Overview. EECS Components and Design Techniques for Digital Systems. Lec 16 Arithmetic II (Multiplication) Computer Number Systems.

Size: px
Start display at page:

Download "Overview. EECS Components and Design Techniques for Digital Systems. Lec 16 Arithmetic II (Multiplication) Computer Number Systems."

Transcription

1 Overview EE 15 - omponents and Design Techniques for Digital ystems Lec 16 Arithmetic II (Multiplication) Review of Addition Overflow Multiplication Further adder optimizations for multiplication LA in the large parallel prefix David uller Electrical Engineering and omputer ciences University of alifornia, Berkeley Review ircuit design for unsigned addition Full adder per bit slice Delay limited by arry Propagation» Ripple is algorithmically slow, but wires are short arry select imple, resource-intensive Excellent layout arry look-ahead Excellent asymptotic behavior Great at the board level, but wire length effects are significant on chip Digital number systems How to represent negative numbers imple operations lean algorithmic properties 2omplement is most widely used ircuit for unsigned arithmetic ubtract by complement and carry in Overflow when cin xor cout of sign-bit is 1 omputer Number ystems Positional notation D n-1 D n-2 D represents D n-1 B n-1 D n-2 B n-2 D B where D i {,, B-1 } 2s omplement D n-1 D n-2 D represents: - D n-1 2 n-1 D n-2 2 n-2 D 2 MB has negative weight

2 2s omplement Overflow 2omp. Overflow Detection How can you tell an overflow occurred? Add two positive numbers to get a negative number or two negative numbers to get a positive number Overflow No overflow Overflow -3-5 No overflow =! -7-2 = 7! Overflow occurs when carry in to sign does not equal carry out 2s omplement Adder/ubtractor Adders on the Xilinx Virtex A 3 B 3 B 3 A 2 B 2 B 2 A 1 B 1 B 1 A B B 1 el 1 el 1 el 1 el O I O I O I O I Overflow A - B = A (-B) = A B 1 Add/ubtract Dedicated carry logic provides fast arithmetic carry capability for highspeed arithmetic functions. The Virtex-E LB supports two separate carry chains, one per lice. The height of the carry chains is two bits per LB. The arithmetic logic includes an XOR gate and AND gate that allows a 2- bit full adder to be implemented within a slice. in to out delay =.1ns, versus.4ns for F to X delay. How do we map a 2-bit adder to one slice?

3 Time / pace (resource) Trade-offs arry select and LA utilize more silicon to reduce time. an we use more time to reduce silicon? How few FAs does it take to do addition? Bit-serial Adder n-bit shift registers A B lsb reset FF FA A, B, and R held in shiftregisters. hift right once per clock cycle. Reset is asserted by controller. n-bit shift register c s R Addition of 2 n-bit numbers: takes n clock cycles, uses 1 FF, 1 FA cell, plus registers the bit streams may come from or go to other circuits, therefore the registers may be optional. Requireontroller What does the FM look like? Implemented? Final carry out? Discussion What is sign extension and why does it work? Where is addition used in the project? Where might you want more powerful arithmetic operations? Announcements Reading: 5.8 (4 pages!) Digital Design in the news from UB U Berkeley is among six universities to be part of the program started by IBM orp. and Google Inc. on college campuses to promote computer-programming techniques for clusters of processors known as "clouds". loud computing allowomputers in remote data centers to run parallel, increasing their processing power. Each company will spend between $2 million and $25 million for hardware, software and services that can be used by computer-science professors and students.

4 Basic concept of multiplication ombinational Multiplier: accumulation of partial products multiplicand multiplier Partial products 111 (13) * 111 (11) A3 B2 A3 B1 A2 B2 A3 B3 A2 B A2 B1 A1 B2 A2 B2 A2 B A1 B1 2 A1 B1 A1 B 1 A B 111 A3 B3 A2 B3 A1 B (143) product of 2 n-bit numbers is an 2n-bit number sum of n n-bit partial products unsigned Array Multiplier Generates all n partial products simultaneously. b3 b2 b1 b P7 P6 P5 P4 a a1 a2 a3 P P1 P2 P3 Each row: n-bit adder with AND gates carry out b j FA sum in sum out a i carry in What is the critical path? hift and Add Multiplier n-bit adder 1 P B n-bit shift registers A n-bit register ost α n, Τ = n clock cycles. What is the critical path for determining the min clock period? ums each partial product, one at a time. In binary, each partial product is shifted versions of A or. ontrol Algorithm: 1. P, A multiplicand, B multiplier 2. If LB of B==1 then add A to P else add 3. hift [P][B] right 1 4. Repeat steps 2 and 3 n-1 times. 5. [P][B] has product.

