The MROD. The MDT Precision Chambers ROD. Adriaan König University of Nijmegen. 5 October nd ATLAS ROD Workshop 1

Size: px
Start display at page:

Download "The MROD. The MDT Precision Chambers ROD. Adriaan König University of Nijmegen. 5 October nd ATLAS ROD Workshop 1"

Transcription

1 The MROD The MDT Precision Chambers ROD Adriaan König University of Nijmegen 5 October nd ATLAS ROD Workshop 1

2 Contents System Overview MROD-0 Prototype MROD-1 Prototype Performance Study FE Parameter Loading & Initialization Names 5 October nd ATLAS ROD Workshop 2

3 System Overview TDC 1 18 x TDC 18 Chamber CSM Tower TDC 1 6 x MROD 1.28 Gbit/s S-Link to ROB 18 x CSM TDC 18 5 October nd ATLAS ROD Workshop 3

4 TDC Functionality 24 channels, 0.78 ns bin size entirely data driven: records time stamp for each hit (leading and/or trailing edges) stores hits in internal derandomizing buffer upon receipt of a L1A, it ouputs the relevant hit data words on a serial output link (40 Mbit/s) with header and trailer words 5 October nd ATLAS ROD Workshop 4

5 CSM Functionality 40 Mbit/s Data/Strobe from TDC 40 Mbit/s Data/Strobe from TDC 1 Start bit 32 Data bits 1 Parity bit 1 Stop bit ns = 875 ns Serial to Parallel & Clock Domain Separator 18 x Separator Serial to Parallel & Clock Domain Separator 1 S 18 CSM 1 Gbit/s (S-Link) 1 Separator word (S) 18 TDC data words 19 words in 875 ns 87 MB/s 5 October nd ATLAS ROD Workshop 5

6 Separator word TDC0, word 1 (tdc 1) Check (do not store) Skip (do not store) MROD Function Build events in a partitioned memory from TDC data fragments time TDC2, word 4 TDC3, word 2 Separator word TDC0, word 1 TDC1, word 3 TDC2, word 5 TDC3, word 3 TDC2, word 3 Separator word TDC1, word 2 TDC2, word 2 (tdc 0) TDC1, word 1 TDC2, word 1 TDC3, word 1 TDC0, word 0 TDC1, word 0 TDC2, word 0 TDC3, word 0 5 October nd ATLAS ROD Workshop 6

7 MROD Throughput MROD S-Link MROD input S-Link MROD input S-Link S-Link S-Link S-Link MROD input MROD input MROD input MROD input MROD output S-Link 1.28 Gbit/s ( 128 MB/s) Average 5 hits per TDC + header + trailer = 7 words/event Per tower of 6 chambers max. 88 TDCs * words/event (= 2.4 kb/event) Worst case 100 khz L1A rate 240 MB/s per MROD Calculation based on actual tower layout (J.Chapman): max. rate < 60 MB/s per MROD 5 October nd ATLAS ROD Workshop 7

8 MROD Form Factor 9 U VME board (single slot), 6 inputs, 1 output Optionally 2 extra inputs with extension board to accommodate special towers (> 6 chambers) S-link interfaces on main board SHARC II (ADSP21160), 2.5 x faster than MROD Crate contains: 12 MRODs (12 η Segments) Max. 4 MROD Extension Boards 1 Standard (?) Crate Master with Ethernet Interface (DetDAQ) 1 TTC-Rx Interface Module 1 Busy Module?? 1 DCS Interface 192 towers: 192/12 = 16 MROD Crates (1 per ϕ Sector) 5 October nd ATLAS ROD Workshop 8

9 MROD-0 Prototype MRODIN MCRUSH sorted TDC-data over SHARC Link MRODOUT SHASLINK PCISHARC 5 October nd ATLAS ROD Workshop 9

10 MROD-0 Input Channel MCRUSH FIFO Input Tetris Register FPGA FIFO Output Control Data FIFO Length FIFO Control/Status Error signaling 1 MB ZBT Memory SHARC 6 Sharc 40 MB/s each 5 October nd ATLAS ROD Workshop 10

11 MROD-0 Output Channel SHaSLINK PCI bus PCI 9054 SHARC 6 SHARC 40 MB/s each Altera 10K10A 160 MB/s 5 October nd ATLAS ROD Workshop 11

12 (SHARC) 5 October nd ATLAS ROD Workshop 12

13 FPGA Memory SHARC VME64x MROD-1 Prototype FPGA Memory 3x (in total) Sharc Links SHARC (2x) FPGA FPGA Memory SHARC Memory TTC Interface 5 October nd ATLAS ROD Workshop 13

14 SHARC-II 5 October nd ATLAS ROD Workshop 14

15 The ADSP and the ADSP SHARCs 40 MHz / MHz CPU (SIMD mode) 512 KB / 512 KB internal memory 6 x 40 / MB/s links. Throughput of all links simultaneously is 160 / (?) MB/s, without disturbing the CPU. No handshaking on links, but hardware XON-XOFF protocol, 10 / 14 DMA channels Support for bus arbitration: at max. 6 SHARCs can be connected to a common bus without glue logic. Each SHARC can access the internal memories of each other SHARC. The SHARCs also provide support for a so-called host interface, which can act as an additional master on the common bus. Fast interrupt servicing due to the presence of shadow registers Two 40 Mbit/s / Mbit/s (at max.) synchronous serial ports Can be booted via link 4 5 October nd ATLAS ROD Workshop 15

16 MROD-1 Form Factor 9 U VME board, 6 inputs, 1 output S-link interfaces on daughter boards Input S-link daughter boards SHARC II (ADSP21160), 2 x faster than (3 for input, 2 for output processing) Altera APEX FPGAs, 200k gates TTC interface (over back plane) VME64x interface Input Input Output Motherboard 5 October nd ATLAS ROD Workshop 16

17 MROD-1 Status & Planning VHDL design of FPGAs almost finished. Modules available by 1 st April Extensive tests and performance measurements at NIKHEF. System integration tests with CSM. System integration tests with ROB and DAQ test set-up (possibly in test-beam). Read out of BOL test stand at NIKHEF. 5 October nd ATLAS ROD Workshop 17

18 MROD Performance Study MROD CSM MRODIN CSM MRODIN CSM MRODIN MRODOUT ROB CSM MRODIN CSM MRODIN CSM MRODIN 5 October nd ATLAS ROD Workshop 18

