Id Question Microprocessor is the example of architecture. A Princeton B Von Neumann C Rockwell D Harvard Answer A Marks 1 Unit 1

Size: px
Start display at page:

Download "Id Question Microprocessor is the example of architecture. A Princeton B Von Neumann C Rockwell D Harvard Answer A Marks 1 Unit 1"

Transcription

1 Question Microprocessor is the example of architecture. Princeton Von Neumann Rockwell Harvard nswer Question bus is unidirectional. ata ddress ontrol None of these nswer Question Use of isolates PU form frequent accesses to main memory. Local I/O controller Expansion bus interface ache structure System bus nswer Question buffers data transfer between system bus and I/O controllers on expansion bus.

2 Local I/O controller Expansion bus interface ache structure None of these nswer Question Timing involves a clock line. Synchronous synchronous symmetric None of these nswer Question -----timing takes advantage of mixture of slow and fast devices, sharing the same bus Synchronous asynchronous symmetric None of these nswer Question In 1 st generation language was used to prepare programs. Machine ssembly High level programming

3 Pseudo code nswer Question The transistor was invented at laboratories. T &T T &Y M &T T &M nswer Question is used to control various modules in the system ontrol us ata us ddress us ll of these nswer Question The disadvantage of single bus structure over multi bus structure is Propagation delay ottle neck because of bus capacity oth and Neither nor nswer

4 Question provide path for moving data among system modules ontrol us ata us ddress us ll of these nswer Question Microcontroller is the example of architecture. Princeton Von Neumann Rockwell Harvard nswer Question computer with more than one PU allows instruction from different program to be executed simultaneously is called as Microprocessor Miniprocessor super processor multiprocessor nswer Question The compact combination of PU, memory and IO circuits

5 in one System is called Microcomputer Minicomputer Supercomputer None of above nswer Question computer system with one PU or microprocessor is generally referred to Mainframe Microcomputer Large computer None of above nswer Question Performance of system and execution time of system are proportional to each other. irectly Inversely Equally None of the above nswer Question In pipelined processing common steps involved in instruction processing are overlapped

6 partially completely Randomly None of the above nswer Question In non pipelined PU, instructions are executed in sequence overlapped any fixed None of the above nswer Question omputers main or primary memory M is ROM RM PROM None of the above nswer Question Supercomputers mainly used in scientific calculations involving large amounts of vectors and matrix calculations are some times referred as

7 super processor Vector processor Parallel processor Scientific processor nswer Question control signal can be Memory read Memory write I/ O read ll of these nswer Question1 In Von Neumann Machine feature was responsible for performance bottleneck. Stored program Separate memory for data and code I/O access None of these nswer Question2 PU Means

8 ontrol Processing Unit ontrol Programming Unit entral Processing Unit entral Programming Unit nswer Question3 Key concept of stored program was introduced by Safwat G. Zaky John Von Neumann j. Hays Stalling William nswer Question4 Which of the following operation are involved in an instruction cycle? Opcode decoding Instruction execution Instruction fetching ll of these nswer Question5 stores address of next instruction to be executed. R P IR

9 nswer Question6 keep track of execution of a program. Program ounter Instruction Register General Purpose Register Memory ddress Register nswer Question7 contains the data to be written into or read out of address location. MR P MR IR nswer Question8 In IS actual word transfer take place between memory and R R IR nswer

10 Question9 ata register of IS is wide. 16-bit 20-bit 40-bit 48-bit nswer Question1 0 nswer Question1 1 nswer R in IS is wide. 12-bit 14-bit 16-bit 18-bit Program control unit of IS fetches instruction simultaneously. Two Three Four Six Question1 In IS machine, IR stores instruction.

11 2 Immediately executable Later executable urrently executing borted type nswer Questions 13 nswer Question1 4 nswer Question1 5 In IS machine, IR stores instruction. Immediately executable Later executable urrently executing borted type rchitecture shows separate memory banks for data and programs. Princeton Harvard Von Neumann Rockwell Harvard architecture shows features of executing instruction in instruction cycle than von Neumann.

