Lecture Topics ECE 341. Lecture # 6. CLA Delay Calculation. CLA Fan-in Limitation

Size: px
Start display at page:

Download "Lecture Topics ECE 341. Lecture # 6. CLA Delay Calculation. CLA Fan-in Limitation"

Transcription

1 EE 34 Lecture # 6 Instructor: Zeshan hishti zeshan@pdx.edu October 5, 24 Lecture Topics Design of Fast dders arry Looakaheaddders (L) Blocked arry-lookahead dders ultiplication of Unsigned Numbers rray ultiplier Sequential ircuit ultiplier Reference: hapter 9: Sections 9.2 and 9.3 Portland State University L Delay alculation L Fan-in Limitation onsider the expression: c i+ = G i + P i G i- + P i P i- G i P i P i-.p G + P i P i-.p c ll the G i and P i functions can be obtained in parallel in onegate delay ND terms in each c i+ calculation require oneadditional gate delay ORingthe ND terms in each c i+ calculation requires oneadditional gate delay Therefore, Total delay in calculating carryoutputs = + + = 3gate delays Sum outputs require one additional XOR delay after carries are computed Total delay in calculating sumoutputs = 3 + = 4gate delays Performingn-bit L in 4 gate delays, independent of n, good only in theory In practice, L is limited by fan-in constraints c i+ = G i + P i G i- + P i P i- G i P i P i-.p G + P i P i-.p c OR gate & last ND gate in the expression for c i+ require i+2 inputs, each For a 4-bit L, the SB carry-out (c 4 ) requires a fan-in of 5 5 is the practical fan-in limit for most gates In order to add operands larger than 4-bits, we can cascade multiple Ls ascade of Ls is called Blocked arry-lookahead adder n-bit L requires 4 gate delays independent of n

2 Blocked arry-looakhead dder Faster Blocked arry-lookahead adder x 3-28 y 3-28 c c. c bit 4-bit L s 3 s 3 s 29 s 28 x 7-4 L y 7-4 s 4 s 5 s 6 s 7 c 4 x 3- y 3-4-bit L s s s 2 s 3 fter input operands (X, Y and c ) are applied to the 32-bit adder: ll the P i and G i terms in each L calculated in parallel in gate delay c 4 available after 3gate delays c 8 available 2 gate delays after c 4 = 3 + (*2) = 5gate delays c 2 available (2*2) gate delays after c 4 = 3 + (2*2) = 7gate delays c 6 available after (3*2) gate delays after c 4 = 3 + (3*2) = 9gate delays c 32 available after (7*2) gate delays after c 4 = 3 + (7*2) = 7gate delays s 28,s 29,s 3,s 3 available after 7+ = 8gate delays arry-outs ripple from one L block to the next. an we avoid this rippling? c 32-bit Blocked L composed of eight 4-bit L blocks Key Idea:Generate the carry outputs c 4, c 8, c 2, of L blocks in parallel, similar to how c, c 2, c 3, c 4 are generated in parallel withina L block arry-out from a 4-bit block can be given as: c 4 = G 3 + P 3 G 2 + P 3 P 2 G + P 3 P 2 P G + P 3 P 2 P P c This can be re-written as: c 4 = G + P c where G = G 3 + P 3 G 2 + P 3 P 2 G + P 3 P 2 P G and P =P 3 P 2 P P We can similarly compute G, G 2, G 3.. G i & P i are first-level generate & propagate functions, where idenotes the L block G k = implies that the kthl block generates a carry P k = implies that the kthl block propagates a carry arry-out of kthblock = G k + P k G k- + P k P k- G k P k P k-.p G + P k P k- P c For example: c 6 = G 3 + P 3 G 2 + P 3 P 2 G + P 3 P 2 P G + P 3 P 2 P P c Blocked L with First-level Propagates and Generates x 5-2 y 5-2 x -8 y -8 x 7-4 y 7-4 x 3- y 3- c 6 c 2 c 8 c 4 4-bit adder 4-bit adder 4-bit adder 4-bit adder c s 5-2 s -8 s 7-4 s 3- G I 3 P I 3 G I 2 P I 2 G I P I G I P I ultiplication arry-lookahead logic fter input operands (X, Y and c ) are applied to the above 6-bit adder: P i and G i terms withineach L calculated in parallel in gate delay First-level generates (G k ) available after + 2 = 3gate delays arry-outs of L blocks (c 4, c 8, c 2, c 6 ) available after = 5gate delays arries withinl blocks (such as c 5 ) available after = 7gate delays Sum outputs (such as s 5 ) available after 7 + = 8gate delays ompare this with the blocked L formed by cascading, where c 5 and s 5 required 9 and gate delays respectively

