The Operating System (OS) MicroComputer Engineering OperatingSystem slide 1!

Size: px
Start display at page:

Download "The Operating System (OS) MicroComputer Engineering OperatingSystem slide 1!"

Transcription

1 The Operating System (OS) MicroComputer Engineering OperatingSystem slide 1!

2 The Operating System (OS) P1:! Editor! P2: Compiler! P3:! Quake! Arena! Operating System! MIPS! At any one time the processor (MIPS) is only excecuting one program (process).! MicroComputer Engineering OperatingSystem slide 2!

3 The Operating System (OS) P1:! Editor! P2: Compiler! P3:! Quake! Arena! Operating System! MIPS! At any one time the processor (MIPS) is only excecuting one program (process).! MicroComputer Engineering OperatingSystem slide 3!

4 The Operating System (OS) P1:! Editor! P2: Compiler! P3:! Quake! Arena! Operating System! MIPS! At any one time the processor (MIPS) is only excecuting one program (process).! MicroComputer Engineering OperatingSystem slide 4!

5 The Operating System (OS) P1:! Editor! P2: Compiler! P3:! Quake! Arena! Operating System! MIPS! At any one time the processor (MIPS) is only excecuting one program (process).! MicroComputer Engineering OperatingSystem slide 5!

6 The Operating System (OS) P1:! Editor! P2: Compiler! P3:! Quake! Arena! Operating System! MIPS! At any one time the processor (MIPS) is only excecuting one program (process).! MicroComputer Engineering OperatingSystem slide 6!

7 Our Assembler User!.text!.data! Kernel!.ktext!.kdata! MicroComputer Engineering OperatingSystem slide 7!

8 The Hardware User!.text!.data! ERROR!! Kernel!.ktext!.kdata! OK! MicroComputer Engineering OperatingSystem slide 8!

9 How does the User program pass control to the Operating System? Take control on ERROR! Pass control explicitly! MicroComputer Engineering OperatingSystem slide 9!

10 ERROR Ex, Arithmetical Overflow! li $4 0x neg $4 $4 (sub $4 $0 $4) 0x x x Sign differs! Same Sign! ERROR! MicroComputer Engineering OperatingSystem slide 10!

11 Signed/Unsigned Arithmetics The only difference is that! Unsigned never causes ERROR! Signed causes ERROR on Overflow etc.! Signed!! ADD! SUB! ADDI!..!! Unsigned!! ADDU! SUBU! ADDIU!..!! MicroComputer Engineering OperatingSystem slide 11!

12 Memory Error Instruction Memory = Bad PC! Data Alignment Error! Access Protected Memory from User mode! Nonexistent Memory! (Page fault Chapter 7)! MicroComputer Engineering OperatingSystem slide 12!

13 Do not confuse! A Memory that tells the pipeline to Wait! relate to cache miss! A Memory Error or Page Fault! relate to TLB miss, more about that later! MicroComputer Engineering OperatingSystem slide 13!

14 The Consequence A Memory that tells the pipeline to Wait! Pipeline Stall! A Memory Error or Page Fault! Exception! MicroComputer Engineering OperatingSystem slide 14!

15 Pass Control Explicitly The User wants some service from the Operating System! File I/O! Graphics! Sound! Allocate Memory! Terminate Program (no HALT instruction in real MIPS)! SYSCALL (causes an exception)! MicroComputer Engineering OperatingSystem slide 15!

16 How to choose service: Is there different SYSCALLs?! NO! Only one, use a register ($a0) to choose! Use other registers ($a1,...) as parameters! Use $v0 for result ori $a1 $r0 A ; Char A ori $a0 $r0 0x00 ; Write Char syscall ori $a0 $r0 0x01 ; Read Char syscall or $a1 $r0 $v0 ; Move result $v0->$a1 ori $a0 $r0 0x00 ; Echo Char syscall MicroComputer Engineering OperatingSystem slide 16!

17 Other ways for the Operating System to take control? External Interrupts, (not caused by User program)! Timers! Harddisk! Graphics! Sound! Keyboard, Mouse, other perhipals! MicroComputer Engineering OperatingSystem slide 17!