12 More ouble Reduced Exactly half nswer Question1 6 nswer Question1 7 nswer Question1 8 rchitecture uses both RIS and IS architectures. Von Neumann Harvard abbage None of these In IS machine, program control unit fetches.. instructions simultaneously from memory One Two Three four IS machines are designed to process all bits of binary numbers.. Randomly Simultaneously

13 Serially None of the above nswer Question1 9 nswer Question2 0 nswer Question , , ,60 In PU of IS computer who issues control signals to data processing unit, memory and other circuits for execution of instruction? Program ounter P Program ontrol Unit PU ccumulator Instruction Register IR In IS omputer fetches and interprets the instruction in memory and causes them to be executed. LU ontrol Unit ccumulator Program counter In original Von Neumann Machine, memory unit consists of storage location of bits each.

14 4096,40 nswer Question2 2 nswer In Original IS Machine,storage location was referred to as yte Word igit Number Question2 3 nswer In IS machine, data and code have memory. Same Separate istinct More Question1 The three main parts of a stored programmed computer are PU, memory, I/ O Register, memory control unit PU, register, LU PU, I/ O, control unit

15 nswer Question2 nswer Question3 nswer PU takes time to obtain word from memory than one of its internal register Same longer Lesser Zero If performance of system is 2times the performance of system then execution times for system is as of execution time for system. half 2 times same None of above Question4 To enhance the speed of processor, small memory unit placed between PU and main memory M is called Program memory Stack memory ache memory ynamic memory

16 nswer Question5 ache memory can store Only instructions Instructions and data Only data None of the above nswer Question6 ache memory is usually than main memory. bigger smaller faster () and () both nswer Question7 Most I/O operation are memory operation easier faster slower None of the above nswer

17 Question8 Major component of most I/O system is set of memory devices secondary primary cache None of the above nswer Question9 nswer Question1 0 nswer Question 1 I/O devices are attached to host computer by means of I/O ports Memory slots ontrol bus None of the above In early supercomputer parallel processing was heavily depend on Sequential processing Random processing Pipeline processing Nonpipeline processing ollection of data, address and control us is usually referred as.

18 Processor bus system bus local bus complete bus nswer Question 2 nswer Question 3 nswer Question 4 ddress bus is. multidirectional bidirectional unidirectional and both In a single bus structure can communicate with each other at a time Over a single bus. only 2 units no unit all the units None of the above PU can read data from memory and I/O nd write data to memory and I/O with data bus. multidirectional unidirectional

19 bidirectional none of the above nswer Question 5 nswer Question 6 nswer Question 7 Performance of computer system with single bus structure if large number of devices are connected to common System bus. decreases increases remains same none of the above When the same bus is used for more than one function at different time zone it is alled as. shared bus common bus system bus multiplexed bus The occurrence of one event on a bus follows and depends on occurrence of previous event in. synchronous timing asynchronous timing shared timing

20 none of the above nswer Question 8 nswer bus is used to connect major computer components. ddress ata ontrol System Question 9 nswer Question 10 ata us is Unidirectional idirectional Unidirectional &idirectional None of these bus width decides the number of bits transferred a time ata ddress ontrol system

21 nswer Question 11 nswer Question 12 nswer bus width decides the range of locations that can be accessed ata ddress ontrol system What is the benefit of physically dedicated bus? cheaper less bus contention overall system size decreases none of these Question What is connected between processors bus &high speed 13 bus? SSI LN ridge local bus nswer

22 Question 14 nswer Question 15 nswer Question 16 nswer What is the Specialty of high performance bus architecture over traditional bus architecture? Expansion bus local bus high speed bus none of these What is the impact if the width of data bus is increased? reduced speed of data transfer Greater no of bits transferred at one time Greater range of memory location referenced none of these What is the impact of increasing address bus width? Speedy data transfer large no of data transfer increased addressing capacity decreased addressing capacity

23 Question1 0 to to to 255 nswer Question2 nswer Question3 nswer For unsigned 8-bit binary numbers the decimal range is None of these Forming the 2 s complement of a number involves 1 to the 1's complement of the number. multiplying subtracting adding both () and () 1's complement representation is nothing but bit-by-bit operation' OR N EX-OR NOT Question4 2's complement of (11001)2 is

