The 9S12 in Expanded Mode - External Ports Huang Chapter 14

Size: px
Start display at page:

Download "The 9S12 in Expanded Mode - External Ports Huang Chapter 14"

Transcription

1 The 9S2 in Epanded Mode - Eternal Ports Huang Chapter 4 Accessing Eternal Memory and Ports on the 9S2 in Epanded Mode In epanded mode, the 9S2 has a multipleed 6-bit address and data bus. With a 6-bit address bus, the 9S2 can access 2 6 = 65, 536 bytes o data With a 6-bit data bus, the 9S2 can access 6 bits (two bytes) in a single bus cycle In epanded mode, the 9S2 uses Port A and Port B as the multipleed address/data bus Timing is controlled by the E clock When the E clock is low, the 9S2 places the address on the multipleed bus Port A is used or address bits 5-8 Port B is used or address bits 7- When the E clock is high, the 9S2 uses the multipleed bus or data bus: Port A is used or the even byte Port B is used or the odd byte For eample, i accessing the siteen-bit word at address 4 (the bytes at addresses 4 and 4), Port A will access the byte at address 4, and Port B will access the byte at address 4. Simple Parallel Input Port We want a port which will read 8 bits o data rom the outside Such a port is similar to Port A or Port B when all pins are set up as input We need some hardware to drive the input data onto the data bus at the time the 9S2 needs it to be there to read it The hardware needs to keep the data o the bus at all other times so it doesn t interere with data rom other devices A tri-state buer can be used or this purpose A tri-state buer has three output states: logic high, logic low, and high impedance (high-z)

2 In high-z state it is like the buer is not connected to the output at all, so another device can drive the output a tri-state output acts like a switch when the switch is closed, the output logic level is the same as the input logic level, and when the switch is open, the buer does not change the logic level on the output pin A tri-state buer has a control input which, when active, drives the input logic levels onto the output pins, and when inactive, opens the switch. e e = e = (a) A tri-state buer (b) Equivalent circuit e Z Z e (c) Truth table (d) Implementation A Simple Parallel Input Port When should the tri-state buer be enabled to drive the data bus? The 9S2 will access the buer by reading rom an address. We must assign an address or the tri-state buer We must have hardware to demultiple the address rom the data, and to determine when the 9S2 is reading rom this address The 8-bit input will be connected to 8 bits o the 6-bit address/data bus o the 9S2 - I the address o the input is even, we need to connect the output o the buer to the even (high) byte o the bus, which is connected to AD5-8 (what was Port A) - I the address o the input is odd, we need to connect the output o the buer to the odd (low) byte o the bus, which is connected to AD7- (what was Port B) The 9S2 needs the data on the bus on the high-to-low transition o the E-clock

3 We must enable the tri-state buer when. The address o the buer is on the address bus 2. The 9S2 is reading rom this address 3. The 9S2 is reading the high byte i the address is even, or the low byte i the address is odd 4. E is high For eample, consider an input port at address 4 (an even address, or high byte): A Simple Parallel Output Port We want a port which will write 8 bits o data to the outside Such a port is similar to Port A or Port B when all pins are set up as output We need some hardware to latch the output data at the time the 9S2 puts the data on the data bus We can use a set o 8 D lip-lops to latch the data The D inputs will be connected to the data bus

4 The clock to latch the lip-lops should make its low-to-high transition when the 9S2 has the appropriate data on the bus The 9S2 will access the lip-lops by writing to an address. We must assign an address or the lip-lops We must have hardware to demultiple the address rom the data, and to determine when the 9S2 is writing to this address The 8-bit inputs o the D lip-lops will be connected to 8 bits o the 6-bit address/data bus o the 9S2 - I the address o the output is even, we need to connect the lip lop inputs to the even (high) byte o the bus, which is connected to AD5-8 (what was Port A) - I the address o the output is odd, we need to connect the lip lop inputs to the odd (low) byte o the bus, which is connected to AD7- (what was Port B) The hardware should latch the data on the high-to-low transition o the E-clock Our hardware should bring the clock o the lip-lops low when. The address o the lip-lops is on the address bus 2. The 9S2 is writing to this address 3. The 9S2 is writing the high byte i the address is even, or the low byte i the address is odd 4. E is high For eample, consider an output port at address 4 (an odd address, or low byte):