5 arry-save Addition peeding up multiplication is a matter of speeding up the summing of the partial products. arry-save addition can help. arry-save addition passes (saves) the carries to the output, rather than propagating them. carry-save add carry-propagate add Example: sum three numbers, 3 1 = 11, 2 1 = 1, 3 1 = c 1 = 4 1 s 1 = c 1 = 2 1 s 11 = = 8 1 carry-save add In general, carry-save addition takes in 3 numbers and produces 2. Whereas, carry-propagate takes 2 and produces 1. With this technique, we can avoid carry propagation until final addition arry-save ircuits A c FA FA FA FA FA FA FA FA When adding sets of numbers, carry-save can be used on all but the final sum. tandard adder (carry propagate) is used for final sum. x 2 x 1 x A A A PA Array Mult. using arry-save Addition b3 b2 b1 b P7 P6 P5 P4 1 a a1 a2 a3 P P1 P2 P3 carry out Fast carrypropagate adder b j FA sum in sum out a i carry in Another Representation um In X in Y F A O I out um Out Add PA Building block: full adder and A3 A2 A1 A B A3 B A2 B A1 B B1 A3 B1 A2 B1 A1 B1 1 B2 A3 B2 A2 B2 A1 B2 2 B3 A3 B3 A2 B3 A1 B3 3 P7 P6 P5 P4 P3 P2 P1 P 4 x 4 array of building blocks

6 arry-save Addition A is associative and commutative. For example: (((X X 1 )X 2 )X 3 ) = ((X X 1 )(X 2 X 3 )) x 7 x 6 x 5 x 4 x 3 x 2 x 1 x A balanced tree can be used to A A reduce the logic delay. igned Multiplier igned Multiplication: Remember for 2 omplement numbers MB has negative weight: N 2 i X = x i 2 x i= n 1 2 n 1 A A A A PA log 2 N log 3/2 N This structure is the basis of the Wallace Tree Multiplier. Partial products are summed with the A tree. Fast PA (ex: LA) is used for final sum. Multiplier delay α log 3/2 N log 2 N ex: -6 = = = = -6 Therefore for multiplication: a) subtract final partial product b) sign-extend partial products Modifications to shift & add circuit: a) adder/subtractor b) sign-extender on P shifter register igned multiplication igned Array Multiplier multiplicand multiplier - * 111 (-3) 111 (-5) (-3) (-6) -(-24) Note: 2omplement ign extension 1111 (15) product of 2 n-bit numbers is an 2n-bit number sum of n n-bit partial products Implicit ign extension b3 b2 b1 b a a1 a2 a3 P P1 P2 P3 P7 P6 P5 P4

7 hift and Add igned Multiplier arry Look-ahead Adders n-bit adder 1 P B n-bit shift registers A n-bit register igned extend partial product at each stage Final step is a subtract In general, for n-bit addition best we can achieve is delay α log(n) How do we arrange this? (think trees) First, reformulate basic adder stage: a b c i c i1 s carry kill k i = a i b i carry propagate p i = a i b i carry generate g i = a i b i c i1 = g i p i c i s i = p i c i arry Look-ahead Adders in blocks c arry Look-ahead Adders Group propagate and generate signals: p i g i p i1 g i1 c in P = p i p i1 p ik G = g ik p ik g ik-1 (p i1 p i2 p ik )g i a b a 1 b 1 a 2 b 2 a P a G a c 3 = G a P a c 9-bit Example of hierarchically generated P and G signals: P = P a P b P c p ik g ik c out a 3 b 3 a 4 b 4 a 5 b 5 b P b G b P true if the group as a whole propagates a carry to c out G true if the group as a whole generates a carry out = G P in Group P and G can be generated hierarchically. a 6 b 6 a 7 b 7 a 8 b 8 c c 6 = G b P b c 3 P c G c c 9 = G Pc G = G c P c G b P b P c G a