24 (00111)2 (00110)2 (11000)2 ll the above nswer Question5 2's complement of ( )2 is nswer Question6 1's complement of ( )2 is None of these nswer Question7 The highest positive decimal number represented in signed binary numbers is the highest positive decimal number for unsigned binary numbers of a fixed number of bits. double equal

25 half triple nswer Question8 nswer The configuration of cascaded connection of n full adder, where the catties must Propagate through this cascade, it called. n-bit ripple carry adder m-bit ripple carry adder (n+1)-bit ripple carry adder (m+1)- bit ripple carry adder Question9 LS of a number means Low Sequence it Low Sequence yte Least Significant it Least Significant yte nswer Question1 1's complement + = 2's complement

26 nswer Question1 1 nswer Question1 2 nswer In 1's complement subtraction when carry is generated it is ignored added to final result subtracted from final result ignored and 1's complement of final result is done" In 2's complement subtraction when carry is generated it is ignored added to final result subtracted from final result ignored and 1's complement of final result is done" Question1 To solve Problem of representation of negative exponent in floating Point number, is added to the true exponent' packed bias value unpacked bias value bias value

27 scaling factor nswer Question2 bits are reserved for signed exponent in IEEE 754 standard for a double-precision representation of floating numbers nswer Question3 bits are reserved for mantissa in IEEE 754 standard for a single-precision presentation of floating point numbers nswer Question4 bits are reserved for mantissa in IEEE 754 standard for a double-precision representation of floating point numbers

28 52 64 nswer Question5 nswer In integer numbers, radix point is assumed to be to the of the right most digit. right left a or b none of these Question6 nswer Floating point number system allows the representation of number having. integer part fractional part integer and fractional part integer or fractional part Question1 ooth's algorithm generates bit product for n-bit multiplication. n 2n 3n

29 4n nswer Question nswer What is the product of following multiplication: -13 * +11 in binary? Question3 Using bit pair recoding technique, what is the multiplier (-6) 10 in bit pair recorded form [-1 +1] [-1 0] [-1-2] [+1-2] nswer Question4 entify worst case multiplier according to ooth's algorithm nswer

30 Question5 it pair recording form for multiplication is [0 +1-2] [0-1 -2] [0-1 +2] [ ] nswer Question6 In ooth s algorithm, if Q 0 = 0 and Q -1 = 0 in multiplier Q then it will perform which operation next? =-M =+M rithmetic right shift of, Q and Q -1 nswer =M- Question7 In ooth s algorithm, if Q 0 =1 and Q -1 = 1 of multiplier Q then it will perform which operation next? =-M =+M =M-

31 rithmetic right shift of, Q and Q -1 nswer Question8 In ooth s algorithm, if Q 0 = 1 and Q -1 = 0 of multiplier Q, then it will perform which operation next? =-M =+M rithmetic right shift of, Q and Q -1 nswer =M- Question9 In ooth s algorithm, if Q 0 =0 and Q -1 =1 of multiplier Q then it will perform which operation next. =-M =+M rithmetic right shift of, Q and Q -1 nswer =M- Question10 In ooth s bit-pair recoding, what version of multiplicand M

32 0*M nswer Question11 will be selected if consecutive multiplier bits are 001? +1*M -1*M +2*M 0*M nswer Question12 In ooth s bit-pair recoding, what version of multiplicand M will be selected if consecutive multiplier bits are 010? +1*M -1*M +2*M 0*M In ooth s bit-pair recoding, what version of multiplicand M will be selected if consecutive multiplier bits are 011? +1*M -1*M

33 nswer Question13 +2*M 0*M nswer Question14 In ooth s bit-pair recoding, what version of multiplicand M will be selected if consecutive multiplier bits are 100? +1*M +2*M -2*M 0*M nswer In ooth s bit-pair recoding, what version of multiplicand M will be selected if consecutive multiplier bits are 101? +1*M -1*M +2*M

34 Question15 0*M nswer Question16 In ooth s bit-pair recoding, what version of multiplicand M will be selected if consecutive multiplier bits are 110? +1*M -1*M +2*M 0*M nswer Question17 In ooth s bit-pair recoding, what version of multiplicand will be selected if consecutive multiplier bits are 111? +1*M -1*M +2*M Using ooth's lgorithm, multiply +13 and -6. What is product?