5 An Output Port Which Can Be Read Suppose we set up the 9S2 Port B or output, and we write a number to Port B When we read rom Port B, we will read back the number we wrote This is a useul diagnostic We can make our output port have this same perormance by connecting the output o the lip-lops back into the data bus through a tri-state buer We should enable this tri-state buer when the 9S2 is reading rom the address o the output port For eample, consider the output port at address 4:

6 Writing to address 4 will bring CS_W low. On the high to low transition o E, CS_W will go high, latching the data into the lip lops Reading rom address 4 will bring CS_R low This will drive the data rom the lip lops onto the data bus The HC2 will read the data on the lip lops on the high to low transition o the E clock

7 The RTL diagram o the Input-Output Port A simulation o the Input-Output Port

A Simple Parallel Input Port

A Simple Parallel Input Port 308 Apr. 8, 2002 A Simple Parallel Input Port We want a port which will read 8 bits of data from the outside Such a port is similar to or Port B when all pins are set up as input We need some hardware

More information

MC9S12 has 16 bit address and 16 bit data buses. Not enough pins on MC9S12 to allocate 35 pins for buses and pins for all other functions

MC9S12 has 16 bit address and 16 bit data buses. Not enough pins on MC9S12 to allocate 35 pins for buses and pins for all other functions The Multiplexed Address/Data Bus ADDR(16) MC9S12 DATA(16) R/W E LSTRB MEMORY MC9S12 has 16 bit address and 16 bit data buses Requires 35 bits Not enough pins on MC9S12 to allocate 35 pins for buses and

More information

The MC9S12 address, data and control buses The MC9S12 single-chip mode memory map Simplified write/read cycle. Address, Data and Control Buses

The MC9S12 address, data and control buses The MC9S12 single-chip mode memory map Simplified write/read cycle. Address, Data and Control Buses EE 308 Spring 2013 The MC9S12 address, data and control buses The MC9S12 single-chip mode memory map Simplified write/read cycle The real MC9S12 multiplexed external bus Byte order in microprocessors How

More information

The 9S12 in Expanded Mode - How to get into expanded mode Huang Chapter 14

The 9S12 in Expanded Mode - How to get into expanded mode Huang Chapter 14 The 9S2 in Expanded Mode - How to get into expanded mode Huang Chapter 4 Getting into expanded mode The HCS2 can operate in several modes: Normal Single-Chip Mode (the way we have been using the HCS2)

More information

The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port

The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port A Simple Parallel Output Port We want a port which will write 8

More information

The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14

The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14 The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14 Using MSI Logic To Build An Output Port Many designs use standard MSI logic for microprocessor expansion This provides an inexpensive

More information

The 9S12 in Expanded Mode - How to get into expanded mode Huang Chapter 14

The 9S12 in Expanded Mode - How to get into expanded mode Huang Chapter 14 The 9S2 in Expanded Mode - How to get into expanded mode Huang Chapter 4 DATA/ADDR (6) HCS2 _ R/W E LSTRB DEMUX ADDR(6) CE _ WE CS _ UB _ LB DATA ADDR CE - Output Enable (Read) _ WE Write Enable CS Chip

More information

EE 308 Spring 2011 The MC9S12 in Expanded Mode How to get into expanded mode

EE 308 Spring 2011 The MC9S12 in Expanded Mode How to get into expanded mode The MC9S12 in Expanded Mode How to get into expanded mode Huang Chapter 14 Module Mapping Control (MMC) V4 Block User Guide Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide The MC9S12

More information

Review for Exam III. Analog/Digital Converters. The MC9S12 has two 10-bit successive approximation A/D converters - can be used in 8-bit mode

Review for Exam III. Analog/Digital Converters. The MC9S12 has two 10-bit successive approximation A/D converters - can be used in 8-bit mode Methods used for A/D converters Flash (Parallel) Successive Approximation Review for Exam III Analog/Digital Converters A/D converters are classified according to: Resolution (number of bits) Speed (number

More information

Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide

Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide - Computer with N bit address bus can access 2 N bytes of

More information

Using MSI Logic To Build An Output Port

Using MSI Logic To Build An Output Port Using MSI Logic To Build An Output Port Many designs use standard MSI logic for microprocessor expansion This provides an inexpensive way to expand microprocessors One MSI device often used in such expansions

More information

Pin Description, Status & Control Signals of 8085 Microprocessor

Pin Description, Status & Control Signals of 8085 Microprocessor Pin Description, Status & Control Signals of 8085 Microprocessor 1 Intel 8085 CPU Block Diagram 2 The 8085 Block Diagram Registers hold temporary data. Instruction register (IR) holds the currently executing

More information

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this?