19 MROD Emulation Hardware SHASLINK CSMSIM 0 TDCdata fragment lengths MROD-0 0 MCRUSH MRODIN (3x) 4 2 sorted TDCdata sorted 3 TDCdata sorted + merged TDC-data Region-of-Interest Requests, Decision Records, etc., everything needed to run a ROBIN simulation RoIRR 2 2 SHASLINK CRUSH SHASLINK 0 RoID/ T2OD 0 4 RoIR/ T2DR 4 MRODOUT ROBIN ROBSIM 4 PCISHARC xxxxx Module type event fragment lengths via SHARC-link simulates future MROD-1 functionality optionally double/triple MRODIN output thus simulating 2 or 3 MRODINs S-Link SHARC-link (PCI-)interface to host PC 5 October nd ATLAS ROD Workshop 19

20 MROD CSMSIM MRODIN MRODOUT ROBIN ROBSIM CSM-simulator performance Event rate [khz] Words/TDC 5 October nd ATLAS ROD Workshop 20

21 MROD Performance Study Results CSMSIM MROD MRODIN MRODOUT ROBIN ROBSIM MRODIN (1x) + MRODOUT + ROBIN, 18 TDCs 180,0 160,0 140,0 120,0 Event rate [khz] 100,0 80,0 60,0 40,0 20,0 0, Words/TDC MRODIN MRODIN+MRODOUT MRODIN+MRODOUT+ROBIN 5 October nd ATLAS ROD Workshop 21

22 MROD Performance Study Results CSMSIM MROD MRODIN MRODOUT ROBIN ROBSIM MRODIN (1x) + MRODOUT + ROBIN, 6 TDCs Event rate [khz] Words/TDC MRODIN MRODIN+MRODOUT MRODIN+MRODOUT+ROBIN 5 October nd ATLAS ROD Workshop 22

23 MROD Performance Study Results CSMSIM MROD MRODIN MRODOUT ROBIN ROBSIM MRODIN (2x) + MRODOUT + ROBIN, 18 TDCs Event rate [khz] Words/TDC MRODIN MRODIN+MRODOUT MRODIN+MRODOUT+ROBIN 5 October nd ATLAS ROD Workshop 23

24 MROD Performance Study Results CSMSIM MROD MRODIN MRODOUT ROBIN ROBSIM MRODIN (2x) + MRODOUT + ROBIN, 6 TDCs Event rate [khz] Words/TDC MRODIN MRODIN+MRODOUT MRODIN+MRODOUT+ROBIN 5 October nd ATLAS ROD Workshop 24

25 MROD Performance Study Results CSMSIM MROD MRODIN MRODOUT ROBIN ROBSIM MRODIN (3x) + MRODOUT + ROBIN, 6 TDCs Event rate [khz] Words/TDC MRODIN MRODIN+MRODOUT MRODIN+MRODOUT+ROBIN 5 October nd ATLAS ROD Workshop 25

26 MROD Performance Analysis Measured event rate for single output 40 MHz with 3 input channels: event rate min(50,1000/(10 + #words-per-csm/6) khz. MROD-1 uses 80 MHz: both processing speed and bandwidth increase proportionately event rate 100 khz? Final MROD: 100 MHz. 5 October nd ATLAS ROD Workshop 26

27 FE parameter loading/initialization TTC MDT-DAQ TDCs ASDs CSM MROD ROB Mezzanine boards DCS JTAG routing: 5 October nd ATLAS ROD Workshop 27

28 JTAG Usage Initialize/Set/Reset ASD/TDC/CSM parameters Reload CSM Flash Memory (if/when needed) Calibration sequence: 1: JTAG enables calibration pulses in the ASD 2: TTC signals the CSM to send a test pulse 3: TTC provides calibration trigger No calibration during regular data taking. 5 October nd ATLAS ROD Workshop 28

29 MROD Names (NIKHEF and Univ.of Nijmegen) Henk Boterenbrood Peter Jansweijer Gerard Kieft Adriaan König Jos Vermeulen Thei Wijnen NN (Post-doc vacancy at Univ.of Nijmegen: 5 October nd ATLAS ROD Workshop 29

The MROD. The Read Out Driver for the ATLAS MDT Muon Precision Chambers

The MROD. The Read Out Driver for the ATLAS MDT Muon Precision Chambers The MROD The Read Out Driver for the ATLAS MDT Muon Precision Chambers Design Review Report Overview Marcello Barisonzi, Henk Boterenbrood, Rutger van der Eijk, Peter Jansweijer, Gerard Kieft, Jos Vermeulen

More information

ROBIN Functional demonstrator of the ATLAS Trigger / DAQ Read-Out Buffer O.Gachelin, M.Huet, P.Le Dû, M.Mur C.E.A. Saclay - DAPNIA

ROBIN Functional demonstrator of the ATLAS Trigger / DAQ Read-Out Buffer O.Gachelin, M.Huet, P.Le Dû, M.Mur C.E.A. Saclay - DAPNIA 1 ROBIN Functional demonstrator of the ATLAS Trigger / DAQ Read-Out Buffer O.Gachelin, M.Huet, P.Le Dû, M.Mur C.E.A. Saclay - DAPNIA 2 Basic principles Data flow : output < input including L2 and L3 according

More information

PROTOTYPING HARDWARE FOR THE ATLAS READOUT BUFFERS

PROTOTYPING HARDWARE FOR THE ATLAS READOUT BUFFERS PROTOTYPING HARDWARE FOR THE ATLAS READOUT BUFFERS R.Cranfield (rc@hep.ucl.ac.uk), G.Crone, University College London G.Boorman, B.Green (B.Green@rhbnc.ac.uk), Royal Holloway University of London O.Gachelin,

More information

ROB-IN Functional demonstrator of the ATLAS Trigger / DAQ Read-Out Buffer O.Gachelin, M.Huet, P.Le Dû, M.Mur C.E.A.

