Chapter 5 (a) Overview

Size: px
Start display at page:

Download "Chapter 5 (a) Overview"

Transcription

1 Chapter 5 (a) Overview (a) The principles of pipelining (a) A pipelined design of SRC (b) Pipeline hazards (b) Instruction-level parallelism (ILP) Superscalar processors Very Long Instruction Word (VLIW) machines (b) Microprogramming Control store and micro-branching Horizontal and vertical microprogramming

2 Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer takes 40 minutes Folder takes 20 minutes A B C D

3 T a s k O r d e r A B C D Sequential Laundry 6 PM Midnight Time Sequential laundry takes 6 hours for 4 loads If they learned pipelining, how long would laundry take?

4 Pipelined Laundry 6 PM Midnight Time T a s k O r d e r A B C D Start work ASAP Pipelined laundry takes 3.5 hours for 4 loads

5 Pipelining Lessons T a s k O r d e r 6 PM Time A B C D Pipelining doesn t help latency of single task, it helps throughput of entire workload Pipeline rate limited by slowest pipeline stage Multiple tasks operating simultaneously Potential speedup = Number pipe stages Unbalanced lengths of pipe stages reduces speedup Time to fill pipeline and time to drain it reduces speedup

6 A 5-Stage Pipeline 1. Fetch instruction 2. Fetch operands 3. ALU operation 4. Memory access 5. Register write A five instruction program: shr r3, r3, 2 sub r2, r5, r1 add r4, r3, r2 st r4, addr1 ld r2, addr2 T I M E

7 Pipelining shr r3,r3,2 Fetch instruction shr sub r2,r5,r1 sub shr Fetch operands add r4,r3,r2 add sub shr ALU operation Memory access st r4,addr1 st add sub shr (null) ld r2,addr2 ld st add sub (null) shr ld (null) st add (null) sub ld st add Are there any potential operand availability conflicts? ld Register write st (null) ld

8 Pipelining Instruction Processing Pipeline stages are shown top to bottom in order traversed by one instruction (usually shown horizontally). Instructions listed in order they are fetched. If each stage takes one clock: - every instruction takes 5 clocks to complete - one instruction completes every clock tick Two performance issues: instruction latency time for an instruction to completely execute. instruction bandwidth number of instructions executed/second.

9 Dependence Among Instructions Execution Dependencies: Some instructions may depend on the completion of others in the pipeline. Solution 1: stall the pipeline - early stages stop while later ones complete processing. Solution 2: forwarding. Some register dependences can be detected & data forwarded to instruction needing. Waiting for the register write is eliminated. Solution 3: Dependence involving memory is harder. It is sometimes addressed by restricting instruction set usage: Branch delay slot Load delay or may be solved using MULTITHREADING.

10 Pipelining Fetch instr. Fetch oper. ALU oper. Memory access Register write Time shr r3,r3,2 shr sub r2,r5,r1 sub shr add r4,r3,r2 add sub shr st r4,addr1 st add sub shr (null) ld r2,addr2 ld st add sub (null) ld (null) st add (null) ld stall- st stallld ld st Stalling to prevent add-st hazard shr sub add st (null) ld

11 Branch & Load Delay Examples Branch Delay brz r2, r3 add r6, r7, r8 st r6, addr1 Load Delay ld r2, addr add r5, r1, r2 shr r1,r1,4 sub r6, r8, r2 This inst. always executed Only done if r3 0 This inst. gets old value of r2 This inst. gets r2 value loaded from addr

12 Processor Design Characteristics Main memory must operate in one cycle: Usually done with cache (discussed later). Instruction & data memory must be separate: Harvard architecture has separate instruction & data memories. Usually done with separate caches. To avoid contention, few buses are used: Most connections are point to point. Some few-way multiplexers are used. Data is stored in temporary registers located between pipeline stages: pipeline registers. ALU operations take only 1 clock (esp. shift).

13 ALU Instructions use five stage pipeline Second ALU operand comes from: a register IR c2 field Op code must be available in Stage 3 to specialize ALU. Result register, ra, is written in stage 5 No memory operations for ALU instructions.