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this? Introduction the Serial Communications Huang Sections 9.2, 10.2, 11.2 SCI Block User Guide SPI Block User Guide IIC Block User Guide o Parallel vs Serial Communication o Synchronous and Asynchronous Serial

More information

PRINCETON (VON NEUMAN) ARCHITECTURE MICROPROCESSOR

PRINCETON (VON NEUMAN) ARCHITECTURE MICROPROCESSOR 1 IN OUT PRINCTON (VON NUMAN) ARCHITCTUR DATA MICROPROCSSOR ALU CONTROL STATUS INSTRUCTION CONTROL CONTROL & ADDR CLOCK ADDR(N Bits) COMPUTR DATA(M Bits) CONTROL Computer with N bit address bus can access

More information

Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications

Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications o Asynchronous Serial (SCI, RS-232) o Synchronous Serial (SPI, IIC) The MC9S12

More information

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Figure 1-5 Intel Corporation s 8086 Microprocessor. The 8086, announced in 1978, was the first 16-bit microprocessor

More information

High Performance Multiprocessor System

High Performance Multiprocessor System High Performance Multiprocessor System Requirements : - Large Number of Processors ( 4) - Large WriteBack Caches for Each Processor. Less Bus Traffic => Higher Performance - Large Shared Main Memories

More information

Basics of UART Communication

Basics of UART Communication Basics of UART Communication From: Circuit Basics UART stands for Universal Asynchronous Receiver/Transmitter. It s not a communication protocol like SPI and I2C, but a physical circuit in a microcontroller,

More information

Lab 16: Data Busses, Tri-State Outputs and Memory

Lab 16: Data Busses, Tri-State Outputs and Memory Lab 16: Data Busses, Tri-State Outputs and Memory UC Davis Physics 116B Rev. 0.9, Feb. 2006 1 Introduction 1.1 Data busses Data busses are ubiquitous in systems which must communicate digital data. Examples

More information

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book BUILDING BLOCKS OF A BASIC MICROPROCESSOR Part PowerPoint Format of Lecture 3 of Book Decoder Tri-state device Full adder, full subtractor Arithmetic Logic Unit (ALU) Memories Example showing how to write

More information

Lecture 25 March 23, 2012 Introduction to Serial Communications

Lecture 25 March 23, 2012 Introduction to Serial Communications Lecture 25 March 23, 2012 Introduction to Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications Asynchronous Serial (e.g., SCI, RS-232) Synchronous

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Simple Computer Nawin Somyat Department of Electrical and Computer Engineering Thammasat University Outline Course Contents 1 Introduction 2 Simple Computer 3 Microprocessor

More information

1. Prove that if you have tri-state buffers and inverters, you can build any combinational logic circuit. [4]

1. Prove that if you have tri-state buffers and inverters, you can build any combinational logic circuit. [4] HW 3 Answer Key 1. Prove that if you have tri-state buffers and inverters, you can build any combinational logic circuit. [4] You can build a NAND gate from tri-state buffers and inverters and thus you

More information

8086 Hardware Specification

8086 Hardware Specification Content: Segment 5 8086 Hardware Specification 8086 Modes of operation. Pin diagram and pin function of 8086. 8284A Clock generator operation and pin functions. Prepared By: Mohammed Abdul Kader Lecturer,

More information

Introduction the Serial Communications Huang Sections 9.2, 10.2 SCI Block User Guide SPI Block User Guide

Introduction the Serial Communications Huang Sections 9.2, 10.2 SCI Block User Guide SPI Block User Guide Introduction the Serial Communications Huang Sections 9.2,.2 SCI Block User Guide SPI Block User Guide Parallel Data Transfer Suppose you need to transfer data from one HCS2 to another. How can you do

More information

EE 308 Spring Lab on IIC Bus

EE 308 Spring Lab on IIC Bus Lab on IIC Bus Next week s lab 1. Communicate with Dallas Semiconductor DS 1307 Real Time Clock (a) Set time and date in clock (b) Read time and date from clock and display 2. Display time and date on