3 ultiplication of Unsigned Numbers ultiplication of Unsigned Numbers (contd.) In hand multiplication, we add the shifted versions of multiplicand at the end (column-by-column) lternative would be to accumulate partial products at each stage (row-by-row) Product of two n-bit numbers is at most a 2n-bit number Unsigned multiplication can be viewed as addition of shifted versions of the multiplicand. ultiplication logic for two n-bit numbers can be implement as follows : Initialize the partial product PPto a value of Start from the LSB of multiplier and proceed towards SB, one bit at a time. For each bit position of the multiplier, perform the following step: If the i th bit of the multiplier is, shift the multiplicand by ibit positions and add it to PPiin order to obtain PP(i+) fter n steps, the partial product PPn represents the final product ultiplication of Unsigned Numbers ombanitorial rray ultiplier ultiplicand Bit of incoming partial product (PPi) j th multiplicand bit i th multiplier bit Each box represents a multiplication cell PP (PP) m m m 3 m 2 p q q carry out F carry in PP3 PP2 p 2 q 2 p Bit of outgoing partial product (PP(i+)) q 3 Product = P, 7,P 6,..P p 7 p 6 p 5 p 4 p 3 Typical multiplication cell ultiplicand is shifted by displacing it through an array of adders

4 ombinatorial rray ultiplier (cont.) rray multipliers are highly inefficient: Need nn-bit adders => number of gate counts is proportional to n 2 Impractical for large numbers such as 32-bit or 64-bit numbers typically used in computers Perform only one function, namely, unsigned integer product Solution:Improve gate efficiency by using a mixture of combinatorial array techniques and sequential techniques Instead of nn-bit adders, use one n-bit adder Use a register to hold the accumulated partial product This is called a sequential multiplier Sequential ultiplication Recall the rule for generating partial products: If the i th bit of the multiplier is, add the appropriately shifted multiplicand to the current partial product. ultiplicand is shifted left when being added to the partial product Key Observation: dding a left-shiftedmultiplicand to an unshiftedpartial product is equivalent to adding an unshiftedmultiplicand to a right-shifted partial product Sequential ircuit ultiplier Sequential ultiplication lgorithm n-bit dder Register (initially ) right a a q q n - n - UX dd/noadd control ultiplier ontrol sequencer Initialization: Load multiplicand in register, multiplier in register Initialize and registers to all zeroes Repeat the following steps n times, where n is the number of bits in the multiplier If (LSB of register == ) = + (carry-out goes to register) Treat the, and registers as one contiguous register and shift that register s contents right by one bit position m n - ultiplicand m fter the completion of n steps Register contains high-order half of product Register contains low-order half of product

5 Sequential ultiplication Example Sequential ultiplication Example Sequential ultiplication Example Sequential ultiplication Example Second cycle Second cycle No add Third cycle

6 Sequential ultiplication Example Second cycle No add Third cycle Fourth cycle Product

ECE 341. Lecture # 6

ECE 341. Lecture # 6 ECE 34 Lecture # 6 Instructor: Zeshan Chishti zeshan@pdx.edu October 5, 24 Portland State University Lecture Topics Design of Fast Adders Carry Looakahead Adders (CLA) Blocked Carry-Lookahead Adders Multiplication

More information

ECE 341. Lecture # 7

ECE 341. Lecture # 7 ECE 34 Lecture # 7 Instructor: Zeshan Chishti zeshan@pdx.edu October 2, 24 Portland State University Lecture Topics Multiplication of Unsigned Numbers Sequential Circuit Multiplier Multiplication of Signed