18 Coprocessor CP0 8 Bad Memory Address! 12 Status Register! 13 Cause Register! 14 Exception Address (EPC)! MicroComputer Engineering OperatingSystem slide 18!

19 Status Register CP0 ($12) Mode Stack! External Interrupt enable/disable! MicroComputer Engineering OperatingSystem slide 19!

20 Mode Stack OLD! PREVIOUS! CURRENT! 5! 0! KU IE! KU IE! KU IE! KU!!! IE! 0 Kernel Mode! 1 User Mode!! 0 External Interrupt Disable! 1 External Interrupt Enable! MicroComputer Engineering OperatingSystem slide 20!

21 Exception / Interrupt Occurs OLD! PREVIOUS! CURRENT! KU IE! KU IE! KU IE! KU IE! KU IE! 0 0! KU!!! IE! 0 Kernel Mode! 1 User Mode!! 0 External Interrupt Disable! 1 External Interrupt Enable! MicroComputer Engineering OperatingSystem slide 21!

22 RFE Instruction (priviliged) OLD! PREVIOUS! CURRENT! KU IE! KU IE! KU IE!??! KU IE! KU IE! We restore the PREVIOUS (KU,IE) into CURRENT! MicroComputer Engineering OperatingSystem slide 22!

23 External Interrupts Bit 0, (Current Interrupt Enable)! All External Interrupts Enable/ Disable! Bit , (individual interrupt enable)! 15! 10! 0! INT 5! INT 4! INT 3! INT 2! INT 1! INT 0! Current! IE!...! MicroComputer Engineering OperatingSystem slide 23!

24 Enable External Interrupt 2 Bit 0 = 1, (External Interrupt Enabled)! Bit 12 = 1, Interrupt 2 Enabled! 15! 10! 0! INT 5! INT 4! INT 3! INT 2! INT 1! INT 0! 0! 0! 0! 1! 0! 0!...! Current! IE = 1! MicroComputer Engineering OperatingSystem slide 24!

25 Cause Register (CP0 $13) Bit 5..2, Exception Cause Code! Bit , Interrupt Pending! Bit 31, Exception Occur In Branch Slot! 31! 15! 10! 5! 2! BS! INT 5! INT 4! INT 3! INT 2! INT 1! INT 0! Ex 3! Ex 2! Ex 1! Ex 0!...!...!...! Pending Interrupts! Exception Cause Code! see LSI Logic User s Manual! MicroComputer Engineering OperatingSystem slide 25!

26 Check if Interrupt 2 Pending Mask with bit 12! 15! 10! CP0 $13! INT 5! INT 4! INT 3! INT 2! INT 1! INT 0! AND! 0! 0! 0! 1! 0! 0! 0! 0! 0! INT 2! 0! 0! MicroComputer Engineering OperatingSystem slide 26!

27 Resume User Program! CP0 $14 Holds the Exception Address! (Addr to instruction in EX stage)! mfc0 $k0 $14 ; resume address jr $k0 ; $k0 kernel reg rfe ; delayed branch MicroComputer Engineering OperatingSystem slide 27!

28 Shared Stack Assume that the User program uses the stack:! Can the Kernel use the same stack ($sp)?!! Yes, but remember never to use memory below $sp, it will be destroyed (overwritten)!!! $sp! User Data! User Data! $sp! Kernel Data! Kernel Data! User Data! User Data! MicroComputer Engineering OperatingSystem slide 28!