More information

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture License: http://creativecommons.org/licenses/by-nc-nd/3./ Hardware interrupt: 5. If in an eternal device (for eample I/O interface) a predefined event occurs this device issues an interrupt request to

More information

1-2 Chapter 1: The Beboputer Microcomputer

1-2 Chapter 1: The Beboputer Microcomputer 1-2 Chapter 1: The Beboputer Microcomputer The Beboputer microcomputer In its broadest sense, a computer is a device that can accept information from the outside world, process that information using logical

More information

Part 1 Using Serial EEPROMs

Part 1 Using Serial EEPROMs Part 1 Using Serial EEPROMs copyright 1997, 1999 by Jan Axelson If you have a project that needs a modest amount of nonvolatile, read/write memory, serial EEPROM may be the answer. These tiny and inexpensive

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 3 Digital Logic Structures Original slides from Gregory Byrd, North Carolina State University Modified slides by C. Wilcox, S. Rajopadhye Colorado State University Computing Layers Problems Algorithms

More information

82C55. Programmable Peripheral Interface. Interfacing Part III

82C55. Programmable Peripheral Interface. Interfacing Part III 82C55 Programmable Peripheral Interface Interfacing Part III Review More on Address decoding Interface with memory Introduction to Programmable Peripheral Interface 82C55 About 82C55 The 82C55 is a popular

More information

Serial versus Parallel Data Transfers

Serial versus Parallel Data Transfers Serial versus Parallel Data Transfers 1 SHIFT REGISTERS: CONVERTING BETWEEN SERIAL AND PARALLEL DATA Serial communications Most communications is carried out over serial links Fewer wires needed Less electronics

More information

8051 Interfacing: Address Map Generation

8051 Interfacing: Address Map Generation 85 Interfacing: Address Map Generation EE438 Fall2 Class 6 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas 85 Interfacing Address Mapping Use address bus and

More information

Address connections Data connections Selection connections

Address connections Data connections Selection connections Interface (cont..) We have four common types of memory: Read only memory ( ROM ) Flash memory ( EEPROM ) Static Random access memory ( SARAM ) Dynamic Random access memory ( DRAM ). Pin connections common

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

Need more memory! What do we do if our 2K of SRAM isn t enough? Doing complex DSP calculations Large matrix math

Need more memory! What do we do if our 2K of SRAM isn t enough? Doing complex DSP calculations Large matrix math Need more memory! What do we do if our 2K of SRAM isn t enough? Doing complex DSP calculations Large matrix math We need a bigger scratch pad Must interface to external memory module! The HCS12 Solution

More information

EE 308 Spring Lecture 28 March 30, 2012 Review for Exam 2. Introduction to the MC9S12 Expanded Mode

EE 308 Spring Lecture 28 March 30, 2012 Review for Exam 2. Introduction to the MC9S12 Expanded Mode Lecture 28 March 30, 2012 Review for Exam 2 Introduction to the MC9S12 Expanded Mode 1 Review for Exam 2 1. C Programming (a) Setting and clearing bits in registers PORTA = PORTA 0x02; PORTA = PORTA &

More information

3. The MC6802 MICROPROCESSOR

3. The MC6802 MICROPROCESSOR 3. The MC6802 MICROPROCESSOR This chapter provides hardware detail on the Motorola MC6802 microprocessor to enable the reader to use of this microprocessor. It is important to learn the operation and interfacing

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 3

ECE 571 Advanced Microprocessor-Based Design Lecture 3 ECE 571 Advanced Microprocessor-Based Design Lecture 3 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 January 2018 Homework #1 was posted Announcements 1 Microprocessors Also

More information

(1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction:

(1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction: (1) Define following terms: Instruction, Machine Cycle, Opcode, Oprand & Instruction Cycle. Instruction: Instruction is the command given by the programmer to the Microprocessor to Perform the Specific

More information

Chapter 2 Basic Logic Circuits and VHDL Description

Chapter 2 Basic Logic Circuits and VHDL Description Chapter 2 Basic Logic Circuits and VHDL Description We cannot solve our problems with the same thinking we used when we created them. ----- Albert Einstein Like a C or C++ programmer don t apply the logic.