8 Parallel Prefix (generalizing LA) B x BA BAx BA A Ax a b s c c 1 a 1 b 1s1 a 2 b 2s2 c 3 a 3 b 3s3 a 4 b 4s4 p,g c c 2 P,G c c 4 c a i b isi P,G c i c i1 p,g p = a b g = ab s = p c i c i1 = g c i p 8-bit arry Lookahead Adder c 5 a 5 b 5s5 c c 8 c in a 6 b 6s6 c 7 a 7 b 7s7 c 6 P a,g a P b,g b c out P,G P = P a P b G = G b G a P b out = G c in P ompute all the prefixes F i = F i-1 op F i-2 op op F Assume associative and commutative ummary 2 complement number systems Algebraic and corresponding bit manipulations Overflow detection ignficance of sign bit -2 n-1 arry look ahead is form a parallel prefix Time / pace tradeoffs Bit serial adder Binary Multiplication algorithm Array multiplier erial multiply (with bit parallel adder) igned multiplication ign extend multipicand ign bit of multiplier treated as subtract

EECS150 - Digital Design Lecture 13 - Combinational Logic & Arithmetic Circuits Part 3

EECS150 - Digital Design Lecture 13 - Combinational Logic & Arithmetic Circuits Part 3 EECS15 - Digital Design Lecture 13 - Combinational Logic & Arithmetic Circuits Part 3 October 8, 22 John Wawrzynek Fall 22 EECS15 - Lec13-cla3 Page 1 Multiplication a 3 a 2 a 1 a Multiplicand b 3 b 2 b

More information

Learning Outcomes. Spiral 2-2. Digital System Design DATAPATH COMPONENTS

Learning Outcomes. Spiral 2-2. Digital System Design DATAPATH COMPONENTS 2-2. 2-2.2 Learning Outcomes piral 2-2 Arithmetic Components and Their Efficient Implementations I understand the control inputs to counters I can design logic to control the inputs of counters to create

More information

Learning Outcomes. Spiral 2 2. Digital System Design DATAPATH COMPONENTS

Learning Outcomes. Spiral 2 2. Digital System Design DATAPATH COMPONENTS 2-2. 2-2.2 Learning Outcomes piral 2 2 Arithmetic Components and Their Efficient Implementations I know how to combine overflow and subtraction results to determine comparison results of both signed and

More information

Learning Outcomes. Spiral 2 2. Digital System Design DATAPATH COMPONENTS

Learning Outcomes. Spiral 2 2. Digital System Design DATAPATH COMPONENTS 2-2. 2-2.2 Learning Outcomes piral 2 2 Arithmetic Components and Their Efficient Implementations I know how to combine overflow and subtraction results to determine comparison results of both signed and

More information

MULTIPLICATION TECHNIQUES

MULTIPLICATION TECHNIQUES Learning Objectives EE 357 Unit 2a Multiplication Techniques Perform by hand the different methods for unsigned and signed multiplication Understand the various digital implementations of a multiplier

More information

Chapter 3 Part 2 Combinational Logic Design

Chapter 3 Part 2 Combinational Logic Design University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski

More information

9/6/2011. Multiplication. Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding

9/6/2011. Multiplication. Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding 9/6/2 Multiplication Binary Multipliers The key trick of multiplication is memorizing a digit-to-digit table Everything else was just adding 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 4 6 8 2 4 6 8 3 3 6 9 2

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNIC Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DEIGN: ARITHMETIC (THROUGH EXAMPLE) 2nd (Autumn) term 28/29 COMBINATIONAL LOGIC

More information

Adders, Subtracters and Accumulators in XC3000

Adders, Subtracters and Accumulators in XC3000 s, ubtracters and Accumulators in XC3000 XAPP 022.000 Application Note By PETER ALFKE and BERNIE NEW ummary This Application Note surveys the different adder techniques that are available for XC3000 designs.