Exceptions and Interrupts

Exceptions and Interrupts Exceptions and Interrupts Unexpected events (asynchronous interrupt) requiring change in flow of control (different ISAs use the terms differently) exception Arises within the CPU e.g., undefined opcode,

More information

CPS104 Computer Organization and Programming Lecture 17: Interrupts and Exceptions. Interrupts Exceptions and Traps. Visualizing an Interrupt

CPS104 Computer Organization and Programming Lecture 17: Interrupts and Exceptions. Interrupts Exceptions and Traps. Visualizing an Interrupt CPS104 Computer Organization and Programming Lecture 17: Interrupts and Exceptions Robert Wagner cps 104 Int.1 RW Fall 2000 Interrupts Exceptions and Traps Interrupts, Exceptions and Traps are asynchronous

More information

EE 457 Unit 8. Exceptions What Happens When Things Go Wrong

EE 457 Unit 8. Exceptions What Happens When Things Go Wrong 1 EE 457 Unit 8 Exceptions What Happens When Things Go Wrong 2 What are Exceptions? Exceptions are rare events triggered by the hardware and forcing the processor to execute a software handler HW Interrupts

More information

What are Exceptions? EE 457 Unit 8. Exception Processing. Exception Examples 1. Exceptions What Happens When Things Go Wrong

What are Exceptions? EE 457 Unit 8. Exception Processing. Exception Examples 1. Exceptions What Happens When Things Go Wrong 8. 8.2 What are Exceptions? EE 457 Unit 8 Exceptions What Happens When Things Go Wrong Exceptions are rare events triggered by the hardware and forcing the processor to execute a software handler Similar

More information

MIPS Programming. A basic rule is: try to be mechanical (that is, don't be "tricky") when you translate high-level code into assembler code.

MIPS Programming. A basic rule is: try to be mechanical (that is, don't be tricky) when you translate high-level code into assembler code. MIPS Programming This is your crash course in assembler programming; you will teach yourself how to program in assembler for the MIPS processor. You will learn how to use the instruction set summary to

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

Inf2C - Computer Systems Lecture 16 Exceptions and Processor Management

Inf2C - Computer Systems Lecture 16 Exceptions and Processor Management Inf2C - Computer Systems Lecture 16 Exceptions and Processor Management Boris Grot School of Informatics University of Edinburgh Class party! When: Friday, Dec 1 @ 8pm Where: Bar 50 on Cowgate Inf2C Computer

More information

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei Computer Architecture Instruction Set Architecture part 2 Mehran Rezaei Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a MIPS Interpreter

More information

Run time environment of a MIPS program

Run time environment of a MIPS program Run time environment of a MIPS program Stack pointer Frame pointer Temporary local variables Return address Saved argument registers beyond a0-a3 Low address Growth of stack High address A translation

More information

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local

More information

Page 1, 5/4/99 8:22 PM

Page 1, 5/4/99 8:22 PM Outline Review Pipelining CS61C Review of Cache/VM/TLB Lecture 27 May 5, 1999 (Cinco de Mayo) Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html Review Interrupt/Polling

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Computer Organization Chapter 3. Arithmetic for Computers Chansu Yu Table of Contents Ch.1 Introduction Ch. 2 Instruction: Machine Language Ch. 3-4 CPU Implementation Ch. 5 Cache and VM Ch. 6-7

More information

Chapter Two MIPS Arithmetic

Chapter Two MIPS Arithmetic Chapter Two MIPS Arithmetic Computer Organization Review Binary Representation Used for all data and instructions Fixed size values: 8, 16, 32, 64 Hexadecimal Sign extension Base and virtual machines.

More information

Learning Outcomes. A high-level understanding of System Calls Mostly from the user s perspective From textbook (section 1.6)

Learning Outcomes. A high-level understanding of System Calls Mostly from the user s perspective From textbook (section 1.6) System Calls 1 Learning Outcomes A high-level understanding of System Calls Mostly from the user s perspective From textbook (section 1.6) Exposure architectural details of the MIPS R3000 Detailed understanding

More information

Instruction Set Architecture of MIPS Processor

Instruction Set Architecture of MIPS Processor CSE 3421/5421: Introduction to Computer Architecture Instruction Set Architecture of MIPS Processor Presentation B Study: 2.1 2.3, 2.4 2.7, 2.10 and Handout MIPS Instructions: 32-bit Core Subset Read:

More information

Traps, Exceptions, System Calls, & Privileged Mode

Traps, Exceptions, System Calls, & Privileged Mode Traps, Exceptions, System Calls, & Privileged Mode Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University P&H Chapter 4.9, pages 509 515, appendix B.7 Operating Systems 2 Control Transfers