ROB-IN Functional demonstrator of the ATLAS Trigger / DAQ Read-Out Buffer O.Gachelin, M.Huet, P.Le Dû, M.Mur C.E.A. 1 ROB-IN Functional demonstrator of the ATLAS Trigger / DAQ Read-Out Buffer O.Gachelin, M.Huet, P.Le Dû, M.Mur C.E.A. Saclay - DAPNIA 2 Basic principles Data flow : output < input including L2 and L3 according

More information

Velo readout board RB3. Common L1 board (ROB)

Velo readout board RB3. Common L1 board (ROB) Velo readout board RB3 Testing... Common L1 board (ROB) Specifying Federica Legger 10 February 2003 1 Summary LHCb Detectors Online (Trigger, DAQ) VELO (detector and Readout chain) L1 electronics for VELO

More information

ATLANTIS - a modular, hybrid FPGA/CPU processor for the ATLAS. University of Mannheim, B6, 26, Mannheim, Germany

ATLANTIS - a modular, hybrid FPGA/CPU processor for the ATLAS. University of Mannheim, B6, 26, Mannheim, Germany ATLANTIS - a modular, hybrid FPGA/CPU processor for the ATLAS Readout Systems A. Kugel, Ch. Hinkelbein, R. Manner, M. Muller, H. Singpiel University of Mannheim, B6, 26, 68131 Mannheim, Germany fkugel,

More information

Scenarios for a ROB system built with SHARC processors. Jos Vermeulen, 7 September 1999 Paper model results updated on 7 October 1999

Scenarios for a ROB system built with SHARC processors. Jos Vermeulen, 7 September 1999 Paper model results updated on 7 October 1999 Scenarios for a ROB system built with processors Jos Vermeulen, 7 September 1999 Paper model results updated on 7 October 1999 1 Scenario I : 6 ROBIns on normal size VME card Configuration 1. 80 Mbyte/s

More information

Hera-B DAQ System and its self-healing abilities

Hera-B DAQ System and its self-healing abilities Hera-B DAQ System and its self-healing abilities V.Rybnikov, DESY, Hamburg 1. HERA-B experiment 2. DAQ architecture Read-out Self-healing tools Switch SLT nodes isolation 3. Run control system 4. Self-healing

More information

S-LINK: A Prototype of the ATLAS Read-out Link

S-LINK: A Prototype of the ATLAS Read-out Link : A Prototype of the ATLAS Read-out Link Erik van der Bij, Robert McLaren, Zoltán Meggyesi EP-Division CERN, CH-1211 Geneva 23 Abstract The ATLAS data acquisition system needs over 1500 read-out links

More information

A LVL2 Zero Suppression Algorithm for TRT Data

A LVL2 Zero Suppression Algorithm for TRT Data A LVL2 Zero Suppression Algorithm for TRT Data R. Scholte,R.Slopsema,B.vanEijk, N. Ellis, J. Vermeulen May 5, 22 Abstract In the ATLAS experiment B-physics studies will be conducted at low and intermediate

More information

The Read-Out Driver (ROD) for the ATLAS Liquid Argon Calorimeters

The Read-Out Driver (ROD) for the ATLAS Liquid Argon Calorimeters The Read-Out Driver (ROD) for the ATLAS Liquid Argon Calorimeters Outline The read-out architecture The front-end boards The front-end links The read-out driver (ROD) modules design considerations prototype

More information

RPC Trigger Overview

RPC Trigger Overview RPC Trigger Overview presented by Maciek Kudla, Warsaw University RPC Trigger ESR Warsaw, July 8th, 2003 RPC Trigger Task The task of RPC Muon Trigger electronics is to deliver 4 highest momentum muons

More information

USCMS HCAL FERU: Front End Readout Unit. Drew Baden University of Maryland February 2000

USCMS HCAL FERU: Front End Readout Unit. Drew Baden University of Maryland February 2000 USCMS HCAL FERU: Front End Readout Unit Drew Baden University of Maryland February 2000 HCAL Front-End Readout Unit Joint effort between: University of Maryland Drew Baden (Level 3 Manager) Boston University

More information

Trigger Layout and Responsibilities

Trigger Layout and Responsibilities CMS EMU TRIGGER ELECTRONICS B. Paul Padley Rice University February 1999 Trigger Layout and Responsibilities Basic Requirements z Latency: < 3.2 us z Fully pipelined synchronous architecture, dead time

More information

FELI. : the detector readout upgrade of the ATLAS experiment. Soo Ryu. Argonne National Laboratory, (on behalf of the FELIX group)

FELI. : the detector readout upgrade of the ATLAS experiment. Soo Ryu. Argonne National Laboratory, (on behalf of the FELIX group) LI : the detector readout upgrade of the ATLAS experiment Soo Ryu Argonne National Laboratory, sryu@anl.gov (on behalf of the LIX group) LIX group John Anderson, Soo Ryu, Jinlong Zhang Hucheng Chen, Kai

More information

A[31..28] A[27..23] A[22] A[21..2] A[1] A[0] 0 Internal Memory Space SHARC A 0000 BAR[7..3] 1 Internal Memory Space SHARC B

A[31..28] A[27..23] A[22] A[21..2] A[1] A[0] 0 Internal Memory Space SHARC A 0000 BAR[7..3] 1 Internal Memory Space SHARC B MROD-Out Introduction The output part of the MROD module consists of a cluster of two output SHARCs. This cluster of SHARCs has three basic functions: 1. Drive an S-LINK 2. Connect to VMEbus 3. Receive

More information

2008 JINST 3 S Online System. Chapter System decomposition and architecture. 8.2 Data Acquisition System

2008 JINST 3 S Online System. Chapter System decomposition and architecture. 8.2 Data Acquisition System Chapter 8 Online System The task of the Online system is to ensure the transfer of data from the front-end electronics to permanent storage under known and controlled conditions. This includes not only

More information

ATLAS TDAQ RoI Builder and the Level 2 Supervisor system

ATLAS TDAQ RoI Builder and the Level 2 Supervisor system ATLAS TDAQ RoI Builder and the Level 2 Supervisor system R. E. Blair 1, J. Dawson 1, G. Drake 1, W. Haberichter 1, J. Schlereth 1, M. Abolins 2, Y. Ermoline 2, B. G. Pope 2 1 Argonne National Laboratory,

More information

EMU FED. --- Crate and Electronics. ESR, CERN, November B. Bylsma, S. Durkin, Jason Gilmore, Jianhui Gu, T.Y. Ling. The Ohio State University