More information

Digital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University

Digital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University Digital Circuit Design and Language Datapath Design Chang, Ik Joon Kyunghee University Typical Synchronous Design + Control Section : Finite State Machine + Data Section: Adder, Multiplier, Shift Register

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: continued 1 Announcements Consulting hours Introduction to Sim Milestone #1 (due 1/26) 2 1 Overview: Integer Operations Internal representation

More information

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010 Digital Logic & Computer Design CS 434 Professor Dan Moldovan Spring 2 Copyright 27 Elsevier 5- Chapter 5 :: Digital Building Blocks Digital Design and Computer Architecture David Money Harris and Sarah

More information

Arithmetic Logic Unit. Digital Computer Design

Arithmetic Logic Unit. Digital Computer Design Arithmetic Logic Unit Digital Computer Design Arithmetic Circuits Arithmetic circuits are the central building blocks of computers. Computers and digital logic perform many arithmetic functions: addition,

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #6 Spring 2015 1. With x = 1111 1111 1111 1111 1011 0011 0101 0011 2 and y = 0000 0000 0000 0000 0000 0010 1101 0111 2 representing two s

More information

Tailoring the 32-Bit ALU to MIPS

Tailoring the 32-Bit ALU to MIPS Tailoring the 32-Bit ALU to MIPS MIPS ALU extensions Overflow detection: Carry into MSB XOR Carry out of MSB Branch instructions Shift instructions Slt instruction Immediate instructions ALU performance

More information

Binary Arithmetic. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T.

Binary Arithmetic. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. Binary Arithmetic Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. MIT 6.004 Fall 2018 Reminder: Encoding Positive Integers Bit i in a binary representation (in right-to-left order)

More information

Chapter 3 Arithmetic for Computers

Chapter 3 Arithmetic for Computers Chapter 3 Arithmetic for Computers 1 Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing the Architecture operation

More information

Computer Architecture Set Four. Arithmetic

Computer Architecture Set Four. Arithmetic Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 6c High-Speed Multiplication - III Spring 2017 Koren Part.6c.1 Array Multipliers The two basic operations - generation

More information

Design of Arithmetic Units ECE152B AU 1

Design of Arithmetic Units ECE152B AU 1 Design of Arithmetic Units ECE152B AU 1 Design of Arithmetic Units We will discuss the design of Adders/Substractors Multipliers/Dividers li id and analyze algorithms & methods to perform the desired d

More information

University of Illinois at Chicago. Lecture Notes # 10

University of Illinois at Chicago. Lecture Notes # 10 ECE 366 Computer Architecture Instructor: Shantanu Dutt Department of Electrical and Computer Engineering University of Illinois at Chicago Lecture otes # 0 COMPUTER ARITHMETIC: Integer Addition and Multiplication

More information

Lecture 19: Arithmetic Modules 14-1

Lecture 19: Arithmetic Modules 14-1 Lecture 19: Arithmetic Modules 14-1 Syllabus Objectives Addition and subtraction Multiplication Division Arithmetic and logic unit 14-2 Objectives After completing this chapter, you will be able to: Describe

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

T insn-mem T regfile T ALU T data-mem T regfile

T insn-mem T regfile T ALU T data-mem T regfile This Unit: rithmetic CI 371 Computer Organization and Design Unit 3: rithmetic pp pp pp ystem software Mem CPU I/O! little review! Binary + 2s complement! Ripple-carry addition (RC)! Fast integer addition!

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 6b High-Speed Multiplication - II Spring 2017 Koren Part.6b.1 Accumulating the Partial Products After generating partial

More information

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental

More information

*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits

*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 6c High-Speed Multiplication - III Israel Koren Fall 2010 ECE666/Koren Part.6c.1 Array Multipliers

More information

Computer Arithmetic Multiplication & Shift Chapter 3.4 EEC170 FQ 2005

Computer Arithmetic Multiplication & Shift Chapter 3.4 EEC170 FQ 2005 Computer Arithmetic Multiplication & Shift Chapter 3.4 EEC170 FQ 200 Multiply We will start with unsigned multiply and contrast how humans and computers multiply Layout 8-bit 8 Pipelined Multiplier 1 2

More information

This Unit: Arithmetic. CIS 371 Computer Organization and Design. Readings. Pre Class Exercise