More information

Learning Outcomes. Understanding of the existence of compiler function calling conventions Including details of the MIPS C compiler calling convention

Learning Outcomes. Understanding of the existence of compiler function calling conventions Including details of the MIPS C compiler calling convention System Calls 1 Learning Outcomes Exposure architectural details of the MIPS R3000 Detailed understanding of the of exception handling mechanism From Hardware Guide on class web site Understanding of the

More information

EE 109 Unit 17 - Exceptions

EE 109 Unit 17 - Exceptions EE 109 Unit 17 - Exceptions 1 2 What are Exceptions? Any event that causes a break in normal execution Error Conditions Invalid address, Arithmetic/FP overflow/error Hardware Interrupts / Events Handling

More information

Exam in Computer Engineering

Exam in Computer Engineering Exam in Computer Engineering Kurskod D0013E/SMD137/SMD082/SMD066 Tentamensdatum 2010-10-29 Skrivtid 14.00-18.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Andrey Kruglyak Tel

More information

Chapter loop: lw $v1, 0($a0) addi $v0, $v0, 1 sw $v1, 0($a1) addi $a0, $a0, 1 addi $a1, $a1, 1 bne $v1, $zero, loop

Chapter loop: lw $v1, 0($a0) addi $v0, $v0, 1 sw $v1, 0($a1) addi $a0, $a0, 1 addi $a1, $a1, 1 bne $v1, $zero, loop Chapter 3 3.7 loop: lw $v1, 0($a0) addi $v0, $v0, 1 sw $v1, 0($a1) addi $a0, $a0, 1 addi $a1, $a1, 1 bne $v1, $zero, loop Instructions Format OP rs rt Imm lw $v1, 0($a0) I 35 4 3 0 addi $v0, $v0, 1 I 8

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides were originally created by Deniz ALTINBUKEN. P&H Chapter 4.9, pages 445 452, appendix A.7 Manages all of the software and hardware on the

More information

MIPS Functions and the Runtime Stack

MIPS Functions and the Runtime Stack MIPS Functions and the Runtime Stack COE 301 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline

More information

Lecture 11: Interrupt and Exception. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 11: Interrupt and Exception. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 11: Interrupt and Exception James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L11 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping first peek outside

More information

MIPS R2000 Assembly Language (Procedure Call, Interrupt, IO, Syscall) CS 230

MIPS R2000 Assembly Language (Procedure Call, Interrupt, IO, Syscall) CS 230 MIPS R2000 Assembly Language (Procedure Call, Interrupt, IO, Syscall) CS 230 이준원 1 Procedure Call Why do we need it? structured programming reuse frequently used routine Who takes care of it? compiler

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Instruction Formats July 2, 2014 Review New registers: $a0-$a3, $v0-$v1, $ra, $sp New instructions: slt, la, li, jal, jr Saved registers: $s0-$s7, $sp, $ra Volatile registers: $t0-$t9, $v0-$v1, $a0-$a3

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides were originally created by Deniz ALTINBUKEN. P&H Chapter 4.9, pages 445 452, appendix A.7 Manages all of the software and hardware on the

More information

Inequalities in MIPS (2/4) Inequalities in MIPS (1/4) Inequalities in MIPS (4/4) Inequalities in MIPS (3/4) UCB CS61C : Machine Structures

Inequalities in MIPS (2/4) Inequalities in MIPS (1/4) Inequalities in MIPS (4/4) Inequalities in MIPS (3/4) UCB CS61C : Machine Structures CS61C L8 Introduction to MIPS : Decisions II & Procedures I (1) Instructor Paul Pearce inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures http://www.xkcd.org/627/ Lecture 8 Decisions & and Introduction

More information

Learning Outcomes. System Calls. System Calls. The System Call Interface: A Brief Overview. System Calls. The Structure of a Computer System

Learning Outcomes. System Calls. System Calls. The System Call Interface: A Brief Overview. System Calls. The Structure of a Computer System Learning Outcomes System Calls Interface and Implementation A high-level understanding of System Call interface Mostly from the user s perspective From textbook (section.6) Understanding of how the application-kernel