14 Control Signals for Pipeline Stage Activity branch := br brl : cond := (IR = 1) ((IR =1) (IR2 0 R[rb]=0)) ((IR =2) (IR2 0 R[rb] 31 ) : sh := shr shra shl shc : ;shifts alu := add addi sub neg and andi or ori not sh : ;ALU instr. imm := addi andi ori (sh (IR ) : ;immediate operand load := ld ldr : ;load instruction ladr := la lar : ;load address instruction store := st str : ;store instructions l-s := load ladr store : ;memory address instructions regwrite := load ladr brl alu: ;instructions that write to the register file dsp := ld st la : ;instructions that use disp addressing rl := ldr str lar : ;instructions that use relative addressing

15 Notes on the Equations & Different Stages The logic equations are based on the instruction in the stage where they are used. When necessary, we append a digit to a logic signal name to specify the stage in which it is computed. e.g., regwrite5 = true when op5 = load5 ladr5 brl5 alu5, where op5 is the opcode in stage 5.

16 Load & Store Instructions ALU computes effective addresses. Stage 4 does read or write. Result register written only on load.

17 Branch Instructions The new program counter value is known in stage 2 but not in stage 1 Only branch&link does a register write in stage 5. There is no ALU or memory operation.

18 SRC Pipeline Registers & RTN Specification The pipeline registers pass information from stage to stage. RTN specifies output register values in terms of input reg. values for stage. Discuss RTN at each stage.

19 Global State of the Pipelined SRC PC, the general registers, instruction memory, and data memory is the global machine state. PC is accessed in stage 1 (& stage 2 on branch). Instruction memory is accessed in stage 1. General registers are read in stage 2 and written in stage 5. Data memory is only accessed in stage 4.

20 Restrictions on Pipeline Access to Global State Why are separate instruction and data memories (or caches) needed? When a load or store accesses data memory in stage 4, stage 1 is accessing an instruction. Thus two memory accesses occur simultaneously. Two register operands may be needed in stage 2. Simultaneously, in stage 5 another instruction may be writing a result in a register. Thus, the register file must support simultaneously 2 reads and a write. Note that the increment of PC in stage 1 needs to be overridden by a successful branch in stage 2.

21 Pipeline Data Path & Control Signals Most control signals shown & given values. Multiplexer control is stressed.

22 Exp: Instruction Propagation Through Pipe 100: add r4, r6, r8; R[4] R[6] + R[8]; 104: ld r7, 128(r5); R[7] M[R[5]+128]; 108: brl r9, r11, 001; PC R[11]: R[9] PC; 112: str r12, 32; M[PC+32] R[12]; : sub... next instruction It is assumed that R[11] = 512 when brl instruction is executed. R[6] = 4 & R[8] = 5 are the add operands. R[5] =16 for the ld and R[12] = 23 for the store.

23 Cycle 1: add Enters Pipe Program counter is incremented to : sub : str r12, #32 108: brl r9, r11, : ld r7, r5, # : add r4, r6, r8

24 Cycle 2: ld Enters Pipe add operands are fetched in stage : sub : str r12, #32 108: brl r9, r11, : ld r7, r5, # : add r4, r6, r8

25 Cycle 3 brl Enters Pipe add performs its arithmetic in stage 3 512: sub : str r12, #32 108: brl r9, r11, : ld r7, r5, # : add r4, r6, r8

26 Cycle 4: str enters pipe add is idle in stage 4 Success of brl changes program counter to : sub : str r12, #32 108: brl r9, r11, : ld r7, r5, # : add r4, r6, r8

27 Cycle 5: sub Enters Pipe add completes in stage 5 sub is fetched from loc. 512 after successful brl 512: sub : str r12, #32 108: brl r9, r11, : ld r7, r5, # : add r4, r6, r8

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Pipelining 11142011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Review I/O Chapter 5 Overview Pipelining Pipelining

More information

Chapter 5 Processor Design Advanced Topics

Chapter 5 Processor Design Advanced Topics Chapter 5 Processor esign dvanced Topics The principles of pipelining pipelined design of RC Pipeline hazards Instruction-level parallelism (ILP) uperscalar processors Very Long Instruction Word (VLIW)

More information

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner CPS104 Computer Organization and Programming Lecture 19: Pipelining Robert Wagner cps 104 Pipelining..1 RW Fall 2000 Lecture Overview A Pipelined Processor : Introduction to the concept of pipelined processor.