35 nswer Question nswer Question nswer Using ooth's lgorithm, multiply +15 and -5. What is product? Using ooth's lgorithm, multiply -12 and +11. What is product?

36 Question nswer Multiply the following numbers represented in 2's complement notation using ooth's lgorithm. Multiplicand= 10011, Multiplier = 01011

Computer Organization Question Bank

Computer Organization Question Bank Id 1 Question Mass produced first working machine (50 copies) was invented by A C D Answer Wilhelm Schickhard laise Pascal Gottfried Liebniz Charles abbage Id 2 Question Father of Modern Computer A Wilhelm

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #6 Spring 2015 1. With x = 1111 1111 1111 1111 1011 0011 0101 0011 2 and y = 0000 0000 0000 0000 0000 0010 1101 0111 2 representing two s

More information

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8 Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

WYSE Academic Challenge Computer Fundamentals Test (State Finals)

WYSE Academic Challenge Computer Fundamentals Test (State Finals) WYSE Academic Challenge Computer Fundamentals Test (State Finals) - 1998 1. What is the decimal value for the result of the addition of the binary values: 1111 + 0101? (Assume a 4 bit, 2's complement representation.)

More information

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST III Date : 21/11/2017 Max Marks : 40 Subject & Code : Computer Organization (15CS34) Semester : III (A & B) Name of the faculty: Mrs. Sharmila Banu Time : 11.30 am 1.00 pm Answer

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

UNIT-I BASIC STRUCTURE OF COMPUTERS

UNIT-I BASIC STRUCTURE OF COMPUTERS UNIT-I BASIC STRUCTURE OF COMPUTERS Q) Write short note on types of computers. Computer Types: A computer is a fast electronic calculating machine that accepts digitized information from the user, processes

More information

CISC 662 Graduate Computer Architecture. Classifying ISA. Lecture 3 - ISA Michela Taufer. In a CPU. From Source to Assembly Code

CISC 662 Graduate Computer Architecture. Classifying ISA. Lecture 3 - ISA Michela Taufer. In a CPU. From Source to Assembly Code IS 662 Graduate omputer rchitecture Lecture 3 - IS Michela Taufer lassifying IS Powerpoint Lecture Notes from John Hennessy and David Patterson s: omputer rchitecture, 4th edition ---- dditional teaching

More information

CS 31: Intro to Systems Digital Logic

CS 31: Intro to Systems Digital Logic CS 3: Intro to Systems Digital Logic Martin Gagné Swarthmore College January 3, 27 You re going to want scratch papr today borrow some if needed. Quick nnouncements Late Policy Reminder 3 late days total

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit. A.R. Hurson 323 CS Building, Missouri S&T

CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit. A.R. Hurson 323 CS Building, Missouri S&T CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Outline Motivation Design of a simple ALU How to design

More information

Week 7: Assignment Solutions

Week 7: Assignment Solutions Week 7: Assignment Solutions 1. In 6-bit 2 s complement representation, when we subtract the decimal number +6 from +3, the result (in binary) will be: a. 111101 b. 000011 c. 100011 d. 111110 Correct answer

More information

COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B)

COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B) Computer Arithmetic Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce results necessary to give solution for the computation problems. The Addition,

More information

Dec Hex Bin ORG ; ZERO. Introduction To Computing

Dec Hex Bin ORG ; ZERO. Introduction To Computing Dec Hex Bin 0 0 00000000 ORG ; ZERO Introduction To Computing OBJECTIVES this chapter enables the student to: Convert any number from base 2, base 10, or base 16 to any of the other two bases. Add and

More information

D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 75 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (8 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a) A