EMU FED. --- Crate and Electronics. ESR, CERN, November B. Bylsma, S. Durkin, Jason Gilmore, Jianhui Gu, T.Y. Ling. The Ohio State University EMU FED --- Crate and Electronics B. Bylsma, S. Durkin, Jason Gilmore, Jianhui Gu, T.Y. Ling The Ohio State University ESR, CERN, November 2004 EMU FED Design EMU FED: Outline FED Crate & Custom Backplane

More information

ROB IN Performance Measurements

ROB IN Performance Measurements ROB IN Performance Measurements I. Mandjavidze CEA Saclay, 91191 Gif-sur-Yvette CEDEX, France ROB Complex Hardware Organisation Mode of Operation ROB Complex Software Organisation Performance Measurements

More information

Results of a Sliced System Test for the ATLAS End-cap Muon Level-1 Trigger

Results of a Sliced System Test for the ATLAS End-cap Muon Level-1 Trigger Results of a Sliced System Test for the ATLAS End-cap Muon Level-1 Trigger H.Kano*, K.Hasuko, Y.Matsumoto, Y.Nakamura, *Corresponding Author: kano@icepp.s.u-tokyo.ac.jp ICEPP, University of Tokyo, 7-3-1

More information

50GeV KEK IPNS. J-PARC Target R&D sub gr. KEK Electronics/Online gr. Contents. Read-out module Front-end

50GeV KEK IPNS. J-PARC Target R&D sub gr. KEK Electronics/Online gr. Contents. Read-out module Front-end 50GeV Contents Read-out module Front-end KEK IPNS J-PARC Target R&D sub gr. KEK Electronics/Online gr. / Current digitizer VME scalar Advanet ADVME2706 (64ch scanning )? Analog multiplexer Yokogawa WE7271(4ch

More information

Electronics on the detector Mechanical constraints: Fixing the module on the PM base.

Electronics on the detector Mechanical constraints: Fixing the module on the PM base. PID meeting Mechanical implementation ti Electronics architecture SNATS upgrade proposal Christophe Beigbeder PID meeting 1 Electronics is split in two parts : - one directly mounted on the PM base receiving

More information

DTTF muon sorting: Wedge Sorter and Barrel Sorter

DTTF muon sorting: Wedge Sorter and Barrel Sorter DTTF muon sorting: Wedge Sorter and Barrel Sorter 1 BS, it sorts the 4 best tracks out of max 24 tracks coming from the 12 WS of barrel Vienna Bologna PHTF 72 x Vienna Bologna Padova 12 WS, each one sorts

More information

Trigger Report. W. H. Smith U. Wisconsin. Calorimeter & Muon Trigger: Highlights Milestones Concerns Near-term Activities CMS

Trigger Report. W. H. Smith U. Wisconsin. Calorimeter & Muon Trigger: Highlights Milestones Concerns Near-term Activities CMS Trigger Report W. H. Smith U. Wisconsin Calorimeter & Muon Trigger: Highlights Milestones Concerns Near-term Activities Calorimeter Trigger Highlights, Milestones, Activities: Receiver Card Prototype delivered

More information

Update on PRad GEMs, Readout Electronics & DAQ

Update on PRad GEMs, Readout Electronics & DAQ Update on PRad GEMs, Readout Electronics & DAQ Kondo Gnanvo University of Virginia, Charlottesville, VA Outline PRad GEMs update Upgrade of SRS electronics Integration into JLab DAQ system Cosmic tests

More information

Dominique Gigi CMS/DAQ. Siena 4th October 2006

Dominique Gigi CMS/DAQ. Siena 4th October 2006 . CMS/DAQ overview. Environment. FRL-Slink (Front-End Readout Link) - Boards - Features - Protocol with NIC & results - Production.FMM (Fast Monitoring Module) -Requirements -Implementation -Features -Production.Conclusions

More information

BES-III off-detector readout electronics for the GEM detector: an update

BES-III off-detector readout electronics for the GEM detector: an update BES-III off-detector readout electronics for the GEM detector: an update The CGEM off-detector collaboration ( INFN/Univ. FE, INFN LNF, Univ. Uppsala ) 1 Outline Reminder Update on development status Off-detector

More information

Atlantis MultiRob Scenario

Atlantis MultiRob Scenario Atlantis MultiRob Scenario --------------------------------- The ATLANTIS system is described in the attached document robscenario.pdf and can be viewed as a standard PC with a number of FPGA co-processors.

More information

The ALICE TPC Readout Control Unit 10th Workshop on Electronics for LHC and future Experiments September 2004, BOSTON, USA

The ALICE TPC Readout Control Unit 10th Workshop on Electronics for LHC and future Experiments September 2004, BOSTON, USA Carmen González Gutierrez (CERN PH/ED) The ALICE TPC Readout Control Unit 10th Workshop on Electronics for LHC and future Experiments 13 17 September 2004, BOSTON, USA Outline: 9 System overview 9 Readout

More information

Alternative Ideas for the CALICE Back-End System

Alternative Ideas for the CALICE Back-End System Alternative Ideas for the CALICE Back-End System Matthew Warren and Gordon Crone University College London 5 February 2002 5 Feb 2002 Alternative Ideas for the CALICE Backend System 1 Concept Based on

More information

Chapter 11: Input/Output Organisation. Lesson 15: Standard I/O bus PCI

Chapter 11: Input/Output Organisation. Lesson 15: Standard I/O bus PCI Chapter 11: Input/Output Organisation Lesson 15: Standard I/O bus PCI Objective Familiar with I/O bus and standard I/O interfaces parallel bus PCI (Peripheral Connect Interface) for a synchronous parallel

More information

2008 JINST 3 T The ATLAS ROBIN TECHNICAL REPORT

2008 JINST 3 T The ATLAS ROBIN TECHNICAL REPORT P U B L I S H E D BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA R E C E I V E D: October 26, 2007 A C C E P T E D: December 14, 2007 P U B L I S H E D: January 28, 2008 TECHNICAL REPORT The ATLAS ROBIN

More information

On-board PCs for interfacing front-end electronics

On-board PCs for interfacing front-end electronics On-board PCs for interfacing front-end electronics JCOP team meeting April 10, 2002 Niko Neufeld CERN/EP 1 Controlling Boards The traditional approach Ethernet Parallel Bus (VME, Fastbus, ) Control Station

