stronger than the modulated signal. For non-integrating TOF sensors that do not integrate light over time and are using near-infrared detectors (InGaAs) to capture the short laser pulse, direct viewing of the sun is a non-issue. Such TOF sensors are used in space applications and in consideration for automotive applications 53

54 Time of Flight (ToF) Cameras Cons Interference In certain types of TOF devices, if several time-of-flight cameras are running at the same time, the TOF cameras may disturb each other's measurements. Multiple reflections In contrast to laser scanning systems, where only a single point is illuminated at once, the time-of-flight cameras illuminate a whole scene. On a phase difference device, due to multiple reflections, the light may reach the objects along several paths and therefore, the measured distance may be greater than the true distance. Direct TOF imagers are vulnerable if the light is reflecting from a specular surface. There are published papers that outline the strengths and weaknesses of the various TOF devices and approaches 54

55 Optical flow Optical flow is the pattern of apparent motion of objects, surfaces, and edges in successive scenes caused by the relative motion between the camera and the scene Optical flow techniques motion detection object segmentation time-to-collision motion compensated encoding stereo disparity measurement 55

56 Optical flow 56

57 Optical flow The optical flow methods try to calculate the motion between two image frames which are taken at times t and t + δtat every voxelposition. These methods are called differential since they are based on local Taylor series approximations of the image signal, i.e., they use partial derivatives with respect to the spatial and temporal coordinates I(, x yt,) = I( x+ δx, y+ δyt, + δt) I I I = I(, x yt,) + δx+ δy+ δt+... x y t I I I δx+ δy+ δt= x y t 0 Assuming the movement to be small Avoxel(volume+pixel) is a volume element representing a value on aregular gridin3d space 57

58 Optical flow I I I V + V + = x y x y t T I V= I t 0 This problem is known as the aperture problemof the optical flow algorithms There is only one equation in two unknownsand therefore cannot be solved To find the optical flow another set of equations is needed, given by some additional constraint. All optical flow methods introduce additional conditions for estimating the actual flow. 58

59 Optical flow Lucas Kanade Optical Flow Method A two-frame differential methods for motion estimation The additional constraints needed for the estimation of the flow are introduced in this method by assuming that the flow V, V is constant x y in a small window of size with m> 1 which is centered at pixel(, x y) 2 Numbering the pixels as 1,,n= m a set of equations can be found I V + I V = I x1 x y1 y t I I I 1 x1 y1 t1 I V + I V = I I I V I x2 x y2 y t 2 x2 y2 x t2 = V y I V + I V = I I I I xn x yn y t xn yn t n n T 1 T Ax= b x= ( AA) Ab 59

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

Basilio Bona DAUIN Politecnico di Torino

Basilio Bona DAUIN Politecnico di Torino ROBOTICA 03CFIOR DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The

More information

Range Sensors (time of flight) (1)

Range Sensors (time of flight) (1) Range Sensors (time of flight) (1) Large range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic sensors, infra-red sensors

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Cameras and Stereo CSE 455. Linda Shapiro

Cameras and Stereo CSE 455. Linda Shapiro Cameras and Stereo CSE 455 Linda Shapiro 1 Müller-Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html What do you know about perspective projection? Vertical lines? Other lines? 2 Image formation

More information

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1.

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1. Range Sensors (time of flight) (1) Range Sensors (time of flight) (2) arge range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth

Depth. Common Classification Tasks. Example: AlexNet. Another Example: Inception. Another Example: Inception. Depth Common Classification Tasks Recognition of individual objects/faces Analyze object-specific features (e.g., key points) Train with images from different viewing angles Recognition of object classes Analyze

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

Robotics - Projective Geometry and Camera model. Marcello Restelli

Robotics - Projective Geometry and Camera model. Marcello Restelli Robotics - Projective Geometr and Camera model Marcello Restelli marcello.restelli@polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Ma 2013 Inspired from Matteo

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation

Introduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Depth Camera for Mobile Devices

Depth Camera for Mobile Devices Depth Camera for Mobile Devices Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Stereo Cameras Structured Light Cameras Time of Flight (ToF) Camera Inferring 3D Points Given we have