More information

ECE 2030D Computer Engineering Spring problems, 5 pages Exam Two 8 March 2012

ECE 2030D Computer Engineering Spring problems, 5 pages Exam Two 8 March 2012 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE COMPUTER ORGANIZATION AND ARCHITECTURE For COMPUTER SCIENCE COMPUTER ORGANIZATION. SYLLABUS AND ARCHITECTURE Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface,

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state Chapter 4 xi yi Carry in ci Sum s i Carry out c i+ At the ith stage: Input: ci is the carry-in Output: si is the sum ci+ carry-out to (i+)st state si = xi yi ci + xi yi ci + xi yi ci + xi yi ci = x i yi

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 Data representation: (CHAPTER-3) 1. Discuss in brief about Data types, (8marks)

More information

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two Solutions 26 February 2014

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two Solutions 26 February 2014 Problem 1 (4 parts, 21 points) Encoders and Pass Gates Part A (8 points) Suppose the circuit below has the following input priority: I 1 > I 3 > I 0 > I 2. Complete the truth table by filling in the input

More information

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS (09 periods) Computer Arithmetic: Data Representation, Fixed Point Representation, Floating Point Representation, Addition and

More information

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Computer Organization and Levels of Abstraction Announcements PS8 Due today PS9 Due July 22 Sound Lab tonight bring machines and headphones! Binary Search Today Review of binary floating point notation

More information

Chap. 9 Pipeline and Vector Processing

Chap. 9 Pipeline and Vector Processing 9-1 Parallel Processing = Simultaneous data processing tasks for the purpose of increasing the computational speed Perform concurrent data processing to achieve faster execution time Multiple Functional

More information

Computer Organization

Computer Organization Computer Organization It describes the function and design of the various units of digital computers that store and process information. It also deals with the units of computer that receive information

More information

1. Draw general diagram of computer showing different logical components (3)

1. Draw general diagram of computer showing different logical components (3) Tutorial 1 1. Draw general diagram of computer showing different logical components (3) 2. List at least three input devices (1.5) 3. List any three output devices (1.5) 4. Fill the blank cells of the

More information

Monday, January 27, 2014

Monday, January 27, 2014 Monday, January 27, 2014 Topics for today History of Computing (brief) Encoding data in binary Unsigned integers Signed integers Arithmetic operations and status bits Number conversion: binary to/from

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Chapter 17. Microprogrammed Control. Yonsei University

Chapter 17. Microprogrammed Control. Yonsei University Chapter 17 Microprogrammed Control Contents Basic Concepts Microinstruction Sequencing Microinstruction Execution TI 8800 Applications of Microprogramming 17-2 Introduction Basic Concepts An alternative

More information

3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0

3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0 1. The number of level in a digital signal is: a) one b) two c) four d) ten 2. A pure sine wave is : a) a digital signal b) analog signal c) can be digital or analog signal d) neither digital nor analog

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010

Digital Logic & Computer Design CS Professor Dan Moldovan Spring 2010 Digital Logic & Computer Design CS 434 Professor Dan Moldovan Spring 2 Copyright 27 Elsevier 5- Chapter 5 :: Digital Building Blocks Digital Design and Computer Architecture David Money Harris and Sarah

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y Arithmetic A basic operation in all digital computers is the addition and subtraction of two numbers They are implemented, along with the basic logic functions such as AND,OR, NOT,EX- OR in the ALU subsystem

More information

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1

COSC 243. Computer Architecture 1. COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 COSC 243 Computer Architecture 1 COSC 243 (Computer Architecture) Lecture 6 - Computer Architecture 1 1 Overview Last Lecture Flip flops This Lecture Computers Next Lecture Instruction sets and addressing

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Arab Open University. Computer Organization and Architecture - T103

Arab Open University. Computer Organization and Architecture - T103 Arab Open University Computer Organization and Architecture - T103 Reference Book: Linda Null, Julia Lobur, The essentials of Computer Organization and Architecture, Jones & Bartlett, Third Edition, 2012.