More information

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight Pipelining: Its Natural! Chapter 3 Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes A B C D Dryer takes 40 minutes Folder

More information

Pipelining. Maurizio Palesi

Pipelining. Maurizio Palesi * Pipelining * Adapted from David A. Patterson s CS252 lecture slides, http://www.cs.berkeley/~pattrsn/252s98/index.html Copyright 1998 UCB 1 References John L. Hennessy and David A. Patterson, Computer

More information

Chapter 8. Pipelining

Chapter 8. Pipelining Chapter 8. Pipelining Overview Pipelining is widely used in modern processors. Pipelining improves system performance in terms of throughput. Pipelined organization requires sophisticated compilation techniques.

More information

Pipeline Processors David Rye :: MTRX3700 Pipelining :: Slide 1 of 15

Pipeline Processors David Rye :: MTRX3700 Pipelining :: Slide 1 of 15 Pipeline Processors Pipelining :: Slide 1 of 15 Pipeline Processors A common feature of modern processors Works like a series production line An operation is divided into k decoupled (independent) elementary

More information

RTN (Register Transfer Notation)

RTN (Register Transfer Notation) RTN (Register Transfer Notation) A formal means of describing machine structure & function. Is at the just right level for machine descriptions. Does not replace hardware description languages. RTN is

More information

Computer Architecture. Lecture 6.1: Fundamentals of

Computer Architecture. Lecture 6.1: Fundamentals of CS3350B Computer Architecture Winter 2015 Lecture 6.1: Fundamentals of Instructional Level Parallelism Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and

More information

Computer Systems Architecture Spring 2016

Computer Systems Architecture Spring 2016 Computer Systems Architecture Spring 2016 Lecture 01: Introduction Shuai Wang Department of Computer Science and Technology Nanjing University [Adapted from Computer Architecture: A Quantitative Approach,

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 Lecture 3 Pipelining Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 A "Typical" RISC ISA 32-bit fixed format instruction (3 formats) 32 32-bit GPR (R0 contains zero, DP take pair)

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 8: Pipelining Dr. Mohamed Abd El Ghany, Pipelining: Its Natural! Laundry Example Ann, brian, cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes

More information

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design

MC9211Computer Organization. Unit 4 Lesson 1 Processor Design MC92Computer Organization Unit 4 Lesson Processor Design Basic Processing Unit Connection Between the Processor and the Memory Memory MAR PC MDR R Control IR R Processo ALU R n- n general purpose registers

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture2 Pipelining: Basic and Intermediate Concepts Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each

More information

Working on the Pipeline

Working on the Pipeline Computer Science 6C Spring 27 Working on the Pipeline Datapath Control Signals Computer Science 6C Spring 27 MemWr: write memory MemtoReg: ALU; Mem RegDst: rt ; rd RegWr: write register 4 PC Ext Imm6 Adder

More information

UNIT 3 - Basic Processing Unit

UNIT 3 - Basic Processing Unit UNIT 3 - Basic Processing Unit Overview Instruction Set Processor (ISP) Central Processing Unit (CPU) A typical computing task consists of a series of steps specified by a sequence of machine instructions

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

CPE Computer Architecture. Appendix A: Pipelining: Basic and Intermediate Concepts

CPE Computer Architecture. Appendix A: Pipelining: Basic and Intermediate Concepts CPE 110408443 Computer Architecture Appendix A: Pipelining: Basic and Intermediate Concepts Sa ed R. Abed [Computer Engineering Department, Hashemite University] Outline Basic concept of Pipelining The

More information

Pipeline: Introduction

Pipeline: Introduction Pipeline: Introduction These slides are derived from: CSCE430/830 Computer Architecture course by Prof. Hong Jiang and Dave Patterson UCB Some figures and tables have been derived from : Computer System

More information

Module 4c: Pipelining

Module 4c: Pipelining Module 4c: Pipelining R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E R O R G A N I Z A T I O N A N D A

More information

Lecture 15: Pipelining. Spring 2018 Jason Tang

Lecture 15: Pipelining. Spring 2018 Jason Tang Lecture 15: Pipelining Spring 2018 Jason Tang 1 Topics Overview of pipelining Pipeline performance Pipeline hazards 2 Sequential Laundry 6 PM 7 8 9 10 11 Midnight Time T a s k O r d e r A B C D 30 40 20