This Unit: Arithmetic. CIS 371 Computer Organization and Design. Readings. Pre Class Exercise This Unit: Arithmetic CI 371 Computer Organization and Design Unit 4: Arithmetic Based on slides by Prof. Amir Roth & Prof. Milo Martin App App App ystem software Mem CPU I/O A little review Binary + 2s

More information

CPE 335 Computer Organization. MIPS Arithmetic Part I. Content from Chapter 3 and Appendix B

CPE 335 Computer Organization. MIPS Arithmetic Part I. Content from Chapter 3 and Appendix B CPE 335 Computer Organization MIPS Arithmetic Part I Content from Chapter 3 and Appendix B Dr. Iyad Jafar Adatped from Dr. Gheith Abandah Slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html

More information

Lecture 5. Other Adder Issues

Lecture 5. Other Adder Issues Lecture 5 Other Adder Issues Mark Horowitz Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 24 by Mark Horowitz with information from Brucek Khailany 1 Overview Reading There

More information

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions EE210: Switching Systems Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions Prof. YingLi Tian Feb. 5/7, 2019 Department of Electrical Engineering The City College of New

More information

Addition and multiplication

Addition and multiplication Addition and multiplication Arithmetic is the most basic thing you can do with a computer, but it s not as easy as you might expect! These next few lectures focus on addition, subtraction, multiplication

More information

CS Computer Architecture. 1. Explain Carry Look Ahead adders in detail

CS Computer Architecture. 1. Explain Carry Look Ahead adders in detail 1. Explain Carry Look Ahead adders in detail A carry-look ahead adder (CLA) is a type of adder used in digital logic. A carry-look ahead adder improves speed by reducing the amount of time required to

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 6b High-Speed Multiplication - II Israel Koren ECE666/Koren Part.6b.1 Accumulating the Partial

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 75 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (8 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a) A

More information

Digital Computer Arithmetic

Digital Computer Arithmetic Digital Computer Arithmetic Part 6 High-Speed Multiplication Soo-Ik Chae Spring 2010 Koren Chap.6.1 Speeding Up Multiplication Multiplication involves 2 basic operations generation of partial products

More information

By, Ajinkya Karande Adarsh Yoga

By, Ajinkya Karande Adarsh Yoga By, Ajinkya Karande Adarsh Yoga Introduction Early computer designers believed saving computer time and memory were more important than programmer time. Bug in the divide algorithm used in Intel chips.

More information

Outline. Combinational Circuit Design: Practice. Sharing. 2. Operator sharing. An example 0.55 um standard-cell CMOS implementation

Outline. Combinational Circuit Design: Practice. Sharing. 2. Operator sharing. An example 0.55 um standard-cell CMOS implementation Outline Combinational Circuit Design: Practice 1. Derivation of efficient HDL description 2. Operator sharing 3. Functionality sharing 4. Layout-related circuits 5. General circuits Chapter 7 1 Chapter

More information

Combinational Circuit Design: Practice

Combinational Circuit Design: Practice Combinational Circuit Design: Practice Chapter 7 1 Outline 1. Derivation of efficient HDL description 2. Operator sharing 3. Functionality sharing 4. Layout-related circuits 5. General circuits Chapter

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 4: CAD tools (Continued) Dr. Mohamed Abd El Ghany, Basic VHDL Concept Via an Example Problem: write VHDL code for 1-bit adder 4-bit adder 2 1-bit adder Inputs: A (1 bit)

More information

Parallel logic circuits

Parallel logic circuits Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

More information

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak.

Arithmetic Circuits. Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak. Arithmetic Circuits Design of Digital Circuits 2014 Srdjan Capkun Frank K. Gürkaynak http://www.syssec.ethz.ch/education/digitaltechnik_14 Adapted from Digital Design and Computer Architecture, David Money

More information

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8 Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

More information

OPTIMIZING THE POWER USING FUSED ADD MULTIPLIER

OPTIMIZING THE POWER USING FUSED ADD MULTIPLIER Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 11, November 2014,

More information

Chapter 3: part 3 Binary Subtraction

Chapter 3: part 3 Binary Subtraction Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary adder-subtractors Signed binary