More information

9/6/2011. Multiplication. Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding

9/6/2011. Multiplication. Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding 9/6/2 Multiplication Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 4 6 8 2 4 6 8 3 3 6 9 2

More information

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state Chapter 4 xi yi Carry in ci Sum s i Carry out c i+ At the ith stage: Input: ci is the carry-in Output: si is the sum ci+ carry-out to (i+)st state si = xi yi ci + xi yi ci + xi yi ci + xi yi ci = x i yi

More information

Lecture Topics ECE 341. Lecture # 10. Register File. Hardware Components of a Processor

Lecture Topics ECE 341. Lecture # 10. Register File. Hardware Components of a Processor EE 1 Lecture # 10 Instructor: Zeshan hishti zeshan@ece.pdx.edu October 29, 201 Portland State University Lecture Topics asic Processing Unit Hardware omponents path Fetch Section Fetch and Execution Steps

More information

Addition and multiplication

Addition and multiplication Addition and multiplication Arithmetic is the most basic thing you can do with a computer, but it s not as easy as you might expect! These next few lectures focus on addition, subtraction, multiplication

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 6c High-Speed Multiplication - III Spring 2017 Koren Part.6c.1 Array Multipliers The two basic operations - generation

More information

ECE 341. Lecture # 10

ECE 341. Lecture # 10 EE 341 Lecture # 10 Instructor: Zeshan hishti zeshan@ece.pdx.edu October 29, 2014 Portland State University Lecture Topics Basic Processing Unit Hardware omponents Datapath Instruction Fetch Section Instruction

More information

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental

More information

Overview. EECS Components and Design Techniques for Digital Systems. Lec 16 Arithmetic II (Multiplication) Computer Number Systems.

Overview. EECS Components and Design Techniques for Digital Systems. Lec 16 Arithmetic II (Multiplication) Computer Number Systems. Overview EE 15 - omponents and Design Techniques for Digital ystems Lec 16 Arithmetic II (Multiplication) Review of Addition Overflow Multiplication Further adder optimizations for multiplication LA in

More information

Tailoring the 32-Bit ALU to MIPS

Tailoring the 32-Bit ALU to MIPS Tailoring the 32-Bit ALU to MIPS MIPS ALU extensions Overflow detection: Carry into MSB XOR Carry out of MSB Branch instructions Shift instructions Slt instruction Immediate instructions ALU performance

More information

Clocked Sequential System Design. Multiply Example

Clocked Sequential System Design. Multiply Example Clocked Sequential System Design Example 1 Multipliers (Gradeschool, Modified Gradeschool) Multiply Example (185) (215) 00000000 00000000 ------ 1001101101011111 (39775) 1 0000000000000000

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #6 Spring 2015 1. With x = 1111 1111 1111 1111 1011 0011 0101 0011 2 and y = 0000 0000 0000 0000 0000 0010 1101 0111 2 representing two s

More information

CS Spring Combinational Examples - 1

CS Spring Combinational Examples - 1 S 5 - Spring 2 - ombinational Examples - ombinational Logic esign ase Studies General esign Procedure for ombinational Logic General design procedure Examples alendar subsstem to 7-segment displa controller

More information

Computer Arithmetic Multiplication & Shift Chapter 3.4 EEC170 FQ 2005

Computer Arithmetic Multiplication & Shift Chapter 3.4 EEC170 FQ 2005 Computer Arithmetic Multiplication & Shift Chapter 3.4 EEC170 FQ 200 Multiply We will start with unsigned multiply and contrast how humans and computers multiply Layout 8-bit 8 Pipelined Multiplier 1 2

More information

VARUN AGGARWAL

VARUN AGGARWAL ECE 645 PROJECT SPECIFICATION -------------- Design A Microprocessor Functional Unit Able To Perform Multiplication & Division Professor: Students: KRIS GAJ LUU PHAM VARUN AGGARWAL GMU Mar. 2002 CONTENTS