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD

ECE-161C Cameras. Nuno Vasconcelos ECE Department, UCSD ECE-161C Cameras Nuno Vasconcelos ECE Department, UCSD Image formation all image understanding starts with understanding of image formation: projection of a scene from 3D world into image on 2D plane 2

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

Stereo imaging ideal geometry

Stereo imaging ideal geometry Stereo imaging ideal geometry (X,Y,Z) Z f (x L,y L ) f (x R,y R ) Optical axes are parallel Optical axes separated by baseline, b. Line connecting lens centers is perpendicular to the optical axis, and

More information

Reflectance & Lighting

Reflectance & Lighting Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Last lecture in a nutshell Need for lenses (blur from pinhole) Thin lens equation Distortion and aberrations Vignetting CS5A, Winter 007 Computer

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors

Complex Sensors: Cameras, Visual Sensing. The Robotics Primer (Ch. 9) ECE 497: Introduction to Mobile Robotics -Visual Sensors Complex Sensors: Cameras, Visual Sensing The Robotics Primer (Ch. 9) Bring your laptop and robot everyday DO NOT unplug the network cables from the desktop computers or the walls Tuesday s Quiz is on Visual

More information

Representing the World

Representing the World Table of Contents Representing the World...1 Sensory Transducers...1 The Lateral Geniculate Nucleus (LGN)... 2 Areas V1 to V5 the Visual Cortex... 2 Computer Vision... 3 Intensity Images... 3 Image Focusing...

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

CSE 4392/5369. Dr. Gian Luca Mariottini, Ph.D.

CSE 4392/5369. Dr. Gian Luca Mariottini, Ph.D. University of Texas at Arlington CSE 4392/5369 Introduction to Vision Sensing Dr. Gian Luca Mariottini, Ph.D. Department of Computer Science and Engineering University of Texas at Arlington WEB : http://ranger.uta.edu/~gianluca

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information

3D Vision Real Objects, Real Cameras. Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun,

3D Vision Real Objects, Real Cameras. Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun, 3D Vision Real Objects, Real Cameras Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun, anders@cb.uu.se 3D Vision! Philisophy! Image formation " The pinhole camera " Projective

More information

Epipolar geometry contd.

Epipolar geometry contd. Epipolar geometry contd. Estimating F 8-point algorithm The fundamental matrix F is defined by x' T Fx = 0 for any pair of matches x and x in two images. Let x=(u,v,1) T and x =(u,v,1) T, each match gives

More information

Time-of-flight basics

Time-of-flight basics Contents 1. Introduction... 2 2. Glossary of Terms... 3 3. Recovering phase from cross-correlation... 4 4. Time-of-flight operating principle: the lock-in amplifier... 6 5. The time-of-flight sensor pixel...

More information

Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras

Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras Three-Dimensional Sensors Lecture 2: Projected-Light Depth Cameras Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/ Outline The geometry of active stereo.

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

EXAM SOLUTIONS. Computer Vision Course 2D1420 Thursday, 11 th of march 2003,

EXAM SOLUTIONS. Computer Vision Course 2D1420 Thursday, 11 th of march 2003, Numerical Analysis and Computer Science, KTH Danica Kragic EXAM SOLUTIONS Computer Vision Course 2D1420 Thursday, 11 th of march 2003, 8.00 13.00 Exercise 1 (5*2=10 credits) Answer at most 5 of the following

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

Comparison between Motion Analysis and Stereo

Comparison between Motion Analysis and Stereo MOTION ESTIMATION The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Octavia Camps (Northeastern); including their own slides. Comparison between Motion Analysis

More information

Correspondence and Stereopsis. Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri]

Correspondence and Stereopsis. Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri] Correspondence and Stereopsis Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri] Introduction Disparity: Informally: difference between two pictures Allows us to gain a strong

More information

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004 Augmented Reality II - Camera Calibration - Gudrun Klinker May, 24 Literature Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2. (Section 5,

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides

Image formation. Thanks to Peter Corke and Chuck Dyer for the use of some slides Image formation Thanks to Peter Corke and Chuck Dyer for the use of some slides Image Formation Vision infers world properties form images. How do images depend on these properties? Two key elements Geometry

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them.