More information

11.1. Unit 11. Adders & Arithmetic Circuits

11.1. Unit 11. Adders & Arithmetic Circuits . Unit s & Arithmetic Circuits .2 Learning Outcomes I understand what gates are used to design half and full adders I can build larger arithmetic circuits from smaller building blocks ADDER.3 (+) Register.4

More information

ECE 645: Lecture 1. Basic Adders and Counters. Implementation of Adders in FPGAs

ECE 645: Lecture 1. Basic Adders and Counters. Implementation of Adders in FPGAs ECE 645: Lecture Basic Adders and Counters Implementation of Adders in FPGAs Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 5, Basic Addition and Counting,

More information

Week 7: Assignment Solutions

Week 7: Assignment Solutions Week 7: Assignment Solutions 1. In 6-bit 2 s complement representation, when we subtract the decimal number +6 from +3, the result (in binary) will be: a. 111101 b. 000011 c. 100011 d. 111110 Correct answer

More information

EE 109 Unit 6 Binary Arithmetic

EE 109 Unit 6 Binary Arithmetic EE 109 Unit 6 Binary Arithmetic 1 2 Semester Transition Point At this point we are going to start to transition in our class to look more at the hardware organization and the low-level software that is

More information

DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6- Binary Addition 6-2 Representing Signed Numbers 6-3 Addition in the 2 s- Complement System 6-4 Subtraction in the 2 s- Complement

More information

Timing for Ripple Carry Adder

Timing for Ripple Carry Adder Timing for Ripple Carry Adder 1 2 3 Look Ahead Method 5 6 7 8 9 Look-Ahead, bits wide 10 11 Multiplication Simple Gradeschool Algorithm for 32 Bits (6 Bit Result) Multiplier Multiplicand AND gates 32

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization CS/COE0447: Computer Organization and Assembly Language Chapter 3 Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower I am like a pack of file folders I am like a conveyor

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization Five classic components CS/COE0447: Computer Organization and Assembly Language I am like a control tower I am like a pack of file folders Chapter 3 I am like a conveyor belt + service stations I exchange

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 90 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (10 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a)

More information

ECE 341. Lecture # 6

ECE 341. Lecture # 6 ECE 34 Lecture # 6 Instructor: Zeshan Chishti zeshan@pdx.edu October 5, 24 Portland State University Lecture Topics Design of Fast Adders Carry Looakahead Adders (CLA) Blocked Carry-Lookahead Adders Multiplication

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Binary Adders. Ripple-Carry Adder

Binary Adders. Ripple-Carry Adder Ripple-Carry Adder Binary Adders x n y n x y x y c n FA c n - c 2 FA c FA c s n MSB position Longest delay (Critical-path delay): d c(n) = n d carry = 2n gate delays d s(n-) = (n-) d carry +d sum = 2n

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 9: Binary Addition & Multiplication Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Pop Quiz! Using 4 bits signed integer notation:

More information

CS/COE 0447 Example Problems for Exam 2 Spring 2011

CS/COE 0447 Example Problems for Exam 2 Spring 2011 CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4-bit numbers 3 and 5 with the fast shift-add multipler. Use the table below. List the multiplicand (M) and product

More information

Outline. Introduction to Structured VLSI Design. Signed and Unsigned Integers. 8 bit Signed/Unsigned Integers

Outline. Introduction to Structured VLSI Design. Signed and Unsigned Integers. 8 bit Signed/Unsigned Integers Outline Introduction to Structured VLSI Design Integer Arithmetic and Pipelining Multiplication in the digital domain HW mapping Pipelining optimization Joachim Rodrigues Signed and Unsigned Integers n-1

More information

Each DSP includes: 3-input, 48-bit adder/subtractor

Each DSP includes: 3-input, 48-bit adder/subtractor Virtex-4 DSP Architecture 2 2 DSP slices per tile 16-256 tiles in 1-8 columns Each DSP includes: 3-input, 48-bit adder/subtractor P P = Z±(X+Y+Cin) Optional accum reg C (48) 18x18-bit 2's-comp multiplier