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y Arithmetic A basic operation in all digital computers is the addition and subtraction of two numbers They are implemented, along with the basic logic functions such as AND,OR, NOT,EX- OR in the ALU subsystem

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 6c High-Speed Multiplication - III Israel Koren Fall 2010 ECE666/Koren Part.6c.1 Array Multipliers

More information

University of Illinois at Chicago. Lecture Notes # 10

University of Illinois at Chicago. Lecture Notes # 10 ECE 366 Computer Architecture Instructor: Shantanu Dutt Department of Electrical and Computer Engineering University of Illinois at Chicago Lecture otes # 0 COMPUTER ARITHMETIC: Integer Addition and Multiplication

More information

Array Multipliers. Figure 6.9 The partial products generated in a 5 x 5 multiplication. Sec. 6.5

Array Multipliers. Figure 6.9 The partial products generated in a 5 x 5 multiplication. Sec. 6.5 Sec. 6.5 Array Multipliers I'r) 1'8 P7 p6 PS f'4 1'3 1'2 1' 1 "0 Figure 6.9 The partial products generated in a 5 x 5 multiplication. called itemrive arrc.ly multipliers or simply cirruy m~illil>liers.

More information

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures Homework 3 Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) 1 CSCI 402: Computer Architectures Arithmetic for Computers (2) Fengguang Song Department

More information

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture

Lecture 6: Signed Numbers & Arithmetic Circuits. BCD (Binary Coded Decimal) Points Addressed in this Lecture Points ddressed in this Lecture Lecture 6: Signed Numbers rithmetic Circuits Professor Peter Cheung Department of EEE, Imperial College London (Floyd 2.5-2.7, 6.1-6.7) (Tocci 6.1-6.11, 9.1-9.2, 9.4) Representing

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: continued 1 Announcements Consulting hours Introduction to Sim Milestone #1 (due 1/26) 2 1 Overview: Integer Operations Internal representation

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

MULTIPLICATION TECHNIQUES

MULTIPLICATION TECHNIQUES Learning Objectives EE 357 Unit 2a Multiplication Techniques Perform by hand the different methods for unsigned and signed multiplication Understand the various digital implementations of a multiplier

More information

Timing for Ripple Carry Adder

Timing for Ripple Carry Adder Timing for Ripple Carry Adder 1 2 3 Look Ahead Method 5 6 7 8 9 Look-Ahead, bits wide 10 11 Multiplication Simple Gradeschool Algorithm for 32 Bits (6 Bit Result) Multiplier Multiplicand AND gates 32

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Combinational Logic Martha. Kim Columbia University Spring 6 / Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current

More information

Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number. Chapter 3

Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number. Chapter 3 Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 3.1 Introduction The various sections

More information

Chapter 4. Combinational Logic

Chapter 4. Combinational Logic Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential

More information

Arithmetic and Logical Operations

Arithmetic and Logical Operations Arithmetic and Logical Operations 2 CMPE2c x +y + sum Or in tabular form Binary Addition Carry Out Sum B A Carry In Binary Addition And as a full adder a b co ci sum 4-bit Ripple-Carry adder: Carry values

More information

Binary Arithmetic. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T.

Binary Arithmetic. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. Binary Arithmetic Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. MIT 6.004 Fall 2018 Reminder: Encoding Positive Integers Bit i in a binary representation (in right-to-left order)

More information

Chapter 5 Registers & Counters

Chapter 5 Registers & Counters University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 5 Registers & Counters Originals by: Charles R. Kime Modified for course

More information

Week 7: Assignment Solutions

Week 7: Assignment Solutions Week 7: Assignment Solutions 1. In 6-bit 2 s complement representation, when we subtract the decimal number +6 from +3, the result (in binary) will be: a. 111101 b. 000011 c. 100011 d. 111110 Correct answer

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Combinational Circuits

Combinational Circuits Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

More information

Chapter 3: part 3 Binary Subtraction

Chapter 3: part 3 Binary Subtraction Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary adder-subtractors Signed binary

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Adders, Subtracters and Accumulators in XC3000

Adders, Subtracters and Accumulators in XC3000 s, ubtracters and Accumulators in XC3000 XAPP 022.000 Application Note By PETER ALFKE and BERNIE NEW ummary This Application Note surveys the different adder techniques that are available for XC3000 designs.