More information

System Calls. Interface and Implementation

System Calls. Interface and Implementation System Calls Interface and Implementation 1 Learning Outcomes A high-level understanding of System Call interface Mostly from the user s perspective From textbook (section 1.6) Understanding of how the

More information

LECTURE 10. Pipelining: Advanced ILP

LECTURE 10. Pipelining: Advanced ILP LECTURE 10 Pipelining: Advanced ILP EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls, returns) that changes the normal flow of instruction

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

Review 1/2 MIPS assembly language instructions mapped to numbers in 3 formats. CS61C Negative Numbers and Logical Operations R I J.

Review 1/2 MIPS assembly language instructions mapped to numbers in 3 formats. CS61C Negative Numbers and Logical Operations R I J. CS61C Negative Numbers and Logical Operations cs 61C L7 Number.1 Lecture 7 February 10, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html Review 1/2

More information

Assembly Language Programming

Assembly Language Programming Assembly Language Programming Remember the programmer shown in our first lecture? Originally, computers were programmed manually. After a while, scientists began to consider ways to accelerate and facilitate

More information

Learning Outcomes. Understanding of the existence of compiler function calling conventions Including details of the MIPS C compiler calling convention

Learning Outcomes. Understanding of the existence of compiler function calling conventions Including details of the MIPS C compiler calling convention System Calls 1 Learning Outcomes A high-level understanding of System Calls Mostly from the user s perspective From textbook (section 1.6) Exposure architectural details of the MIPS R3000 Detailed understanding

More information

MIPS Assembly Programming

MIPS Assembly Programming COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

More information

ECE 15B Computer Organization Spring 2010

ECE 15B Computer Organization Spring 2010 ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 7: Procedures I Partially adapted from Computer Organization and Design, 4 th edition, Patterson and Hennessy, and classes taught by and

More information

What is a Process? Answer 1: a process is an abstraction of a program in execution

What is a Process? Answer 1: a process is an abstraction of a program in execution Processes and the Kernel 1 What is a Process? Answer 1: a process is an abstraction of a program in execution Answer 2: a process consists of an address space, which represents the memory that holds the

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0-$s7,$t0-$t9, $0

More information

The Operating System and the Kernel

The Operating System and the Kernel The Kernel and System Calls 1 The Operating System and the Kernel We will use the following terminology: kernel: The operating system kernel is the part of the operating system that responds to system

More information

Computer Architecture. The Language of the Machine

Computer Architecture. The Language of the Machine Computer Architecture The Language of the Machine Instruction Sets Basic ISA Classes, Addressing, Format Administrative Matters Operations, Branching, Calling conventions Break Organization All computers

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

CS152 Computer Architecture and Engineering

CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Electrical Engineering and Computer Science, Computer Science Division Fall 2001 CS152 Computer Architecture and Engineering Homework #2 Solutions

More information

System Calls. COMP s1

System Calls. COMP s1 System Calls 1 Contents A high-level view of System Calls Mostly from the user s perspective From textbook (section 1.6) A look at the R3000 A brief overview Mostly focused on exception handling From Hardware

More information

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 11 Introduction to MIPS Procedures I Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia CS61C L11 Introduction to MIPS: Procedures I

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Deniz Altinbuken, Professors Weatherspoon, Bala, Bracy, and Sirer. C practice

More information

Interrupts Peter Rounce - room 6.18

Interrupts Peter Rounce - room 6.18 Interrupts Peter Rounce - room 6.18 P.Rounce@cs.ucl.ac.uk 20/11/2006 1001 Interrupts 1 INTERRUPTS An interrupt is a signal to the CPU from hardware external to the CPU that indicates than some event has

More information

Lecture 7: Procedures

Lecture 7: Procedures Lecture 7: Procedures CSE 30: Computer Organization and Systems Programming Winter 2010 Rajesh Gupta / Ryan Kastner Dept. of Computer Science and Engineering University of California, San Diego Outline