More information

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements CSE 4 Computer Architecture Spring 25 Lectures Exceptions and Introduction to Pipelining May 4, 25 Announcements Reading Assignment Sections 5.6, 5.9 The Processor Datapath and Control Section 6., Enhancing

More information

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts CS359: Computer Architecture Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts Yanyan Shen Department of Computer Science and Engineering Shanghai Jiao Tong University Parallel

More information

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP Overview Appendix A Pipelining: Basic and Intermediate Concepts Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 1 2 Unpipelined

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Appendix A. Overview

Appendix A. Overview Appendix A Pipelining: Basic and Intermediate Concepts 1 Overview Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 2 1 Unpipelined

More information

Advanced Computer Architecture-CS501. Vincent P. Heuring&Harry F. Jordan Chapter 2 Computer Systems Design and Architecture

Advanced Computer Architecture-CS501. Vincent P. Heuring&Harry F. Jordan Chapter 2 Computer Systems Design and Architecture Lecture Handout Computer Architecture Lecture No. 4 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2 Computer Systems Design and Architecture 2.3, 2.4,slides Summary 1) Introduction to ISA

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

Lecture 6: Pipelining

Lecture 6: Pipelining Lecture 6: Pipelining i CSCE 26 Computer Organization Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other

More information

Pipelining, Instruction Level Parallelism and Memory in Processors. Advanced Topics ICOM 4215 Computer Architecture and Organization Fall 2010

Pipelining, Instruction Level Parallelism and Memory in Processors. Advanced Topics ICOM 4215 Computer Architecture and Organization Fall 2010 Pipelining, Instruction Level Parallelism and Memory in Processors Advanced Topics ICOM 4215 Computer Architecture and Organization Fall 2010 NOTE: The material for this lecture was taken from several

More information

PIPELINING. Pipelining: Natural Phenomenon. Pipelining. Pipelining Lessons

PIPELINING. Pipelining: Natural Phenomenon. Pipelining. Pipelining Lessons Pipelining: Natral Phenomenon Landry Eample: nn, rian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 mintes C D Dryer takes 0 mintes PIPELINING Folder takes 20 mintes

More information

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK Question 1: Choose the most appropriate answer 1. In which of the following gates the output is 1 if and only if all the inputs

More information

Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation

Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation CSE 564 Computer Architecture Summer 2017 Department of Computer Science and Engineering Yonghong Yan yan@oakland.edu www.secs.oakland.edu/~yan

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 05

More information

Chapter 2: Machine Languages and Digital Logic

Chapter 2: Machine Languages and Digital Logic Chapter 2: Machine Languages and igital Logic Computer ystems esign and rchitecture What are the components of an I? ometimes known as The Programmers Model of the machine torage cells General and special

More information

Pipelining: Basic and Intermediate Concepts

Pipelining: Basic and Intermediate Concepts Appendix A Pipelining: Basic and Intermediate Concepts 1 Overview Basics of fpipelining i Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 2 Unpipelined

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

The Big Picture Problem Focus S re r g X r eg A d, M lt2 Sub u, Shi h ft Mac2 M l u t l 1 Mac1 Mac Performance Focus Gate Source Drain BOX

The Big Picture Problem Focus S re r g X r eg A d, M lt2 Sub u, Shi h ft Mac2 M l u t l 1 Mac1 Mac Performance Focus Gate Source Drain BOX Appendix A - Pipelining 1 The Big Picture SPEC f2() { f3(s2, &j, &i); *s2->p = 10; i = *s2->q + i; } Requirements Algorithms Prog. Lang./OS ISA f1 f2 f5 f3 s q p fp j f3 f4 i1: ld r1, b i2: ld r2,

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content 3/6/8 CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Today s Content We have looked at how to design a Data Path. 4.4, 4.5 We will design

More information

Typical DSP application

Typical DSP application DSP markets DSP markets Typical DSP application TI DSP History: Modem applications 1982 TMS32010, TI introduces its first programmable general-purpose DSP to market Operating at 5 MIPS. It was ideal for

More information

2 1.1 הקדמה

2 1.1 הקדמה 1 מבוא למחשבים חוברת שקפים ערך: ד"ר אורי סןיסה 2 1.1 הקדמה 3 4 Addressing modes 5 6 7 8 9 10 11 12 13 14 15 16 RTN Description of SRC 17 18 19 *****SRC Simulator Help***** The program simulates a RISC