More information

T insn-mem T regfile T ALU T data-mem T regfile

T insn-mem T regfile T ALU T data-mem T regfile This Unit: rithmetic CI 371 Computer Organization and Design Unit 3: rithmetic pp pp pp ystem software Mem CPU I/O! little review! Binary + 2s complement! Ripple-carry addition (RC)! Fast integer addition!

More information

CS/COE 0447 Example Problems for Exam 2 Spring 2011

CS/COE 0447 Example Problems for Exam 2 Spring 2011 CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4-bit numbers 3 and 5 with the fast shift-add multipler. Use the table below. List the multiplicand (M) and product

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 9: Binary Addition & Multiplication Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Pop Quiz! Using 4 bits signed integer notation:

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

Lecture #21 March 31, 2004 Introduction to Gates and Circuits

Lecture #21 March 31, 2004 Introduction to Gates and Circuits Lecture #21 March 31, 2004 Introduction to Gates and Circuits To this point we have looked at computers strictly from the perspective of assembly language programming. While it is possible to go a great

More information

Computer Architecture and Organization

Computer Architecture and Organization 3-1 Chapter 3 - Arithmetic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 3 Arithmetic 3-2 Chapter 3 - Arithmetic Chapter Contents 3.1 Fixed Point Addition and Subtraction

More information

RADIX-4 AND RADIX-8 MULTIPLIER USING VERILOG HDL

RADIX-4 AND RADIX-8 MULTIPLIER USING VERILOG HDL RADIX-4 AND RADIX-8 MULTIPLIER USING VERILOG HDL P. Thayammal 1, R.Sudhashree 2, G.Rajakumar 3 P.G.Scholar, Department of VLSI, Francis Xavier Engineering College, Tirunelveli 1 P.G.Scholar, Department

More information

Fast Arithmetic. Philipp Koehn. 19 October 2016

Fast Arithmetic. Philipp Koehn. 19 October 2016 Fast Arithmetic Philipp Koehn 19 October 2016 1 arithmetic Addition (Immediate) 2 Load immediately one number (s0 = 2) li $s0, 2 Add 4 ($s1 = $s0 + 4 = 6) addi $s1, $s0, 4 Subtract 3 ($s2 = $s1-3 = 3)

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

More information

EECS150: Components and Design Techniques for Digital Systems

EECS150: Components and Design Techniques for Digital Systems EECS150: Components and Design Techniques for Digital Systems University of California Dept. of Electrical Engineering and Computer Sciences Midterm 3 Fall 2004 Last name: First name Student ID: Login:

More information

Integer Multiplication and Division

Integer Multiplication and Division Integer Multiplication and Division COE 301 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline

More information

COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B)

COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B) Computer Arithmetic Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce results necessary to give solution for the computation problems. The Addition,

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 75 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (8 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a) A

More information

ECEN 468 Advanced Logic Design

ECEN 468 Advanced Logic Design ECEN 468 Advanced Logic Design Lecture 26: Verilog Operators ECEN 468 Lecture 26 Operators Operator Number of Operands Result Arithmetic 2 Binary word Bitwise 2 Binary word Reduction 1 Bit Logical 2 Boolean

More information

carry in carry 1101 carry carry

carry in carry 1101 carry carry Chapter Binary arithmetic Arithmetic is the process of applying a mathematical operator (such as negation or addition) to one or more operands (the values being operated upon). Binary arithmetic works

More information

Id Question Microprocessor is the example of architecture. A Princeton B Von Neumann C Rockwell D Harvard Answer A Marks 1 Unit 1

Id Question Microprocessor is the example of architecture. A Princeton B Von Neumann C Rockwell D Harvard Answer A Marks 1 Unit 1 Question Microprocessor is the example of architecture. Princeton Von Neumann Rockwell Harvard nswer Question bus is unidirectional. ata ddress ontrol None of these nswer Question Use of isolates PU form