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

INSTRUCTION SET COMPARISONS

INSTRUCTION SET COMPARISONS INSTRUCTION SET COMPARISONS MIPS SPARC MOTOROLA REGISTERS: INTEGER 32 FIXED WINDOWS 32 FIXED FP SEPARATE SEPARATE SHARED BRANCHES: CONDITION CODES NO YES NO COMPARE & BR. YES NO YES A=B COMP. & BR. YES

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

CS61c MIDTERM EXAM: 3/17/99

CS61c MIDTERM EXAM: 3/17/99 CS61c MIDTERM EXAM: 3/17/99 D. A. Patterson Last name Student ID number First name Login: cs61c- Please circle the last two letters of your login name. a b c d e f g h i j k l m n o p q r s t u v w x y

More information

CS 316: Procedure Calls/Pipelining

CS 316: Procedure Calls/Pipelining CS 316: Procedure Calls/Pipelining Kavita Bala Fall 2007 Computer Science Cornell University Announcements PA 3 IS out today Lectures on it this Fri and next Tue/Thu Due on the Friday after Fall break

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

Virtual Machines & the OS Kernel

Virtual Machines & the OS Kernel Virtual Machines & the OS Kernel Not in the book! L24 Virtual Machines & the OS Kernel 1 Power of Contexts: Sharing a CPU Virtual Memory 1 Physical Memory Virtual Memory 2 Every application can be written

More information

Lec 22: Interrupts. Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University. Announcements

Lec 22: Interrupts. Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University. Announcements Lec 22: Interrupts Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University HW 3 HW4: due this Friday Announcements PA 3 out Nov 14 th Due Nov 25 th (feel free to turn it in early) Demos and

More information

EE 109 Unit 15 Subroutines and Stacks

EE 109 Unit 15 Subroutines and Stacks 1 EE 109 Unit 15 Subroutines and Stacks 2 Program Counter and GPRs (especially $sp, $ra, and $fp) REVIEW OF RELEVANT CONCEPTS 3 Review of Program Counter PC is used to fetch an instruction PC contains

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the machine. Reduced number of cycles needed per instruction.

More information

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook)

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook) Lecture 2 Instructions: Language of the Computer (Chapter 2 of the textbook) Instructions: tell computers what to do Chapter 2 Instructions: Language of the Computer 2 Introduction Chapter 2.1 Chapter

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support Components of an ISA EE 357 Unit 11 MIPS ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

Instructions: Language of the Computer

Instructions: Language of the Computer Instructions: Language of the Computer Tuesday 22 September 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary Previous Class

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #8: MIPS Procedures 2005-06-30 CS 61C L08 MIPS Procedures (1) Andy Carle Topic Outline Functions More Logical Operations CS 61C L08

More information

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay

Lecture 4: Mechanism of process execution. Mythili Vutukuru IIT Bombay Lecture 4: Mechanism of process execution Mythili Vutukuru IIT Bombay Low-level mechanisms How does the OS run a process? How does it handle a system call? How does it context switch from one process to

More information

Mark Redekopp, All rights reserved. EE 357 Unit 11 MIPS ISA

Mark Redekopp, All rights reserved. EE 357 Unit 11 MIPS ISA EE 357 Unit 11 MIPS ISA Components of an ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

Lec 10: Assembler. Announcements

Lec 10: Assembler. Announcements Lec 10: Assembler Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University Announcements HW 2 is out Due Wed after Fall Break Robot-wide paths PA 1 is due next Wed Don t use incrementor 4 times

More information

a) Do exercise (5th Edition Patterson & Hennessy). Note: Branches are calculated in the execution stage.

a) Do exercise (5th Edition Patterson & Hennessy). Note: Branches are calculated in the execution stage. CS3410 Spring 2015 Problem Set 2 (version 3) Due Saturday, April 25, 11:59 PM (Due date for Problem-5 is April 20, 11:59 PM) NetID: Name: 200 points total. Start early! This is a big problem set. Problem

More information

COMP I/O, interrupts, exceptions April 3, 2016

COMP I/O, interrupts, exceptions April 3, 2016 In this lecture, I will elaborate on some of the details of the past few weeks, and attempt to pull some threads together. System Bus and Memory (cache, RAM, HDD) We first return to an topic we discussed