More information

HCAL DCC Technical Reference E. Hazen - Revised March 27, 2007 Note: Latest version of this document should be available at:

HCAL DCC Technical Reference E. Hazen - Revised March 27, 2007 Note: Latest version of this document should be available at: HCAL DCC Technical Reference E. Hazen - Revised March 27, 2007 Note: Latest version of this document should be available at: http://cmsdoc.cern.ch/cms/hcal/document/countinghouse/dcc/dcctechref.pdf Table

More information

RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters

RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters RT2016 Phase-I Trigger Readout Electronics Upgrade for the ATLAS Liquid-Argon Calorimeters Nicolas Chevillot (LAPP/CNRS-IN2P3) on behalf of the ATLAS Liquid Argon Calorimeter Group 1 Plan Context Front-end

More information

The FTK to Level-2 Interface Card (FLIC)

The FTK to Level-2 Interface Card (FLIC) The FTK to Level-2 Interface Card (FLIC) J. Anderson, B. Auerbach, R. Blair, G. Drake, A. Kreps, J. Love, J. Proudfoot, M. Oberling, R. Wang, J. Zhang November 5th, 2015 2015 IEEE Nuclear Science Symposium

More information

2008 JINST 3 P ATLAS Muon Drift Tube Electronics

2008 JINST 3 P ATLAS Muon Drift Tube Electronics ATLAS Muon Drift Tube Electronics PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING AND SISSA RECEIVED: May 23, 2008 ACCEPTED: August 11, 2008 PUBLISHED: September 5, 2008 Y. Arai, g B. Ball, j M. Beretta,

More information

Testing Discussion Initiator

Testing Discussion Initiator 27 th February 2003 Testing Discussion Initiator C.N.P.Gee Rutherford Appleton Laboratory C. N. P. Gee February 2003 2 C. N. P. Gee February 2003 3 JEP Tests (1) Step Test Items required Provided by 0

More information

CMS Trigger/DAQ HCAL FERU System

CMS Trigger/DAQ HCAL FERU System CMS Trigger/DAQ HCAL FERU System Drew Baden University of Maryland October 2000 http://macdrew.physics.umd.edu/cms/ Honest assessment: About 3 months behind schedule. TRIDAS Overall Project Timelines Expected

More information

Module Performance Report. ATLAS Calorimeter Level-1 Trigger- Common Merger Module. Version February-2005

Module Performance Report. ATLAS Calorimeter Level-1 Trigger- Common Merger Module. Version February-2005 Module Performance Report ATLAS Calorimeter Level-1 Trigger- Common Merger Module B. M. Barnett, I. P. Brawn, C N P Gee Version 1.0 23 February-2005 Table of Contents 1 Scope...3 2 Measured Performance...3

More information

The electron/photon and tau/hadron Cluster Processor for the ATLAS First-Level Trigger - a Flexible Test System

The electron/photon and tau/hadron Cluster Processor for the ATLAS First-Level Trigger - a Flexible Test System The electron/photon and tau/hadron Cluster Processor for the ATLAS First-Level Trigger - a Flexible Test System V. Perera, I. Brawn, J. Edwards, C. N. P. Gee, A. Gillman, R. Hatley, A. Shah, T.P. Shah

More information

ATLAS Muon Drift Tube Electronics

ATLAS Muon Drift Tube Electronics Preprint typeset in JINST style - HYPER VERSION ATLAS Muon Drift Tube Electronics Y. Arai 7, B. Ball 10, M. Beretta 4, H. Boterenbrood 11, G.W. Brandenburg 3, F. Ceradini 6, J.W. Chapman 10, T. Dai 10,

More information

Chapter 8: Input and Output. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V.

Chapter 8: Input and Output. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. 8-1 Principles of Computer Architecture Miles Murdocca and Vincent Heuring 8-2 Chapter Contents 8.1 Simple Bus Architectures 8.2 Bridge-Based Bus Architectures 8.3 Communication Methodologies 8.4 Case

More information

The ATLAS liquid argon calorimeters read out drivers

The ATLAS liquid argon calorimeters read out drivers The ATLAS liquid argon calorimeters read out drivers J. Prast To cite this version: J. Prast. The ATLAS liquid argon calorimeters read out drivers. Workshop on Electronics for LHC Experiments 6, Sep 2000,

More information

Track-Finder Test Results and VME Backplane R&D. D.Acosta University of Florida

Track-Finder Test Results and VME Backplane R&D. D.Acosta University of Florida Track-Finder Test Results and VME Backplane R&D D.Acosta University of Florida 1 Technical Design Report Trigger TDR is completed! A large amount effort went not only into the 630 pages, but into CSC Track-Finder

More information

L2 Overview II, and Summary

L2 Overview II, and Summary L2 Overview II, and Summary James T. Linnemann Michigan State University Level 2 Review Feb 6, 1999 Michigan State University 2/4/99 32 L2 Maximum Event Sizes (FIFO size choice) Length = 16B(min) 4KB (max)

More information

J. Castelo. IFIC, University of Valencia. SPAIN DRAFT. V1.0 previous to 5/6/2002 phone meeting

J. Castelo. IFIC, University of Valencia. SPAIN DRAFT. V1.0 previous to 5/6/2002 phone meeting TileCal ROD HW Specific Requirements to Use the New LArg Motherboard A Report Document J. Castelo Jose.Castelo@ific.uv.es IFIC, University of Valencia. SPAIN DRAFT V1.0 previous to 5/6/2002 phone meeting

More information

LHCb Online System BEAUTY-2002

LHCb Online System BEAUTY-2002 BEAUTY-2002 8th International Conference on B-Physics at Hadron machines June 17-21 2002 antiago de Compostela, Galicia (pain ) Niko Neufeld, CERN EP (for the LHCb Online Team) 1 Mission The LHCb Online

More information

LHC Detector Upgrades

LHC Detector Upgrades Su Dong SLAC Summer Institute Aug/2/2012 1 LHC is exceeding expectations in many ways Design lumi 1x10 34 Design pileup ~24 Rapid increase in luminosity Even more dramatic pileup challenge Z->µµ event

More information

Proposal for Digitizer-to-SLINK Interface Card

Proposal for Digitizer-to-SLINK Interface Card Proposal for Digitizer-to-SLINK Interface Card J. Pilcher (for Haifeng Wu) 10-Sept-1999 Overview Located in drawers (1 interface board/drawer) Input from 8 digitizer boards (16 DMU chips) Output to ROD