More information

Multi-Operand Addition Ivor Page 1

Multi-Operand Addition Ivor Page 1 Multi-Operand Addition 1 Multi-Operand Addition Ivor Page 1 9.1 Motivation The motivation for multi-operand adders comes from the need for innerproduct calculations and multiplication (summing the partial

More information

Chapter 4 Arithmetic Functions

Chapter 4 Arithmetic Functions Logic and Computer Design Fundamentals Chapter 4 Arithmetic Functions Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Iterative combinational

More information

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8 Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

More information

More complicated than addition. Let's look at 3 versions based on grade school algorithm (multiplicand) More time and more area

More complicated than addition. Let's look at 3 versions based on grade school algorithm (multiplicand) More time and more area Multiplication More complicated than addition accomplished via shifting and addition More time and more area Let's look at 3 versions based on grade school algorithm 01010010 (multiplicand) x01101101 (multiplier)

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: The MIPS ISA (P&H ) Consulting hours. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: The MIPS ISA (P&H ) Consulting hours. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: The MIPS ISA (P&H 2.1-2.14) 1 Announcements Consulting hours Milestone #1 (due 1/26) Milestone #2 (due 2/2) 2 1 Review: Integer Operations Internal

More information

Chapter 3 Arithmetic for Computers

Chapter 3 Arithmetic for Computers Chapter 3 Arithmetic for Computers 1 Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing the Architecture operation

More information

Experiment 7 Arithmetic Circuits Design and Implementation

Experiment 7 Arithmetic Circuits Design and Implementation Experiment 7 Arithmetic Circuits Design and Implementation Introduction: Addition is just what you would expect in computers. Digits are added bit by bit from right to left, with carries passed to the

More information

ALU Design. 1-bit Full Adder 4-bit Arithmetic circuits. Arithmetic and Logic Unit Flags. Add/Subtract/Increament/Decrement Circuit

ALU Design. 1-bit Full Adder 4-bit Arithmetic circuits. Arithmetic and Logic Unit Flags. Add/Subtract/Increament/Decrement Circuit LU Design -bit Full dder 4-bit rithmetic circuits dd/subtract/increament/decrement Circuit rithmetic and Logic Unit Flags Carry-Out, Sign, Zero, Overflow Shift and Rotate t Operations COE2 (Fall27) LU

More information

UNIT IV: DATA PATH DESIGN

UNIT IV: DATA PATH DESIGN UNIT IV: DATA PATH DESIGN Agenda Introduc/on Fixed Point Arithme/c Addi/on Subtrac/on Mul/plica/on & Serial mul/plier Division & Serial Divider Two s Complement (Addi/on, Subtrac/on) Booth s algorithm

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 90 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (11 points) For parts (a) through (d), indicate whether the statement is TRUE or FALSE. For parts (e) and

More information

A Novel Design of 32 Bit Unsigned Multiplier Using Modified CSLA

A Novel Design of 32 Bit Unsigned Multiplier Using Modified CSLA A Novel Design of 32 Bit Unsigned Multiplier Using Modified CSLA Chandana Pittala 1, Devadas Matta 2 PG Scholar.VLSI System Design 1, Asst. Prof. ECE Dept. 2, Vaagdevi College of Engineering,Warangal,India.

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Advanced Computer Architecture-CS501

Advanced Computer Architecture-CS501 Advanced Computer Architecture Lecture No. 34 Reading Material Vincent P. Heuring & Harry F. Jordan Chapter 6 Computer Systems Design and Architecture 6.1, 6.2 Summary Introduction to ALSU Radix Conversion

More information

Combinational Logic Circuits

Combinational Logic Circuits Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has

More information

A novel technique for fast multiplication

A novel technique for fast multiplication INT. J. ELECTRONICS, 1999, VOL. 86, NO. 1, 67± 77 A novel technique for fast multiplication SADIQ M. SAIT², AAMIR A. FAROOQUI GERHARD F. BECKHOFF and In this paper we present the design of a new high-speed