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

Quiz for Chapter 2 Instructions: Language of the Computer3.10

Quiz for Chapter 2 Instructions: Language of the Computer3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: 1. [5 points] Prior to the early 1980s, machines were built

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #25: I/O 2005-08-03 Andy Carle CS61C L25 I/O (1) Review Virtual memory to Physical Memory Translation too slow? Add a cache of Virtual

More information

Computer Systems and Architecture

Computer Systems and Architecture Computer Systems and Architecture Stephen Pauwels MIPS: Introduction Academic Year 2018-2019 Outline MIPS Registers and Memory Language Constructs Exercises Assembly Language Very closely related to machine

More information

HW2 solutions You did this for Lab sbn temp, temp,.+1 # temp = 0; sbn temp, b,.+1 # temp = -b; sbn a, temp,.+1 # a = a (-b) = a + b;

HW2 solutions You did this for Lab sbn temp, temp,.+1 # temp = 0; sbn temp, b,.+1 # temp = -b; sbn a, temp,.+1 # a = a (-b) = a + b; HW2 solutions 3.10 Pseuodinstructions What is accomplished Minimum sequence of Mips Move $t5, $t3 $t5=$t3 Add $t5, $t3, $0 Clear $t5 $t5=0 Xor $t5, $t5, $t5 Li $t5, small $t5=small Addi $t5, $0, small

More information

This section covers the MIPS instruction set.

This section covers the MIPS instruction set. This section covers the MIPS instruction set. 1 + I am going to break down the instructions into two types. + a machine instruction which is directly defined in the MIPS architecture and has a one to one

More information

Computer System Overview OPERATING SYSTEM TOP-LEVEL COMPONENTS. Simplified view: Operating Systems. Slide 1. Slide /S2. Slide 2.

Computer System Overview OPERATING SYSTEM TOP-LEVEL COMPONENTS. Simplified view: Operating Systems. Slide 1. Slide /S2. Slide 2. BASIC ELEMENTS Simplified view: Processor Slide 1 Computer System Overview Operating Systems Slide 3 Main Memory referred to as real memory or primary memory volatile modules 2004/S2 secondary memory devices

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 8 December 2014

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 8 December 2014 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

MIPS History. ISA MIPS Registers

MIPS History. ISA MIPS Registers MIPS History MIPS is a computer family R2000/R3000 (32-bit) R4000/4400 (64-bit) R10000 (64-bit) and others MIPS originated as a Stanford research project under the direction of John Hennessy Microprocessor

More information

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes Chapter 2 Instructions: Language of the Computer Adapted by Paulo Lopes Instruction Set The repertoire of instructions of a computer Different computers have different instruction sets But with many aspects

More information

Virtual Machines & the OS Kernel

Virtual Machines & the OS Kernel Comp 120, Spring 05 4/21 Lecture page 1 Virtual Machines & the OS Kernel (not in the book) L23 Virtual Machines & the OS Kernel 1 Power of Contexts: Sharing a CPU Virtual Memory 1 Physical Memory Virtual

More information

Anne Bracy CS 3410 Computer Science Cornell University. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Anne Bracy CS 3410 Computer Science Cornell University. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Anne Bracy CS 3410 Computer Science Cornell University [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Understanding the basics of a processor We now have the technology to build a CPU! Putting it all

More information

Procedure Calling. Procedure Calling. Register Usage. 25 September CSE2021 Computer Organization

Procedure Calling. Procedure Calling. Register Usage. 25 September CSE2021 Computer Organization CSE2021 Computer Organization Chapter 2: Part 2 Procedure Calling Procedure (function) performs a specific task and return results to caller. Supporting Procedures Procedure Calling Calling program place

More information

Initial Representation Finite State Diagram. Logic Representation Logic Equations

Initial Representation Finite State Diagram. Logic Representation Logic Equations Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information

MIPS Hello World. MIPS Assembly 1. # PROGRAM: Hello, World! # Data declaration section. out_string:.asciiz "\nhello, World!\n"