More information

DTTF muon sorting: Wedge Sorter and Barrel Sorter

DTTF muon sorting: Wedge Sorter and Barrel Sorter DTTF muon sorting: Wedge Sorter and Barrel Sorter 1 BS, it sorts the 4 best tracks out of max 24 tracks coming from the 12 WS of barrel Vienna Bologna PHTF 72 x Vienna Bologna Padova 12 WS, each one sorts

More information

Construction of a compact DAQ-system using DSP-based VME modules

Construction of a compact DAQ-system using DSP-based VME modules Abstract We have developed a DSP based data-acquisition syustem(daq) system, based on the DSP. The system utilizes VME boards with one or two s. Our intension was to consturct a compact DAQ framework which

More information

Vertex Detector Electronics: ODE to ECS Interface

Vertex Detector Electronics: ODE to ECS Interface Vertex Detector Electronics: ODE to ECS Interface LHCb Technical Note Issue: 1 Revision: 0 Reference: LHCb 2000-012 VELO Created: 1 February 2000 Last modified: 20 March 2000 Prepared By: Yuri Ermoline

More information

The First Integration Test of the ATLAS End-cap Muon Level 1 Trigger System

The First Integration Test of the ATLAS End-cap Muon Level 1 Trigger System The First Integration Test of the ATLAS End-cap Muon Level 1 Trigger System K.Hasuko, H.Kano, Y.Matsumoto, Y.Nakamura, H.Sakamoto, T.Takemoto, C.Fukunaga, Member, IEEE,Y.Ishida, S.Komatsu, K.Tanaka, M.Ikeno,

More information

Readout-Nodes. Master-Node S-LINK. Crate Controller VME ROD. Read out data (PipelineBus) VME. PipelineBus Controller PPM VME. To DAQ (S-Link) PPM

Readout-Nodes. Master-Node S-LINK. Crate Controller VME ROD. Read out data (PipelineBus) VME. PipelineBus Controller PPM VME. To DAQ (S-Link) PPM THE READOUT BU OF THE ATLA LEVEL- CALORIMETER TRIGGER PRE-PROCEOR C. chumacher Institut fur Hochenergiephysik, Heidelberg, Germany (e-mail: schumacher@asic.uni-heidelberg.de) representing the ATLA level-

More information

BTeV at C0. p p. Tevatron CDF. BTeV - a hadron collider B-physics experiment. Fermi National Accelerator Laboratory. Michael Wang

BTeV at C0. p p. Tevatron CDF. BTeV - a hadron collider B-physics experiment. Fermi National Accelerator Laboratory. Michael Wang BTeV Trigger BEAUTY 2003 9 th International Conference on B-Physics at Hadron Machines Oct. 14-18, 2003, Carnegie Mellon University, Fermilab (for the BTeV collaboration) Fermi National Accelerator Laboratory

More information

Development of a New TDC LSI and a VME Module

Development of a New TDC LSI and a VME Module Presented at the 2001 IEEE Nuclear Science Symposium, San Diego, Nov. 3-10, 2001. To be published in IEEE Trans. Nucl. Sci. June, 2002. Development of a New TDC LSI and a VME Module Yasuo Arai, Member,

More information

Reading and References. Input / Output. Why Input and Output? A typical organization. CSE 410, Spring 2004 Computer Systems

Reading and References. Input / Output. Why Input and Output? A typical organization. CSE 410, Spring 2004 Computer Systems Reading and References Input / Output Reading» Section 8.1-8.5, Computer Organization and Design, Patterson and Hennessy CSE 410, Spring 2004 Computer Systems http://www.cs.washington.edu/education/courses/410/04sp/

More information

The First Integration Test of the ATLAS End-Cap Muon Level 1 Trigger System

The First Integration Test of the ATLAS End-Cap Muon Level 1 Trigger System 864 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003 The First Integration Test of the ATLAS End-Cap Muon Level 1 Trigger System K. Hasuko, H. Kano, Y. Matsumoto, Y. Nakamura, H. Sakamoto,

More information

The ATLAS Level-1 Muon to Central Trigger Processor Interface

The ATLAS Level-1 Muon to Central Trigger Processor Interface The ATLAS Level-1 Muon to Central Processor D. Berge a, N. Ellis a, P. Farthouat a, S. Haas a, P. Klofver a, A. Krasznahorkay a,b, A. Messina a, T. Pauly a, G. Schuler a, R. Spiwoks a, T. Wengler a,c a

More information

Development of a PCI Based Data Acquisition Platform for High Intensity Accelerator Experiments

Development of a PCI Based Data Acquisition Platform for High Intensity Accelerator Experiments Development of a PCI Based Data Acquisition Platform for High Intensity Accelerator Experiments T. Higuchi, H. Fujii, M. Ikeno, Y. Igarashi, E. Inoue, R. Itoh, H. Kodama, T. Murakami, M. Nakao, K. Nakayoshi,

More information

Prototyping NGC. First Light. PICNIC Array Image of ESO Messenger Front Page

Prototyping NGC. First Light. PICNIC Array Image of ESO Messenger Front Page Prototyping NGC First Light PICNIC Array Image of ESO Messenger Front Page Introduction and Key Points Constructed is a modular system with : A Back-End as 64 Bit PCI Master/Slave Interface A basic Front-end

More information

INT 1011 TCP Offload Engine (Full Offload)

INT 1011 TCP Offload Engine (Full Offload) INT 1011 TCP Offload Engine (Full Offload) Product brief, features and benefits summary Provides lowest Latency and highest bandwidth. Highly customizable hardware IP block. Easily portable to ASIC flow,

More information

SPECS : A SERIAL PROTOCOL FOR EXPERIMENT CONTROL SYSTEM IN LHCB.

SPECS : A SERIAL PROTOCOL FOR EXPERIMENT CONTROL SYSTEM IN LHCB. 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10-14 Oct 2005, WE1.5-4O (2005) : A SERIAL PROTOCOL FOR EXPERIMENT CONTROL SYSTEM IN LHCB. D.Breton, 1 D.Charlet,

More information

Using the FADC250 Module (V1C - 5/5/14)

Using the FADC250 Module (V1C - 5/5/14) Using the FADC250 Module (V1C - 5/5/14) 1.1 Controlling the Module Communication with the module is by standard VME bus protocols. All registers and memory locations are defined to be 4-byte entities.