More information

EE 1315: DIGITAL LOGIC LAB EE Dept, UMD

EE 1315: DIGITAL LOGIC LAB EE Dept, UMD EXPERIMENT # 7: Basic Latches EE 1315: DIGITAL LOGIC LAB EE Dept, UMD Latches are primitive memory elements of sequential circuits that are used in building simple noise filtering circuits and flip-flops.

More information

Microprocessor Architecture. mywbut.com 1

Microprocessor Architecture. mywbut.com 1 Microprocessor Architecture mywbut.com 1 Microprocessor Architecture The microprocessor can be programmed to perform functions on given data by writing specific instructions into its memory. The microprocessor

More information

Lab #2: Building the System

Lab #2: Building the System Lab #: Building the System Goal: In this second lab exercise, you will design and build a minimal microprocessor system, consisting of the processor, an EPROM chip for the program, necessary logic chips

More information

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM Memories Overview Memory Classification Read-Only Memory (ROM) Types of ROM PROM, EPROM, E 2 PROM Flash ROMs (Compact Flash, Secure Digital, Memory Stick) Random Access Memory (RAM) Types of RAM Static

More information

4) In response to the the 8259A sets the highest priority ISR, bit and reset the corresponding IRR bit. The 8259A also places

4) In response to the the 8259A sets the highest priority ISR, bit and reset the corresponding IRR bit. The 8259A also places Lecture-52 Interrupt sequence: The powerful features of the 8259A in a system are its programmability and the interrupt routine address capability. It allows direct or indirect jumping to the specific

More information

Programmable Peripheral Application Note 021 Interfacing The PSD3XX To The MC68HC16 and The MC68300 Family of Microcontrollers By Ching Lee

Programmable Peripheral Application Note 021 Interfacing The PSD3XX To The MC68HC16 and The MC68300 Family of Microcontrollers By Ching Lee Programmable Peripheral pplication Note 0 Interfacing The PSXX To The MC68HC16 and The MC680 Family of Microcontrollers By Ching Lee Introduction Typical MC683 Design The PSXX devices are user-configurable

More information

Lecture-55 System Interface:

Lecture-55 System Interface: Lecture-55 System Interface: To interface 8253 with 8085A processor, CS signal is to be generated. Whenever CS =0, chip is selected and depending upon A 1 and A 0 one of the internal registers is selected

More information

The Need of Datapath or Register Transfer Logic. Number 1 Number 2 Number 3 Number 4. Numbers from 1 to million. Register

The Need of Datapath or Register Transfer Logic. Number 1 Number 2 Number 3 Number 4. Numbers from 1 to million. Register The Need of Datapath or Register Transfer Logic Number 1 Number 2 Number 3 Number 4 Numbers from 1 to million Register (a) (b) Circuits to add several numbers: (a) combinational circuit to add four numbers;

More information

Instructions Involve a Segment Register (SR-field)

Instructions Involve a Segment Register (SR-field) BYTE 1 = 11000111 2 = C7 16 BYTE 2 = (MOD)000(R/M) = 100000112 = 83 16 BYTE 3 = 34 16 and BYTE 4 = 12 16 BYTE 5 = CD 16 and BYTE 6 = AB 16 The machine code for the instruction is: MOV [BP+DI+1234H], 0ABCDH

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

ECSE-2610 Computer Components & Operations (COCO)

ECSE-2610 Computer Components & Operations (COCO) ECSE-2610 Computer Components & Operations (COCO) Part 18: Random Access Memory 1 Read-Only Memories 2 Why ROM? Program storage Boot ROM for personal computers Complete application storage for embedded

More information

Lab 16: Tri-State Busses and Memory U.C. Davis Physics 116B Note: We may use a more modern RAM chip. Pinouts, etc. will be provided.