More information

MULTIPLE OPERAND ADDITION. Multioperand Addition

MULTIPLE OPERAND ADDITION. Multioperand Addition MULTIPLE OPERAND ADDITION Chapter 3 Multioperand Addition Add up a bunch of numbers Used in several algorithms Multiplication, recurrences, transforms, and filters Signed (two s comp) and unsigned Don

More information

COMP 303 Computer Architecture Lecture 6

COMP 303 Computer Architecture Lecture 6 COMP 303 Computer Architecture Lecture 6 MULTIPLY (unsigned) Paper and pencil example (unsigned): Multiplicand 1000 = 8 Multiplier x 1001 = 9 1000 0000 0000 1000 Product 01001000 = 72 n bits x n bits =

More information

Computer Organization EE 3755 Midterm Examination

Computer Organization EE 3755 Midterm Examination Name Solution Computer Organization EE 3755 Midterm Examination Wednesday, 24 October 2012, 9:30 10:20 CDT Alias A Century of Turing Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem

More information

EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE

EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output

More information

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits

Lecture 21: Combinational Circuits. Integrated Circuits. Integrated Circuits, cont. Integrated Circuits Combinational Circuits Lecture 21: Combinational Circuits Integrated Circuits Combinational Circuits Multiplexer Demultiplexer Decoder Adders ALU Integrated Circuits Circuits use modules that contain multiple gates packaged

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 1 Digital vs Analog Digital signals are binary; analog

More information

EECS150 - Digital Design Lecture 13 - Combinational Logic & Arithmetic Circuits Part 3

EECS150 - Digital Design Lecture 13 - Combinational Logic & Arithmetic Circuits Part 3 EECS15 - Digital Design Lecture 13 - Combinational Logic & Arithmetic Circuits Part 3 October 8, 22 John Wawrzynek Fall 22 EECS15 - Lec13-cla3 Page 1 Multiplication a 3 a 2 a 1 a Multiplicand b 3 b 2 b

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 6b High-Speed Multiplication - II Spring 2017 Koren Part.6b.1 Accumulating the Partial Products After generating partial

More information

Binary Multiplication

Binary Multiplication inary Multiplication The key to multiplication was memorizing a digit-by-digit table Everything else was just adding 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 4 6 8 2 4 6 8 3 3 6 9 2 5 8 2 24 27 + You ve got

More information

Chapter 3 Part 2 Combinational Logic Design

Chapter 3 Part 2 Combinational Logic Design University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski

More information

CPS 104 Computer Organization and Programming

CPS 104 Computer Organization and Programming CPS 104 Computer Organization and Programming Lecture 9: Integer Arithmetic. Robert Wagner CPS104 IMD.1 RW Fall 2000 Overview of Today s Lecture: Integer Multiplication and Division. Read Appendix B CPS104

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Combinational Logic Stephen. Edwards Columbia University Summer 7 Combinational Circuits Combinational circuits are stateless. Their output is a function only of the current

More information

ECE468 Computer Organization & Architecture. The Design Process & ALU Design

ECE468 Computer Organization & Architecture. The Design Process & ALU Design ECE6 Computer Organization & Architecture The Design Process & Design The Design Process "To Design Is To Represent" Design activity yields description/representation of an object -- Traditional craftsman

More information

Digital Computer Arithmetic

Digital Computer Arithmetic Digital Computer Arithmetic Part 6 High-Speed Multiplication Soo-Ik Chae Spring 2010 Koren Chap.6.1 Speeding Up Multiplication Multiplication involves 2 basic operations generation of partial products

More information

Principles of Computer Architecture. Chapter 3: Arithmetic

Principles of Computer Architecture. Chapter 3: Arithmetic 3-1 Chapter 3 - Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 3-2 Chapter 3 - Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition

More information

Binary Adders. Ripple-Carry Adder

Binary Adders. Ripple-Carry Adder Ripple-Carry Adder Binary Adders x n y n x y x y c n FA c n - c 2 FA c FA c s n MSB position Longest delay (Critical-path delay): d c(n) = n d carry = 2n gate delays d s(n-) = (n-) d carry +d sum = 2n

More information

EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION

EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION QUESTION BANK UNIT-II 1. What are the disadvantages in using a ripple carry adder? (NOV/DEC 2006) The main disadvantage using ripple carry adder is time delay.