More information

A novel technique for fast multiplication

A novel technique for fast multiplication INT. J. ELECTRONICS, 1999, VOL. 86, NO. 1, 67± 77 A novel technique for fast multiplication SADIQ M. SAIT², AAMIR A. FAROOQUI GERHARD F. BECKHOFF and In this paper we present the design of a new high-speed

More information

Integer Multiplication and Division

Integer Multiplication and Division Integer Multiplication and Division COE 301 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline

More information

Implementation of Double Precision Floating Point Multiplier Using Wallace Tree Multiplier

Implementation of Double Precision Floating Point Multiplier Using Wallace Tree Multiplier Implementation of Double Precision Floating Point Multiplier Using Wallace Tree Multiplier Y. Ramya sri 1, V B K L Aruna 2 P.G. Student, Department of Electronics Engineering, V.R Siddhartha Engineering

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST III Date : 21/11/2017 Max Marks : 40 Subject & Code : Computer Organization (15CS34) Semester : III (A & B) Name of the faculty: Mrs. Sharmila Banu Time : 11.30 am 1.00 pm Answer

More information

Microcomputers. Outline. Number Systems and Digital Logic Review

Microcomputers. Outline. Number Systems and Digital Logic Review Microcomputers Number Systems and Digital Logic Review Lecture 1-1 Outline Number systems and formats Common number systems Base Conversion Integer representation Signed integer representation Binary coded

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 9

CO Computer Architecture and Programming Languages CAPL. Lecture 9 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 9 Dr. Kinga Lipskoch Fall 2017 A Four-bit Number Circle CAPL Fall 2017 2 / 38 Functional Parts of an ALU CAPL Fall 2017 3 / 38 Addition

More information

Mark Redekopp, All rights reserved. EE 352 Unit 8. HW Constructs

Mark Redekopp, All rights reserved. EE 352 Unit 8. HW Constructs EE 352 Unit 8 HW Constructs Logic Circuits Combinational logic Perform a specific function (mapping of 2 n input combinations to desired output combinations) No internal state or feedback Given a set of

More information

REGISTER TRANSFER LANGUAGE

REGISTER TRANSFER LANGUAGE REGISTER TRANSFER LANGUAGE The operations executed on the data stored in the registers are called micro operations. Classifications of micro operations Register transfer micro operations Arithmetic micro

More information

Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator

Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator A.Sindhu 1, K.PriyaMeenakshi 2 PG Student [VLSI], Dept. of ECE, Muthayammal Engineering College, Rasipuram, Tamil Nadu,

More information

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals. Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:15--8:3PM 1. (15 points) (a) (5 points) NAND, NOR

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers Implementation

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Implementation Today Review representations (252/352 recap) Floating point Addition: Ripple

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y Arithmetic A basic operation in all digital computers is the addition and subtraction of two numbers They are implemented, along with the basic logic functions such as AND,OR, NOT,EX- OR in the ALU subsystem

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

More information

Chapter 3 Part 2 Combinational Logic Design

Chapter 3 Part 2 Combinational Logic Design University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 3 Part 2 Combinational Logic Design Originals by: Charles R. Kime and Tom

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science

More information

Combinational Circuits

Combinational Circuits Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

More information

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

More information

EKT 422/4 COMPUTER ARCHITECTURE. MINI PROJECT : Design of an Arithmetic Logic Unit

EKT 422/4 COMPUTER ARCHITECTURE. MINI PROJECT : Design of an Arithmetic Logic Unit EKT 422/4 COMPUTER ARCHITECTURE MINI PROJECT : Design of an Arithmetic Logic Unit Objective Students will design and build a customized Arithmetic Logic Unit (ALU). It will perform 16 different operations

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: The MIPS ISA (P&H ) Consulting hours. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: The MIPS ISA (P&H ) Consulting hours. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: The MIPS ISA (P&H 2.1-2.14) 1 Announcements Consulting hours Milestone #1 (due 1/26) Milestone #2 (due 2/2) 2 1 Review: Integer Operations Internal

More information

Chapter 4. Combinational Logic

Chapter 4. Combinational Logic Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential

More information

Combinational Circuit Design

Combinational Circuit Design Modeling Combinational Circuits with Verilog Prof. Chien-Nan Liu TEL: 3-42275 ext:34534 Email: jimmy@ee.ncu.edu.tw 3- Combinational Circuit Design Outputs are functions of inputs inputs Combinational Circuit

More information

VLSI Design 9. Datapath Design

VLSI Design 9. Datapath Design VLSI Deign 9. Datapath Deign 9. Datapath Deign Lat module: Adder circuit Simple adder Fat addition Thi module omparator Shifter Multi-input Adder Multiplier omparator detector: A = 1 detector: A = 11 111

More information

Binary Addition. Add the binary numbers and and show the equivalent decimal addition.