MIPS Hello World. MIPS Assembly 1. # PROGRAM: Hello, World! # Data declaration section. out_string:.asciiz \nhello, World!\n MIPS Hello World MIPS Assembly 1 # PROGRAM: Hello, World!.data # Data declaration section out_string:.asciiz "\nhello, World!\n".text # Assembly language instructions main: # Start of code section li $v0,

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

What is a Process? Answer 1: a process is an abstraction of a program in execution

What is a Process? Answer 1: a process is an abstraction of a program in execution Processes and the Kernel 1 What is a Process? Answer 1: a process is an abstraction of a program in execution Answer 2: a process consists of an address space, which represents the memory that holds the

More information

Kernel Registers 0 1. Global Data Pointer. Stack Pointer. Frame Pointer. Return Address.

Kernel Registers 0 1. Global Data Pointer. Stack Pointer. Frame Pointer. Return Address. The MIPS Register Set The MIPS R2000 CPU has 32 registers. 31 of these are general-purpose registers that can be used in any of the instructions. The last one, denoted register zero, is defined to contain

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #9: MIPS Procedures 2006-07-11 CS 61C L09 MIPS Procedures (1) Andy Carle C functions main() { int i,j,k,m;... i = mult(j,k);... m =

More information

Instruction Set Architectures (4)

Instruction Set Architectures (4) Computer Architecture Week 06 Instruction Set Architectures (4) College of Information Science and Engineering Ritsumeikan University subroutines functions, procedures remember the next instruction s address

More information

There are different characteristics for exceptions. They are as follows:

There are different characteristics for exceptions. They are as follows: e-pg PATHSHALA- Computer Science Computer Architecture Module 15 Exception handling and floating point pipelines The objectives of this module are to discuss about exceptions and look at how the MIPS architecture

More information

Review: Program Execution. Memory program code program data program stack containing procedure activation records

Review: Program Execution. Memory program code program data program stack containing procedure activation records Threads and Concurrency 1 Review: Program Execution Registers program counter, stack pointer,... Memory program code program data program stack containing procedure activation records CPU fetches and executes

More information

Review: Program Execution. Memory program code program data program stack containing procedure activiation records

Review: Program Execution. Memory program code program data program stack containing procedure activiation records Threads and Concurrency 1 Review: Program Execution Registers program counter, stack pointer,... Memory program code program data program stack containing procedure activiation records CPU fetches and

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed.

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed. Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 Introduction to MIPS Procedures I Sr Lecturer SOE Dan Garcia 2014-02-14 If cars broadcast their speeds to other vehicles (and the

More information

ICS DEPARTMENT ICS 233 COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE. Midterm Exam. First Semester (141) Time: 1:00-3:30 PM. Student Name : _KEY

ICS DEPARTMENT ICS 233 COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE. Midterm Exam. First Semester (141) Time: 1:00-3:30 PM. Student Name : _KEY Page 1 of 14 Nov. 22, 2014 ICS DEPARTMENT ICS 233 COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE Midterm Exam First Semester (141) Time: 1:00-3:30 PM Student Name : _KEY Student ID. : Question Max Points Score

More information

Computer Architecture Experiment

Computer Architecture Experiment Computer Architecture Experiment Jiang Xiaohong College of Computer Science & Engineering Zhejiang University Architecture Lab_jxh 1 Topics 0 Basic Knowledge 1 Warm up 2 simple 5-stage of pipeline CPU

More information

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 313 Computer Organization FINAL EXAM December 13, 2000

ECE 313 Computer Organization FINAL EXAM December 13, 2000 This exam is open book and open notes. You have until 11:00AM. Credit for problems requiring calculation will be given only if you show your work. 1. Floating Point Representation / MIPS Assembly Language

More information

Virtual Machines & the OS Kernel

Virtual Machines & the OS Kernel Virtual Machines & the OS Kernel Not in the book! L24 Virtual Machines & the OS Kernel 1 Power of Contexts: Sharing a CPU Virtual Memory 1 Physical Memory Virtual Memory 2 Every application can be written

More information