More information

Chapter 10 Binary Arithmetics

Chapter 10 Binary Arithmetics 27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

UNIT I DATA REPRESENTATION, MICRO-OPERATIONS, ORGANIZATION AND DESIGN

UNIT I DATA REPRESENTATION, MICRO-OPERATIONS, ORGANIZATION AND DESIGN UNIT I DATA REPRESENTATION, MICRO-OPERATIONS, ORGANIZATION AND DESIGN Data representation: Data types, complements, fixed point representation, floating-point representation, other binary codes, error

More information

Chapter 3 - Top Level View of Computer Function

Chapter 3 - Top Level View of Computer Function Chapter 3 - Top Level View of Computer Function Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 3 - Top Level View 1 / 127 Table of Contents I 1 Introduction 2 Computer Components

More information

Computer Organization

Computer Organization Computer Organization KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering College, Jodhpur November 14, 2013

More information

EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION

EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION QUESTION BANK UNIT-II 1. What are the disadvantages in using a ripple carry adder? (NOV/DEC 2006) The main disadvantage using ripple carry adder is time delay.

More information

Wednesday, January 28, 2018

Wednesday, January 28, 2018 Wednesday, January 28, 2018 Topics for today History of Computing (brief) Encoding data in binary Unsigned integers Signed integers Arithmetic operations and status bits Number conversion: binary to/from

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

Microcomputers. Outline. Number Systems and Digital Logic Review

Microcomputers. Outline. Number Systems and Digital Logic Review Microcomputers Number Systems and Digital Logic Review Lecture 1-1 Outline Number systems and formats Common number systems Base Conversion Integer representation Signed integer representation Binary coded

More information

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text

e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text e-pg Pathshala Subject : Computer Science Paper: Embedded System Module: Introduction to Computing Module No: CS/ES/1 Quadrant 1 e-text About the course : In this digital world, embedded systems are more

More information

CMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts

CMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts CMPSCI 145 MIDTERM #1 Solution Key NAME SPRING 2017 March 3, 2017 PROBLEM SCORE POINTS 1 10 2 10 3 15 4 15 5 20 6 12 7 8 8 10 TOTAL 100 10 Points Examine the following diagram of two systems, one involving

More information

*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits

*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms

More information

Chapter 1 : Introduction

Chapter 1 : Introduction Chapter 1 Introduction 1.1 Introduction A Microprocessor is a multipurpose programmable, clock driven, register based electronic device that reads binary instructions from a storage device called memory,

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

More information

101. The memory blocks are mapped on to the cache with the help of a) Hash functions b) Vectors c) Mapping functions d) None of the mentioned

101. The memory blocks are mapped on to the cache with the help of a) Hash functions b) Vectors c) Mapping functions d) None of the mentioned 101. The memory blocks are mapped on to the cache with the help of a) Hash functions b) Vectors c) Mapping functions d) None of the mentioned 102. During a write operation if the required block is not

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 TOPICS TODAY Course overview Levels of machines Machine models: von Neumann & System Bus Fetch-Execute Cycle Base

More information

Structure of Computer Systems

Structure of Computer Systems 288 between this new matrix and the initial collision matrix M A, because the original forbidden latencies for functional unit A still have to be considered in later initiations. Figure 5.37. State diagram

More information

Segment 1A. Introduction to Microcomputer and Microprocessor

Segment 1A. Introduction to Microcomputer and Microprocessor Segment 1A Introduction to Microcomputer and Microprocessor 1.1 General Architecture of a Microcomputer System: The term microcomputer is generally synonymous with personal computer, or a computer that

More information

Co-processor Math Processor. Richa Upadhyay Prabhu. NMIMS s MPSTME February 9, 2016

Co-processor Math Processor. Richa Upadhyay Prabhu. NMIMS s MPSTME February 9, 2016 8087 Math Processor Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu February 9, 2016 Introduction Need of Math Processor: In application where fast calculation is required Also where there

More information

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two 26 February 2014

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two 26 February 2014 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

unused unused unused unused unused unused

unused unused unused unused unused unused BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications

More information

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system.