More information

IBM Network Processor, Development Environment and LHCb Software

IBM Network Processor, Development Environment and LHCb Software IBM Network Processor, Development Environment and LHCb Software LHCb Readout Unit Internal Review July 24 th 2001 Niko Neufeld, CERN 1 Outline IBM NP4GS3 Architecture A Readout Unit based on the NP4GS3

More information

Muon Trigger Electronics in the Counting Room

Muon Trigger Electronics in the Counting Room Muon Trigger Electronics in the Counting Room Darin Acosta University of Florida April 2000 US CMS DOE/NSF Review: April 11-13, 2000 1 Outline Overview of the CSC trigger system Sector Receiver (WBS: 3.1.1.2)

More information

NEMbox / NIMbox Programmable NIM Module

NEMbox / NIMbox Programmable NIM Module NEMbox / NIMbox Programmable NIM Module Request Quote NEMbox / NIMbox Programmable NIM Module NEMbox (Nuclear Electronics Miniature Box) is a programmable Logic / DAQ module, powered either in a NIM crate

More information

WBS Trigger. Wesley H. Smith, U. Wisconsin CMS Trigger Project Manager. DOE/NSF Review June 5, 2002

WBS Trigger. Wesley H. Smith, U. Wisconsin CMS Trigger Project Manager. DOE/NSF Review June 5, 2002 WBS 3.1 - Trigger Wesley H. Smith, U. Wisconsin CMS Trigger Project Manager DOE/NSF Review June 5, 2002 This talk is available on: http://hep.wisc.edu/wsmith/cms/trig_lehman_plen02.pdf W. Smith, U. Wisconsin,

More information

A new approach to front-end electronics interfacing in the ATLAS experiment

A new approach to front-end electronics interfacing in the ATLAS experiment A new approach to front-end electronics interfacing in the ATLAS experiment Andrea Borga Nikhef, The Netherlands andrea.borga@nikhef.nl On behalf of the ATLAS FELIX Developer Team FELIX development team

More information

Overview of SVT DAQ Upgrades. Per Hansson Ryan Herbst Benjamin Reese

Overview of SVT DAQ Upgrades. Per Hansson Ryan Herbst Benjamin Reese Overview of SVT DAQ Upgrades Per Hansson Ryan Herbst Benjamin Reese 1 SVT DAQ Requirements and Constraints Basic requirements for the SVT DAQ Continuous readout of 23 040 channels Low noise (S/N>20 to

More information

PC-MIP Link Receiver Board Interface Description

PC-MIP Link Receiver Board Interface Description PC-MIP Link Receiver Board Interface Description E. Hazen, A. Chertovskikh Boston University Rev 2. August 24, 26 1 Description and Operation This document describes briefly the PC-MIP 3-channel Link Receiver

More information

CMX (Common Merger extension module) Y. Ermoline for CMX collaboration Preliminary Design Review, Stockholm, 29 June 2011

CMX (Common Merger extension module) Y. Ermoline for CMX collaboration Preliminary Design Review, Stockholm, 29 June 2011 (Common Merger extension module) Y. Ermoline for collaboration Preliminary Design Review, Stockholm, 29 June 2011 Outline Current L1 Calorimeter trigger system Possible improvement to maintain trigger

More information

Using Pulsar as an upgrade for L2 decision crate Ted Liu, FNAL (for CDF Pulsar group)

Using Pulsar as an upgrade for L2 decision crate Ted Liu, FNAL (for CDF Pulsar group) Using Pulsar as an upgrade for 2 decision crate ed iu, FNA (for CDF Pulsar group) For more information about Pulsar board: http://hep.uchicago.edu/~thliu/projects/pulsar/ Back to Basic: What does Global

More information

Alma2e PCI-to-VME Bridge: Using VME 2eSST Protocol

Alma2e PCI-to-VME Bridge: Using VME 2eSST Protocol Alma2e PCI-to-VME Bridge: Using VME 2eSST Protocol Serge Tissot September 25, 2002 Overview The ALMA2e is a new bus bridge designed by Thales Computers that interfaces between the PCI bus and the VMEbus.

More information

The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System

The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System The Track-Finding Processor for the Level- Trigger of the CMS Endcap Muon System D. Acosta, A. Madorsky (Madorsky@phys.ufl.edu), B. Scurlock, S.M. Wang University of Florida A. Atamanchuk, V. Golovtsov,

More information

Tech Note #51 Title: Setting BIOS settings in Orion Motion Controllers Date: April 24, 2003

Tech Note #51 Title: Setting BIOS settings in Orion Motion Controllers Date: April 24, 2003 19 Linden Park, Rochester, NY 14625 (585) 385-3520 Fax (585) 385-5999 Tech Note #51 Title: Setting BIOS settings in Orion Motion Controllers Date: April 24, 2003 Orion motion controllers use a PC motherboard

More information

GPS time synchronization system for T2K

GPS time synchronization system for T2K GPS time synchronization system for T2K Hans Berns and Jeff Wilkes University of Washington, Seattle SK Collaboration meeting Nov 8, 2007 11/8/07: GPS 1 11/8/07: GPS 2 T2K GPS Time Synchronization: overview

More information

CompuScope bit, 100 MHz digital input card for the PCI bus

CompuScope bit, 100 MHz digital input card for the PCI bus CompuScope 3200 32 bit, 100 MHz digital input card for the PCI bus Fast and versatile digital capture card with logic analyzer characteristics for electronic test applications. FEATURES Capture 32 bits

More information

The White Rabbit Project

The White Rabbit Project WR Project Status 1/ 1 The White Rabbit Project Technical introduction and status report T. W lostowski BE-CO Hardware and Timing section CERN November 11, 2010 WR Project Status 2/ 1 Introduction Outline

More information

Components for Integrating Device Controllers for Fast Orbit Feedback

Components for Integrating Device Controllers for Fast Orbit Feedback Components for Integrating Device Controllers for Fast Orbit Feedback Jukka Pietarinen EPICS Collaboration Meeting Knoxville October 2007 Topics PMC-SFP Module for Diamond Fast Orbit Feedback Future plans