All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them. All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them. - Aristotle University of Texas at Arlington Introduction

More information

Chapter 2 - Fundamentals. Comunicação Visual Interactiva

Chapter 2 - Fundamentals. Comunicação Visual Interactiva Chapter - Fundamentals Comunicação Visual Interactiva Structure of the human eye (1) CVI Structure of the human eye () Celular structure of the retina. On the right we can see one cone between two groups

More information

An introduction to 3D image reconstruction and understanding concepts and ideas

An introduction to 3D image reconstruction and understanding concepts and ideas Introduction to 3D image reconstruction An introduction to 3D image reconstruction and understanding concepts and ideas Samuele Carli Martin Hellmich 5 febbraio 2013 1 icsc2013 Carli S. Hellmich M. (CERN)

More information

Geometry of Multiple views

Geometry of Multiple views 1 Geometry of Multiple views CS 554 Computer Vision Pinar Duygulu Bilkent University 2 Multiple views Despite the wealth of information contained in a a photograph, the depth of a scene point along the

More information

Midterm Exam Solutions

Midterm Exam Solutions Midterm Exam Solutions Computer Vision (J. Košecká) October 27, 2009 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models Projective Geometry and Camera Models Computer Vision CS 43 Brown James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CIT 375 Monday and

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

STEREO VISION AND LASER STRIPERS FOR THREE-DIMENSIONAL SURFACE MEASUREMENTS

STEREO VISION AND LASER STRIPERS FOR THREE-DIMENSIONAL SURFACE MEASUREMENTS XVI CONGRESO INTERNACIONAL DE INGENIERÍA GRÁFICA STEREO VISION AND LASER STRIPERS FOR THREE-DIMENSIONAL SURFACE MEASUREMENTS BARONE, Sandro; BRUNO, Andrea University of Pisa Dipartimento di Ingegneria

More information

Visual Pathways to the Brain

Visual Pathways to the Brain Visual Pathways to the Brain 1 Left half of visual field which is imaged on the right half of each retina is transmitted to right half of brain. Vice versa for right half of visual field. From each eye

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller 3D Computer Vision Depth Cameras Prof. Didier Stricker Oliver Wasenmüller Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Sensor technology for mobile robots

Sensor technology for mobile robots Laser application, vision application, sonar application and sensor fusion (6wasserf@informatik.uni-hamburg.de) Outline Introduction Mobile robots perception Definitions Sensor classification Sensor Performance

More information

How to achieve this goal? (1) Cameras

How to achieve this goal? (1) Cameras How to achieve this goal? (1) Cameras History, progression and comparisons of different Cameras and optics. Geometry, Linear Algebra Images Image from Chris Jaynes, U. Kentucky Discrete vs. Continuous

More information

Technical Basis for optical experimentation Part #4

Technical Basis for optical experimentation Part #4 AerE 545 class notes #11 Technical Basis for optical experimentation Part #4 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Light sensing and recording Lenses

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Exam Window: 28th April, 12:00am EST to 30th April, 11:59pm EST Description As indicated in class the goal of the exam is to encourage you to review the material from the course.

More information

Chapters 1 5. Photogrammetry: Definition, introduction, and applications. Electro-magnetic radiation Optics Film development and digital cameras

Chapters 1 5. Photogrammetry: Definition, introduction, and applications. Electro-magnetic radiation Optics Film development and digital cameras Chapters 1 5 Chapter 1: Photogrammetry: Definition, introduction, and applications Chapters 2 4: Electro-magnetic radiation Optics Film development and digital cameras Chapter 5: Vertical imagery: Definitions,

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Rectification and Disparity

Rectification and Disparity Rectification and Disparity Nassir Navab Slides prepared by Christian Unger What is Stereo Vision? Introduction A technique aimed at inferring dense depth measurements efficiently using two cameras. Wide

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing point Mapping from 3D to 2D Point & Line Goal: Point Homogeneous coordinates represent coordinates in 2 dimensions

More information

Perception II: Pinhole camera and Stereo Vision

Perception II: Pinhole camera and Stereo Vision Perception II: Pinhole camera and Stereo Vision Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Mobile Robot Control Scheme knowledge, data base mission commands Localization

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information