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

structural RTL for mov ra, rb Answer:- (Page 164) Virtualians Social Network Prepared by: Irfan Khan

structural RTL for mov ra, rb Answer:- (Page 164) Virtualians Social Network  Prepared by: Irfan Khan Solved Subjective Midterm Papers For Preparation of Midterm Exam Two approaches for control unit. Answer:- (Page 150) Additionally, there are two different approaches to the control unit design; it can

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science 6 PM 7 8 9 10 11 Midnight Time 30 40 20 30 40 20

More information

What is Pipelining? RISC remainder (our assumptions)

What is Pipelining? RISC remainder (our assumptions) What is Pipelining? Is a key implementation techniques used to make fast CPUs Is an implementation techniques whereby multiple instructions are overlapped in execution It takes advantage of parallelism

More information

Pipeline Hazards. Midterm #2 on 11/29 5th and final problem set on 11/22 9th and final lab on 12/1. https://goo.gl/forms/hkuvwlhvuyzvdat42

Pipeline Hazards. Midterm #2 on 11/29 5th and final problem set on 11/22 9th and final lab on 12/1. https://goo.gl/forms/hkuvwlhvuyzvdat42 Pipeline Hazards https://goo.gl/forms/hkuvwlhvuyzvdat42 Midterm #2 on 11/29 5th and final problem set on 11/22 9th and final lab on 12/1 1 ARM 3-stage pipeline Fetch,, and Execute Stages Instructions are

More information

Topics. Lecture 12: Pipelining. Introduction to pipelining. Pipelined datapath. Hazards in pipeline. Performance. Design issues.

Topics. Lecture 12: Pipelining. Introduction to pipelining. Pipelined datapath. Hazards in pipeline. Performance. Design issues. Lecture 2: Pipelining Topics Introduction to pipelining Performance Pipelined datapath Design issues Hazards in pipeline Types Solutions Pipelining is Natural! Laundry Example Use case scenario Ann, Brian,

More information

What is Pipelining? Time per instruction on unpipelined machine Number of pipe stages

What is Pipelining? Time per instruction on unpipelined machine Number of pipe stages What is Pipelining? Is a key implementation techniques used to make fast CPUs Is an implementation techniques whereby multiple instructions are overlapped in execution It takes advantage of parallelism

More information

Example: Computer, SRC Simple RISC Computer

Example: Computer, SRC Simple RISC Computer 2-24 Chapter 2 Machines, Machine Languages, and Digital Logic Exaple: Coputer, SRC Siple RISC Coputer 32 general purpose registers of 32 bits 32-bit progra counter, PC, and instruction register, IR 2 32

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4 Topics. Comp. Sys. Design & Architecture 2 nd Edition Prentice Hall, Mark Franklin,S06

Chapter 4 Topics. Comp. Sys. Design & Architecture 2 nd Edition Prentice Hall, Mark Franklin,S06 Chapter 4 Topics The Design Process A 1-bus Microarchitecture for SRC Data Path Implementation Logic Design for the 1-bus SRC The Control Unit The 2- and 3-bus Processor Designs The Machine Reset Process

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

Design a MIPS Processor (2/2)

Design a MIPS Processor (2/2) 93-2Digital System Design Design a MIPS Processor (2/2) Lecturer: Chihhao Chao Advisor: Prof. An-Yeu Wu 2005/5/13 Friday ACCESS IC LABORTORY Outline v 6.1 An Overview of Pipelining v 6.2 A Pipelined Datapath

More information

Instruction Pipelining

Instruction Pipelining Instruction Pipelining Simplest form is a 3-stage linear pipeline New instruction fetched each clock cycle Instruction finished each clock cycle Maximal speedup = 3 achieved if and only if all pipe stages

More information

Instruction Pipelining

Instruction Pipelining Instruction Pipelining Simplest form is a 3-stage linear pipeline New instruction fetched each clock cycle Instruction finished each clock cycle Maximal speedup = 3 achieved if and only if all pipe stages

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

Ti Parallel Computing PIPELINING. Michał Roziecki, Tomáš Cipr

Ti Parallel Computing PIPELINING. Michał Roziecki, Tomáš Cipr Ti5317000 Parallel Computing PIPELINING Michał Roziecki, Tomáš Cipr 2005-2006 Introduction to pipelining What is this What is pipelining? Pipelining is an implementation technique in which multiple instructions