Lab 16: Tri-State Busses and Memory U.C. Davis Physics 116B Note: We may use a more modern RAM chip. Pinouts, etc. will be provided. Lab 16: Tri-State Busses and Memory U.C. Davis Physics 116B Note: We may use a more modern RAM chip. Pinouts, etc. will be provided. INTRODUCTION In this lab, you will build a fairly large circuit that

More information

Programmable machines

Programmable machines Page 1 of 9 Programmable machines indicates problems that have been selected for discussion in section, time permitting. Problem 1. Consider the following circuit: The heavy lines represent busses, which

More information

Reducing Pin and Area Overhead in Fault-Tolerant FPGAbased

Reducing Pin and Area Overhead in Fault-Tolerant FPGAbased Reducing Pin and Area Overhead in Fault-Tolerant FPGAbased Designs Fernanda Lima Luigi Carro Ricardo Reis Universidade Federal do Rio Grande do Sul PPGC - Instituto de Inormática - DELET Caia Postal: 15064,

More information

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples:

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples: Quadratic Functions ( ) = a + b + c Graphs o quadratics unctions are parabolas opening up i a > 0, and down i a < 0. Eamples: = = + = = 0 MATH 80 Lecture B o 5 Ronald Brent 07 All rights reserved. Notes:

More information

Memory & Simple I/O Interfacing

Memory & Simple I/O Interfacing Chapter 10 Memory & Simple I/O Interfacing Expected Outcomes Explain the importance of tri-state devices in microprocessor system Distinguish basic type of semiconductor memory and their applications Relate

More information

Chapter NINE 8088,80286 MICROPROCESSORS AND ISA BUS

Chapter NINE 8088,80286 MICROPROCESSORS AND ISA BUS Chapter NINE 8088,80286 MICROPROCESSORS AND ISA BUS OBJECTIVES this chapter enables the student to: State the function of the pins of the 8088. List the functions of the 8088 data, address, and control

More information

Summer 2003 Lecture 21 07/15/03

Summer 2003 Lecture 21 07/15/03 Summer 2003 Lecture 21 07/15/03 Simple I/O Devices Simple i/o hardware generally refers to simple input or output ports. These devices generally accept external logic signals as input and allow the CPU

More information

INTERFACING THE ISCC TO THE AND 8086

INTERFACING THE ISCC TO THE AND 8086 APPLICATION NOTE INTERFACING THE ISCC TO THE 68 AND 886 INTRODUCTION The ISCC uses its flexible bus to interface with a variety of microprocessors and microcontrollers; included are the 68 and 886. The

More information

Chapter 5. Register Transfer Level (RTL) Design High Level State Machine (HLSM) Memory Chapters 5

Chapter 5. Register Transfer Level (RTL) Design High Level State Machine (HLSM) Memory Chapters 5 Chapter 5 Register Transfer Level (RTL) Design High Level State Machine (HLSM) Memory Chapters 5 High Level Sequential Behavior FSM can be used to capture sequential behavior using bit inputs HLSM can

More information

Chapter 5 The Memory System

Chapter 5 The Memory System Chapter 5 The Memory System 5.. The block diagram is essentially the same as in Figure 5., except that 6 rows (of four 5 8 chips) are needed. Address lines A 8 are connected to all chips. Address lines

More information

PCF General description. 2. Features and benefits. Universal LCD driver for low multiplex rates

PCF General description. 2. Features and benefits. Universal LCD driver for low multiplex rates Rev. 6 1 October 2012 Product data sheet 1. General description The is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) 1 with low multiple rates. It generates the drive

More information

The pin details are given below: V cc, GND = +5V and Ground A 11 -A 0 = address lines. Fig.2.19 Intel 2716 Read Only Memory

The pin details are given below: V cc, GND = +5V and Ground A 11 -A 0 = address lines. Fig.2.19 Intel 2716 Read Only Memory Lecture-8 Typical Memory Chips: In previous lecture, the different types of static memories were discussed. All these memories are random access memories. Any memory location can be accessed in a random

More information

PARALLEL COMMUNICATIONS

PARALLEL COMMUNICATIONS Parallel Data Transfer Suppose you need to transfer data from one HCS12 to another. How can you do this? You could connect PORTA of the sending computer (set up as an output port) to PORTA of the receiving

More information

Lecture-15 W-Z: Increment-Decrement Address Latch:

Lecture-15 W-Z: Increment-Decrement Address Latch: Lecture-15 W-Z: (W) and (Z) are two 8-bit temporary registers not accessible to the user. They are exclusively used for the internal operation by the microprocessor. These registers are used either to

More information

CHAPTER NINE - MSI Logic Circuits

CHAPTER NINE - MSI Logic Circuits CHAPTER NINE - MSI Logic Circuits 9. (a) All of the outputs are HIGH. (b) O =, O- O7 = (c) O - O6 =, O7 =. (d) Same as (a). 9.2 Inputs = 6: Outputs = 64 9.3 (a) [ O6] -> A2=, A=, A=, E3=, E2 =, E= (b)