More information

Introduction to TDC-II and Address Map

Introduction to TDC-II and Address Map Introduction to TDC-II and Address Map Mircea Bogdan (UC) MB, 9/8/04 1 TIME-TO-DIGITAL TIME-TO-DIGITAL CONVERSION: 1.2ns sampling rate serdes_in ~ 20 ns LVDS pulse in the simulation window of QuartusII

More information

The CMS Event Builder

The CMS Event Builder The CMS Event Builder Frans Meijers CERN/EP-CMD CMD on behalf of the CMS-DAQ group CHEP03, La Jolla, USA, March 24-28 28 2003 1. Introduction 2. Selected Results from the Technical Design Report R&D programme

More information

A Fast Ethernet Tester Using FPGAs and Handel-C

A Fast Ethernet Tester Using FPGAs and Handel-C A Fast Ethernet Tester Using FPGAs and Handel-C R. Beuran, R.W. Dobinson, S. Haas, M.J. LeVine, J. Lokier, B. Martin, C. Meirosu Copyright 2000 OPNET Technologies, Inc. The Large Hadron Collider at CERN

More information

Ethernet Networks for the ATLAS Data Collection System: Emulation and Testing

Ethernet Networks for the ATLAS Data Collection System: Emulation and Testing Ethernet Networks for the ATLAS Data Collection System: Emulation and Testing F. Barnes, R. Beuran, R. W. Dobinson, M. J. LeVine, Member, IEEE, B. Martin, J. Lokier, and C. Meirosu Abstract-- This paper

More information

6 February 1999 R. D. Martin, Level 2 Review 2

6 February 1999 R. D. Martin, Level 2 Review 2 Robert D. Martin University of Illinois at Chicago 6 February 1999 Fast CPU Event processing within 100 µs VME Interface Communication with TCC Upload of Events to L3 via VBD VME interrupts enabled MBus

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

The new detector readout system for the ATLAS experiment

The new detector readout system for the ATLAS experiment LInk exange The new detector readout system for the ATLAS experiment Soo Ryu Argonne National Laboratory On behalf of the ATLAS Collaboration ATLAS DAQ for LHC Run2 (2015-2018) 40MHz L1 trigger 100kHz

More information

System-on-a-Programmable-Chip (SOPC) Development Board

System-on-a-Programmable-Chip (SOPC) Development Board System-on-a-Programmable-Chip (SOPC) Development Board Solution Brief 47 March 2000, ver. 1 Target Applications: Embedded microprocessor-based solutions Family: APEX TM 20K Ordering Code: SOPC-BOARD/A4E

More information

INT G bit TCP Offload Engine SOC

INT G bit TCP Offload Engine SOC INT 10011 10 G bit TCP Offload Engine SOC Product brief, features and benefits summary: Highly customizable hardware IP block. Easily portable to ASIC flow, Xilinx/Altera FPGAs or Structured ASIC flow.

More information

Electronics, Trigger and Data Acquisition part 3

Electronics, Trigger and Data Acquisition part 3 Electronics, Trigger and Data Acquisition part 3 Summer Student Programme 2016, CERN Roberto Ferrari Instituto Nazionale di Fisica Nucleare roberto.ferrari@pv.infn.it Event Building 2 Two Philosophies

More information

Engineering Challenges in Developing Large Flash Memory System

Engineering Challenges in Developing Large Flash Memory System Engineering Challenges in Developing Large Flash Memory System August 2010 Presented by Kumar Venkatramani Introduction Scalable Modular Case Study of System Design Scalable and Modular Design Image Storage

More information

Copyright 2014 Shaw-Pin Chen

Copyright 2014 Shaw-Pin Chen Copyright 2014 Shaw-Pin Chen Readout Driver Firmware Development for the ATLAS Insertable B-Layer Shaw-Pin Chen A thesis submitted in partial fulfillment of the requirements for the degree of Master of

More information

ATM-DB Firmware Specification E. Hazen Updated January 4, 2007

ATM-DB Firmware Specification E. Hazen Updated January 4, 2007 ATM-DB Firmware Specification E. Hazen Updated January 4, 2007 This document describes the firmware operation of the Ethernet Daughterboard for the ATM for Super- K (ATM-DB). The daughterboard is controlled

More information

I/O Choices for the ATLAS. Insertable B Layer (IBL) Abstract. Contact Person: A. Grillo

I/O Choices for the ATLAS. Insertable B Layer (IBL) Abstract. Contact Person: A. Grillo I/O Choices for the ATLAS Insertable B Layer (IBL) ATLAS Upgrade Document No: Institute Document No. Created: 14/12/2008 Page: 1 of 2 Modified: 8/01/2009 Rev. No.: 1.00 Abstract The ATLAS Pixel System

More information

Scintillator-strip Plane Electronics

Scintillator-strip Plane Electronics Scintillator-strip Plane Electronics Mani Tripathi Britt Holbrook (Engineer) Juan Lizarazo (Grad student) Peter Marleau (Grad student) Tiffany Landry (Junior Specialist) Cherie Williams (Undergrad student)

More information

MSU/NSCL May CoBo Module. Specifications Version 1.0. Nathan USHER

MSU/NSCL May CoBo Module. Specifications Version 1.0. Nathan USHER MSU/NSCL May 2009 CoBo Module Specifications Version 1.0 Nathan USHER 1. Introduction This document specifies the design of the CoBo module of GET. The primary task of the CoBo is to readout the ASICs

More information

TDC Readout Board, TRBv2. Outline. Motivation / Aim TRB V2. Problems, problems, problems... and the solution :-) Summary. projects with TRBv2 platform

TDC Readout Board, TRBv2. Outline. Motivation / Aim TRB V2. Problems, problems, problems... and the solution :-) Summary. projects with TRBv2 platform TDC Readout Board, TRBv2 Outline Motivation / Aim TRB V2 projects with TRBv2 platform Problems, problems, problems... and the solution :-) Summary 1 Motivation / Aim Main Problem: The limitation of the

More information

Front End Electronics. Level 1 Trigger

Front End Electronics. Level 1 Trigger 0. CMS HCAL rigger and Readout Electronics Project he overall technical coordination for the HCAL trigger and readout electronics (ri- DAS) project will be located in the Maryland HEP group, led by Drew

More information