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

Lecture 19 Introduction to Pipelining

Lecture 19 Introduction to Pipelining CSE 30321 Lecture 19 Pipelining (Part 1) 1 Lecture 19 Introduction to Pipelining CSE 30321 Lecture 19 Pipelining (Part 1) Basic pipelining basic := single, in-order issue single issue one instruction at

More information

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e Instruction Level Parallelism Appendix C and Chapter 3, HP5e Outline Pipelining, Hazards Branch prediction Static and Dynamic Scheduling Speculation Compiler techniques, VLIW Limits of ILP. Implementation

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Architectures & instruction sets R_B_T_C_. von Neumann architecture. Computer architecture taxonomy. Assembly language.

Architectures & instruction sets R_B_T_C_. von Neumann architecture. Computer architecture taxonomy. Assembly language. Architectures & instruction sets Computer architecture taxonomy. Assembly language. R_B_T_C_ 1. E E C E 2. I E U W 3. I S O O 4. E P O I von Neumann architecture Memory holds data and instructions. Central

More information

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moore s Law Gordon Moore @ Intel (1965) 2 Computer Architecture Trends (1)

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Chapter 4 The Processor

Chapter 4 The Processor Chapter 4 The Processor 4.1 Introduction 4.2 Logic Design Conventions 4.3 The Single-Cycle Design 4.4 The Pipelined Design (c) Kevin R. Burger :: Computer Science & Engineering :: Arizona State University

More information

Outline. Pipelining basics The Basic Pipeline for DLX & MIPS Pipeline hazards. Handling exceptions Multi-cycle operations

Outline. Pipelining basics The Basic Pipeline for DLX & MIPS Pipeline hazards. Handling exceptions Multi-cycle operations Pipelining 1 Outline Pipelining basics The Basic Pipeline for DLX & MIPS Pipeline hazards Structural Hazards Data Hazards Control Hazards Handling exceptions Multi-cycle operations 2 Pipelining basics

More information

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining: Overview CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining the Wash Divide into 4 steps: Wash, Dry, Fold, Put Away Perform the steps in parallel Wash 1 Wash 2, Dry 1 Wash

More information

Instruction Level Parallelism. ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction

Instruction Level Parallelism. ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction Instruction Level Parallelism ILP, Loop level Parallelism Dependences, Hazards Speculation, Branch prediction Basic Block A straight line code sequence with no branches in except to the entry and no branches

More information

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version:

SISTEMI EMBEDDED. Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: SISTEMI EMBEDDED Computer Organization Central Processing Unit (CPU) Federico Baronti Last version: 20170516 Processing Unit A processor reads program instructions from the computer s memory and executes

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN ARM COMPUTER ORGANIZATION AND DESIGN Edition The Hardware/Software Interface Chapter 4 The Processor Modified and extended by R.J. Leduc - 2016 To understand this chapter, you will need to understand some

More information

Processor Architecture

Processor Architecture Processor Architecture Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

CPU Organization (Design)

CPU Organization (Design) ISA Requirements CPU Organization (Design) Datapath Design: Capabilities & performance characteristics of principal Functional Units (FUs) needed by ISA instructions (e.g., Registers, ALU, Shifters, Logic

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 35: Final Exam Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Material from Earlier in the Semester Throughput and latency

More information

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems)

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building

More information

Chapter 9. Pipelining Design Techniques

Chapter 9. Pipelining Design Techniques Chapter 9 Pipelining Design Techniques 9.1 General Concepts Pipelining refers to the technique in which a given task is divided into a number of subtasks that need to be performed in sequence. Each subtask

More information

Multiple Instruction Issue. Superscalars

Multiple Instruction Issue. Superscalars Multiple Instruction Issue Multiple instructions issued each cycle better performance increase instruction throughput decrease in CPI (below 1) greater hardware complexity, potentially longer wire lengths

More information

Chapter 4: Processor Design. Block Diagram of 1-Bus SRC

Chapter 4: Processor Design. Block Diagram of 1-Bus SRC 4-1 Chapter 4 Processor Design Chapter 4: Processor Design Topics 4.1 The Design Process 4.2 1-Bus Microarchitecture for the SRC 4.3 Data Path Implementation 4.4 Logic Design for the 1-Bus SRC 4.5 The