More information

55:131 Introduction to VLSI Design Project #3 -- Fall 2010 64-bit PCI Target with EDAC Due Date: Friday November 19, 2010 Introduction In this project we will modify the PCI Target from project 2 to change

More information

Model EXAM Question Bank

Model EXAM Question Bank VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI Department of Information Technology Model Exam -1 1. List the main difference between PLA and PAL. PLA: Both AND and OR arrays are programmable

More information

CS/ECE 252 Introduction to Computer Engineering

CS/ECE 252 Introduction to Computer Engineering Student Info Name: Section: netid: CS/ECE 252 Introduction to Computer Engineering Spring 2017 Instructor: Radhakrishnan Rahul Nayar TAs: Annie Lin, Mohit URL: http://pages.cs.wisc.edu/~rrahulnayar/cs252/spring2017/index.html

More information

INTRODUCTION OF MICROPROCESSOR& INTERFACING DEVICES Introduction to Microprocessor Evolutions of Microprocessor

INTRODUCTION OF MICROPROCESSOR& INTERFACING DEVICES Introduction to Microprocessor Evolutions of Microprocessor Course Title Course Code MICROPROCESSOR & ASSEMBLY LANGUAGE PROGRAMMING DEC415 Lecture : Practical: 2 Course Credit Tutorial : 0 Total : 5 Course Learning Outcomes At end of the course, students will be

More information

In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace flag, Interrupt flag, Direction flag, and Sign flag.

In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trace flag, Interrupt flag, Direction flag, and Sign flag. What is a Microprocessor? Microprocessor is a program-controlled device, which fetches the instructions from memory, decodes and executes the instructions. Most Micro Processor are single- chip devices.

More information

University of Alexandria Faculty of Engineering Division of Communications & Electronics

University of Alexandria Faculty of Engineering Division of Communications & Electronics University of Alexandria Faculty of Engineering Division of Communications & Electronics Subject Name: Microprocessors Lecturer: Dr. Mohammed Morsy Academic Year: 2012 2013 Assistants: Eng. Ahmed Bedewy

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Introduction to Microcontrollers Embedded Controller Simply an embedded controller is a controller that is embedded in a greater system. One can define an embedded controller as a controller (or computer)

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. 16,384-BIT EPROM WITH I/O! 2048 Words x 8 Bits! Single + 5V Power Supply

More information

Pin # Signal 1 If USB jumper is installed this is +5V output; if USB jumper is open this is an input for external stabilized power supply +5V/0.

Pin # Signal 1 If USB jumper is installed this is +5V output; if USB jumper is open this is an input for external stabilized power supply +5V/0. Pin # Signal 1 If USB jumper is installed this is +5V output; if USB jumper is open this is an input for external stabilized power supply +5V/0.4A for USB input part 2 GND 3 Right justified data (tied

More information

Introduction read-only memory random access memory

Introduction read-only memory random access memory Memory Interface Introduction Simple or complex, every microprocessorbased system has a memory system. Almost all systems contain two main types of memory: read-only memory (ROM) and random access memory

More information

Picture of memory. Word FFFFFFFD FFFFFFFE FFFFFFFF

Picture of memory. Word FFFFFFFD FFFFFFFE FFFFFFFF Memory Sequential circuits all depend upon the presence of memory A flip-flop can store one bit of information A register can store a single word, typically 32-64 bits Memory allows us to store even larger

More information

Semiconductor Memories: RAMs and ROMs

Semiconductor Memories: RAMs and ROMs Semiconductor Memories: RAMs and ROMs Lesson Objectives: In this lesson you will be introduced to: Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc. Different terms like: read, write,

More information

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE

Pin diagram Common SignalS Architecture: Sub: 8086 HARDWARE 1 CHAPTER 6 HARDWARE ARCHITECTURE OF 8086 8086 Architecture: 6.1 8086 Pin diagram 8086 is a 40 pin DIP using CHMOS technology. It has 2 GND s as circuit complexity demands a large amount of current flowing

More information

USB-COMi-TB USB to Industrial Single RS-422 / 485 Adapter Manual. Specifications and Features

USB-COMi-TB USB to Industrial Single RS-422 / 485 Adapter Manual. Specifications and Features USB-COMi-TB USB to Industrial Single RS-422 / 485 Adapter Manual The USB-COMi-TB USB-to-Industrial Single RS-422/485 Adapter is designed to make industrial communication port expansion quick and simple.