CPU ARCHITECTURE. QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. CPU ARCHITECTURE QUESTION 1 Explain how the width of the data bus and system clock speed affect the performance of a computer system. ANSWER 1 Data Bus Width the width of the data bus determines the number

More information

Chapter 5 12/2/2013. Objectives. Computer Systems Organization. Objectives. Objectives (continued) Introduction. INVITATION TO Computer Science 1

Chapter 5 12/2/2013. Objectives. Computer Systems Organization. Objectives. Objectives (continued) Introduction. INVITATION TO Computer Science 1 Chapter 5 Computer Systems Organization Objectives In this chapter, you will learn about: The components of a computer system Putting all the pieces together the Von Neumann architecture The future: non-von

More information

Chapter 5 : Computer Arithmetic

Chapter 5 : Computer Arithmetic Chapter 5 Computer Arithmetic Integer Representation: (Fixedpoint representation): An eight bit word can be represented the numbers from zero to 255 including = 1 = 1 11111111 = 255 In general if an nbit

More information

Arithmetic Logic Unit

Arithmetic Logic Unit Arithmetic Logic Unit A.R. Hurson Department of Computer Science Missouri University of Science & Technology A.R. Hurson 1 Arithmetic Logic Unit It is a functional bo designed to perform "basic" arithmetic,

More information

CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 10 Floating point review Pipelined design IEEE Floating Point Format single: 8 bits double: 11 bits single: 23 bits double:

More information

Digital Computer Arithmetic

Digital Computer Arithmetic Digital Computer Arithmetic Part 6 High-Speed Multiplication Soo-Ik Chae Spring 2010 Koren Chap.6.1 Speeding Up Multiplication Multiplication involves 2 basic operations generation of partial products

More information

Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

More information

Computer Systems Organization

Computer Systems Organization The IAS (von Neumann) Machine Computer Systems Organization Input Output Equipment Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Exponential Notation FLOATING POINT NUMBERS Englander Ch. 5 The following are equivalent representations of 1,234 123,400.0 x 10-2 12,340.0 x 10-1 1,234.0 x 10 0 123.4 x 10 1 12.34 x 10 2 1.234 x 10 3

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Decimal Numbers The position of each digit in a weighted

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University Chapter 3 Top Level View of Computer Function and Interconnection Contents Computer Components Computer Function Interconnection Structures Bus Interconnection PCI 3-2 Program Concept Computer components

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

CS.17.A.MachineI.Overview

CS.17.A.MachineI.Overview P R T I I : L G O R I T H M S, M H I N E S, a n d T H E O R Y P R T I I : L G O R I T H M S, M H I N E S, a n d T H E O R Y omputer Science 7. omputing Machine omputer Science 7. omputing Machine Overview

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Arithmetic for Computers James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Arithmetic for

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on

More information

Microprocessor Architecture Dr. Charles Kim Howard University

Microprocessor Architecture Dr. Charles Kim Howard University EECE416 Microcomputer Fundamentals Microprocessor Architecture Dr. Charles Kim Howard University 1 Computer Architecture Computer System CPU (with PC, Register, SR) + Memory 2 Computer Architecture ALU

More information

Appendix. Numbering Systems. In This Appendix...

Appendix. Numbering Systems. In This Appendix... Numbering Systems ppendix In This ppendix... Introduction... inary Numbering System... exadecimal Numbering System... Octal Numbering System... inary oded ecimal () Numbering System... 5 Real (Floating

More information

Von Neumann Architecture

Von Neumann Architecture Von Neumann Architecture Assist lecturer Donya A. Khalid Lecture 2 2/29/27 Computer Organization Introduction In 945, just after the World War, Jon Von Neumann proposed to build a more flexible computer.

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers Binary Addition & Subtraction Unsigned and Sign & Magnitude numbers Addition and subtraction of unsigned or sign & magnitude binary numbers by hand proceeds exactly as with decimal numbers. (In fact this

More information

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUB CODE / SUBJECT: CS1202/COMPUTER ARCHITECHTURE YEAR / SEM: II / III UNIT I BASIC STRUCTURE OF COMPUTER 1. What is meant by the stored program

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information

Chapter 7. Storage Components

Chapter 7. Storage Components 7. Storage Components 7- Chapter 7. Storage Components ntroduction Storage components store data and perform simple data transformations, such as counting and shifting. Registers, counters, register files,

More information