Binary Addition. Add the binary numbers and and show the equivalent decimal addition. Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

More information

Arithmetic and Logical Operations

Arithmetic and Logical Operations Arithmetic and Logical Operations 2 CMPE2c x +y + sum Or in tabular form Binary Addition Carry Out Sum B A Carry In Binary Addition And as a full adder a b co ci sum 4-bit Ripple-Carry adder: Carry values

More information

ECE468 Computer Organization & Architecture. The Design Process & ALU Design

ECE468 Computer Organization & Architecture. The Design Process & ALU Design ECE6 Computer Organization & Architecture The Design Process & Design The Design Process "To Design Is To Represent" Design activity yields description/representation of an object -- Traditional craftsman

More information

EE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, non-restoring

EE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, non-restoring EE 260: Introduction to Digital Design Arithmetic II Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Integer multiplication n Booth s algorithm n Integer division

More information

Chapter 6 Combinational-Circuit Building Blocks

Chapter 6 Combinational-Circuit Building Blocks Chapter 6 Combinational-Circuit Building Blocks Commonly used combinational building blocks in design of large circuits: Multiplexers Decoders Encoders Comparators Arithmetic circuits Multiplexers A multiplexer

More information

Writing Circuit Descriptions 8

Writing Circuit Descriptions 8 8 Writing Circuit Descriptions 8 You can write many logically equivalent descriptions in Verilog to describe a circuit design. However, some descriptions are more efficient than others in terms of the

More information

Review: MIPS Organization

Review: MIPS Organization 1 MIPS Arithmetic Review: MIPS Organization Processor Memory src1 addr 5 src2 addr 5 dst addr 5 write data Register File registers ($zero - $ra) bits src1 data src2 data read/write addr 1 1100 2 30 words

More information

Final Exam Solution Sunday, December 15, 10:05-12:05 PM

Final Exam Solution Sunday, December 15, 10:05-12:05 PM Last (family) name: First (given) name: Student I.D. #: Circle section: Kim Hu Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/CS 352 Digital System Fundamentals

More information

EECS Components and Design Techniques for Digital Systems. Lec 20 RTL Design Optimization 11/6/2007

EECS Components and Design Techniques for Digital Systems. Lec 20 RTL Design Optimization 11/6/2007 EECS 5 - Components and Design Techniques for Digital Systems Lec 2 RTL Design Optimization /6/27 Shauki Elassaad Electrical Engineering and Computer Sciences University of California, Berkeley Slides

More information

Experiment 7 Arithmetic Circuits Design and Implementation

Experiment 7 Arithmetic Circuits Design and Implementation Experiment 7 Arithmetic Circuits Design and Implementation Introduction: Addition is just what you would expect in computers. Digits are added bit by bit from right to left, with carries passed to the

More information

Lecture Topics ECE 341. Lecture # 6. CLA Delay Calculation. CLA Fan-in Limitation

Lecture Topics ECE 341. Lecture # 6. CLA Delay Calculation. CLA Fan-in Limitation EE 34 Lecture # 6 Instructor: Zeshan hishti zeshan@pdx.edu October 5, 24 Lecture Topics Design of Fast dders arry Looakaheaddders (L) Blocked arry-lookahead dders ultiplication of Unsigned Numbers rray

More information

COMP 303 Computer Architecture Lecture 6

COMP 303 Computer Architecture Lecture 6 COMP 303 Computer Architecture Lecture 6 MULTIPLY (unsigned) Paper and pencil example (unsigned): Multiplicand 1000 = 8 Multiplier x 1001 = 9 1000 0000 0000 1000 Product 01001000 = 72 n bits x n bits =

More information

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT UNIT-III 1 KNREDDY UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic

More information