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 14 Ch.6 The 80186, 80188, and 80286 Microprocessors 21-Apr-15 1 Timers The 80186/80188 contain three fully programmable 16-bit timers

More information

The functional block diagram of 8085A is shown in fig.4.1.

The functional block diagram of 8085A is shown in fig.4.1. Lecture-13 Internal Architecture of Intel 05A The functional block diagram of 05A is shown in fig.4.1. INTA INTR RST7.5 RST5.5 RST6.5 TRAP SOD SID INTERRUPT SERIAL I/O (Internal Bus) FR(S) IR() B() C()

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

More information

Memorial University of Newfoundland

Memorial University of Newfoundland Engineering 4862 Memorial University of Newfoundland Assignment 5 MICROPROCESSORS Solution Please note: Part A is due next Friday (July 20) and Part B is due on July 27 The last question is a bonus question

More information

Basic Components of Digital Computer

Basic Components of Digital Computer Digital Integrated Circuits & Microcontrollers Sl. Mihnea UDREA, mihnea@comm.pub.ro Conf. Mihai i STANCIU, ms@elcom.pub.ro 1 Basic Components of Digital Computer CPU (Central Processing Unit) Control and

More information

Test ROM for Zaccaria 1B1165 CPU Board

Test ROM for Zaccaria 1B1165 CPU Board Introduction Test ROM for Zaccaria 1B1165 CPU Board Version 1.2 13 June 2008 David Gersic http://www.zaccaria pinball.com One of the challenges to working on an unknown CPU board is that Zaccaria's software

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

Chapter 02: Computer Organization Functional units and components in a computer organization Part 3 Bus Structures

Chapter 02: Computer Organization Functional units and components in a computer organization Part 3 Bus Structures Chapter 02: Computer Organization Functional units and components in a computer organization Part 3 Bus Structures Objective: Understand the IO Subsystem and Understand Bus Structures Understand the functions

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

The Memory Component

The Memory Component The Computer Memory Chapter 6 forms the first of a two chapter sequence on computer memory. Topics for this chapter include. 1. A functional description of primary computer memory, sometimes called by

More information

Allmost all systems contain two main types of memory :

Allmost all systems contain two main types of memory : Memory Interface Allmost all systems contain two main types of memory : read-only memory (ROM) system software and permanent system data random access memory (RAM) or read/write memory application software

More information

EEM478-WEEK7 PART B Bootloader

EEM478-WEEK7 PART B Bootloader EEM478-WEEK7 PART B Bootloader Learning Objectives Need for a bootloader. What happens during a reset. Boot modes and processes. Memory map. Chapter 9, Slide 2 VCC EPROM What is the bootloader? VCC Boot

More information

Exercise 1: Static Control of a Data Bus

Exercise 1: Static Control of a Data Bus Exercise 1: Static Control of a Data Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the function of the CS signal and R/W signal in controlling data transfer

More information

General Purpose Programmable Peripheral Devices. Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar

General Purpose Programmable Peripheral Devices. Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Chapter 15 General Purpose Programmable Peripheral Devices by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Microprocessor & Interfacing (140701) Rahul Patel 1

More information

Microcomputer System Design

Microcomputer System Design Microcomputer System Design COE305 Lab. What is a Microprocessor? A microprocessor is a multipurpose, clockdriven, register-based electronic device that reads binary instructions from a storage device

More information

8051 microcontrollers

8051 microcontrollers 8051 microcontrollers Presented by: Deepak Kumar Rout Synergy Institute of Engineering and Technology, Dhenkanal Chapter 2 Introduction Intel MCS-51 family of microcontrollers consists of various devices

More information

MC68HC12 Parallel I/O

MC68HC12 Parallel I/O EEL 4744C: Microprocessor Applications Lecture 6 Part 2 MC68HC12 Parallel I/O Dr. Tao Li 1 Software and Hardware Engineering (new version): Chapter 11 Or SHE (old version): Chapter 7 And Reading Assignment

More information