More information

SUBROUTINE NESTING AND THE PROCESSOR STACK:-

SUBROUTINE NESTING AND THE PROCESSOR STACK:- SUBROUTINE NESTING AND THE PROCESSOR STACK:- A common programming practice, called subroutine nesting, is to have one subroutine call another. In this case, the return address of the second call is also

More information

Outline. Introduction to Structured VLSI Design. Signed and Unsigned Integers. 8 bit Signed/Unsigned Integers

Outline. Introduction to Structured VLSI Design. Signed and Unsigned Integers. 8 bit Signed/Unsigned Integers Outline Introduction to Structured VLSI Design Integer Arithmetic and Pipelining Multiplication in the digital domain HW mapping Pipelining optimization Joachim Rodrigues Signed and Unsigned Integers n-1

More information

60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design 60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

More information

How a Digital Binary Adder Operates

How a Digital Binary Adder Operates Overview of a Binary Adder How a Digital Binary Adder Operates By: Shawn R Moser A binary adder is a digital electronic component that is used to perform the addition of two binary numbers and return the

More information

IMPLEMENTATION OF TWIN PRECISION TECHNIQUE FOR MULTIPLICATION

IMPLEMENTATION OF TWIN PRECISION TECHNIQUE FOR MULTIPLICATION IMPLEMENTATION OF TWIN PRECISION TECHNIQUE FOR MULTIPLICATION SUNITH KUMAR BANDI #1, M.VINODH KUMAR *2 # ECE department, M.V.G.R College of Engineering, Vizianagaram, Andhra Pradesh, INDIA. 1 sunithjc@gmail.com

More information

Computer Architecture Set Four. Arithmetic

Computer Architecture Set Four. Arithmetic Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What

More information

Design of Arithmetic Units ECE152B AU 1

Design of Arithmetic Units ECE152B AU 1 Design of Arithmetic Units ECE152B AU 1 Design of Arithmetic Units We will discuss the design of Adders/Substractors Multipliers/Dividers li id and analyze algorithms & methods to perform the desired d

More information

IA Digital Electronics - Supervision I

IA Digital Electronics - Supervision I IA Digital Electronics - Supervision I Nandor Licker Due noon two days before the supervision 1 Overview The goal of this exercise is to design an 8-digit calculator capable of adding

More information

Arithmetic Operators There are two types of operators: binary and unary Binary operators:

Arithmetic Operators There are two types of operators: binary and unary Binary operators: Verilog operators operate on several data types to produce an output Not all Verilog operators are synthesible (can produce gates) Some operators are similar to those in the C language Remember, you are

More information

Lecture 8: Addition, Multiplication & Division

Lecture 8: Addition, Multiplication & Division Lecture 8: Addition, Multiplication & Division Today s topics: Signed/Unsigned Addition Multiplication Division 1 Signed / Unsigned The hardware recognizes two formats: unsigned (corresponding to the C

More information

Array-of-arrays Architecture for Parallel Floating Point Multiplication

Array-of-arrays Architecture for Parallel Floating Point Multiplication rray-of-arrays rchitecture for arallel Floating oint ultiplication ema Dhanesha, Katayoun Falakshahi and ark orowitz enter for Integrated ystems, tanford University tanford, 94305 bstract his paper presents

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNIC Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DEIGN: ARITHMETIC (THROUGH EXAMPLE) 2nd (Autumn) term 28/29 COMBINATIONAL LOGIC

More information

Chapter 5 : Computer Arithmetic

Chapter 5 : Computer Arithmetic Chapter 5 Computer Arithmetic Integer Representation: (Fixedpoint representation): An eight bit word can be represented the numbers from zero to 255 including = 1 = 1 11111111 = 255 In general if an nbit

More information