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

ECE 2300 Digital Logic & Computer Organization. More Single Cycle Microprocessor

ECE 2300 Digital Logic & Computer Organization. More Single Cycle Microprocessor ECE 23 Digital Logic & Computer Organization Spring 28 More Single Cycle Microprocessor Lecture 6: HW6 due tomorrow Announcements Prelim 2: Tues April 7, 7:3pm, Phillips Hall Coverage: Lectures 8~6 Inform

More information

Parallelism. Execution Cycle. Dual Bus Simple CPU. Pipelining COMP375 1

Parallelism. Execution Cycle. Dual Bus Simple CPU. Pipelining COMP375 1 Pipelining COMP375 Computer Architecture and dorganization Parallelism The most common method of making computers faster is to increase parallelism. There are many levels of parallelism Macro Multiple

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

Processor Architecture

Processor Architecture ECPE 170 Jeff Shafer University of the Pacific Processor Architecture 2 Lab Schedule Ac=vi=es Assignments Due Today Wednesday Apr 24 th Processor Architecture Lab 12 due by 11:59pm Wednesday Network Programming

More information

The Pipelined MIPS Processor

The Pipelined MIPS Processor 1 The niversity of Texas at Dallas Lecture #20: The Pipeline IPS Processor The Pipelined IPS Processor We complete our study of AL architecture by investigating an approach providing even higher performance

More information

Background: Pipelining Basics. Instruction Scheduling. Pipelining Details. Idealized Instruction Data-Path. Last week Register allocation

Background: Pipelining Basics. Instruction Scheduling. Pipelining Details. Idealized Instruction Data-Path. Last week Register allocation Instruction Scheduling Last week Register allocation Background: Pipelining Basics Idea Begin executing an instruction before completing the previous one Today Instruction scheduling The problem: Pipelined

More information

Enhanced Performance with Pipelining

Enhanced Performance with Pipelining Chapter 6 Enhanced Performance with Pipelining Note: The slides being presented represent a mi. Some are created by ark Franklin, Washington University in St. Lois, Dept. of CSE. any are taken from the

More information

Lecture 19: Instruction Level Parallelism

Lecture 19: Instruction Level Parallelism Lecture 19: Instruction Level Parallelism Administrative: Homework #5 due Homework #6 handed out today Last Time: DRAM organization and implementation Today Static and Dynamic ILP Instruction windows Register

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

CMSC Computer Architecture Lecture 4: Single-Cycle uarch and Pipelining. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 4: Single-Cycle uarch and Pipelining. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 4: Single-Cycle uarch and Pipelining Prof. Yanjing Li University of Chicago Administrative Stuff! Lab1 due at 11:59pm today! Lab2 out " Pipeline ARM simulator "

More information

EE 457 Unit 6a. Basic Pipelining Techniques

EE 457 Unit 6a. Basic Pipelining Techniques EE 47 Unit 6a Basic Pipelining Techniques 2 Pipelining Introduction Consider a drink bottling plant Filling the bottle = 3 sec. Placing the cap = 3 sec. Labeling = 3 sec. Would you want Machine = Does

More information

微算機系統第六章. Enhancing Performance with Pipelining 陳伯寧教授電信工程學系國立交通大學. Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold

微算機系統第六章. Enhancing Performance with Pipelining 陳伯寧教授電信工程學系國立交通大學. Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold 微算機系統第六章 Enhancing Performance with Pipelining 陳伯寧教授電信工程學系國立交通大學 chap6- Pipeline is natural! Laundry Example Ann, Brian, athy, Dave each have one load of clothes to wash, dry, and fold A B D Washer takes

More information

Review: Computer Organization

Review: Computer Organization Review: Compter Organization Pipelining Chans Y Landry Eample Landry Eample Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 3 mintes A B C D Dryer takes 3 mintes

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

Microprogramming: Basic Idea

Microprogramming: Basic Idea 5-45 Chapter 5 Processor Design Advanced Topics Microprogramming: Basic Idea Recall control sequence for 1-bus SRC Step Concrete RTN Control Sequence T0 MA PC: C PC + 4; PC out, MA in, INC4, C in, Read

More information