Travel Time and Time of Concentration

Size: px
Start display at page:

Download "Travel Time and Time of Concentration"

Transcription

1 Methods in Stormwater Management Using HydroCAD ravel ime and ime of Concentration H05 ravel ime.pdf 1

2 opics 1. ime of Concentration Definition 2. Segmental Flow 3. Sheet Flow 4. Concentrated Flow 5. Channel and Pipe Flow 6. ravel ime Equations 7. Example: Echo Valley Watershed 2

3 Outcomes 1. Understand the concept of time of concentration. 2. Understand the differences between sheet flow, shallow concentrated flow and channel/pipe flow. 3. Be familiar with the NRCS and other travel time methods. 4. Be able to apply travel time equations in a segmental manner in order to compute a watershed time of concentration. 3

4 ime of Concentration Hydrograph analysis definition time from end of rainfall excess to point of inflection on receding limb of graph Flow (cfs) rainfall excess c 400 Lag inflection point ime (hours) 4

5 ime of Concentration Flow path analysis definition time required for runoff to travel from the most hydraulically remote point in the watershed to the design point of interest. sheet POI sheet In-channel concentrated sheet 5

6 Segmental Calculation of c Segmental Method Break the flow path into distinctly different flow types Select appropriate equation for each segment Compute travel time, t, for each segment Sum the travel times to get time of concentration, c 6

7 Segmental Flow ypes Overland Flow Sheet Concentrated (natural swale) In-channel Flow Designed swale Designed channel Natural stream Pipe (gravity flow) Different flow types require different mathematical models 7

8 Overland Sheet Flow Very shallow overland flow Surface resistance dominates flow Uniform depth across a plane surface Path lengths typically short Impervious surfaces: approx ft Pervious surfaces: approx ft Depth same order of magnitude as surface roughness 8

9 Overland Sheet Flow Paved sheet flow Grassed sheet flow Sheet transitioning to concentrated Depth and roughness similar 9

10 Shallow Concentrated Flow Overland flow with visible depth Depth not uniform but shallow compared to flow path width More dynamic flow than kinematic flow Depth significantly larger than surface roughness dimension Also known as swale flow Can be ditch flow if depth is shallow 10

11 Shallow Concentrated Flow Impervious (gutter) flow Pervious (grass) flow 11

12 In-channel Flow Flow in a well defined channel Flow depth significant Dynamic forces dominate flow Pipe flow or channel flow Manning s equation is typical default model 12

13 In-channel Flow Pipe flow storm sewers Vegetated channel Rip-rap channel 13

14 Equations and Methods Equation types can be categorized as Sheet flow Shallow concentrated flow Combined sheet and shallow concentrated flow In-channel flow Lumped flow Most methods developed for very specific situations Most methods cannot be verified directly Choose best method to match flow path situation (regime/type) to get reasonable results 14

15 Izzard (1946) sheet flow on roadway and turf surfaces iterative solution with i and (two unknowns) i S i C L 0.33 = time in minutes i = rainfall intensity (in/hr) C = retardance coefficient L = length of flow path (ft) S = slope of flow path (ft/ft) 15

16 Morgali and Linsley (1965) sheet flow kinematic wave on paved surfaces iterative solution (two unknowns) 0.94L 0.4 i S n 0.6 L = length of overland flow (ft) n = Manning roughness coefficient i = rainfall intensity (in/hr) S = average overland slope (ft/ft) 16

17 NRCS Sheet Flow Equation (1986) t 0.42 nl P S 0.8 P 2 = 2-yr, 24-hr rainfall depth (in) n = Manning s sheet flow roughness L = length of overland flow path (ft) S = average overland slope (ft/ft) t = travel time (minutes). 17

18 NRCS Sheet Flow Equation Roughness Coefficients Surface description n 1 Smooth surface (concrete, asphalt, gravel or bare soil) Fallow (no residue) 0.05 Cultivated soils: Residue cover < 20% Residue cover > 20% Grass: Short-grass prairie Dense grasses 2 Bermuda grass Range (natural) 0.13 Woods: 3 Light underbrush Dense underbrush NOES: 1. he Manning s equation n values are composite of information compiled by Engman (1986). 2. Includes species such as weeping love grass, bluegrass, buffalo grass, blue grama grass and native grass mixtures. 3. When selecting n consider cover to a height of about 0.1 ft. his is the only part of the plant cover that will obstruct sheet flow. 18

19 NRCS Sheet Flow Maximum Path Lengths (1995) l 100 S n l = maximum length of flow (ft) n = Manning s sheet flow roughness S = average overland slope (ft/ft) Cover ype n values Slope (ft/ft) Length (ft) Grass Woods Grass Woods Grass Woods

20 Kirpich (1940) overland sheet and concentrated flow agricultural basins in PA and N 3% to 10% slopes, 1.25 to 112 acre watershed K L S K = surface roughness adjustment factor L = length of flow path from headwater to outlet (ft) S = average slope of the flow path (ft/ft) 20

21 Kerby-Hathaway (1959) overland sheet and concentrated flow sheet flow dominated the flow path 1% or less slopes, 10 acre and smaller watersheds 0.83 nl 0.5 S 0.47 L = length of overland flow (ft) n = Manning roughness coefficient S = average overland slope (ft/ft) 21

22 FAA (1970) overland sheet and concentrated flow developed from airfield drainage data frequently used for overland flow in urban watersheds C S L 0.5 C = Rational method runoff coefficient L = length of flow path (ft) S = average overland slope (%) 22

23 NRCS Average Velocity Method (1975, 2010) shallow concentrated flow velocity as a function of slope and surface cover reduced to two curves (paved and unpaved) by SCS when R was issued re-introduced by NRCS in May 2010 L 60V L = length of flow path (ft) S = watershed slope in percent V = average velocity 23

24 NRCS Concentrated Overland Flow (2010) V KS 0.5 t L 60V V = velocity (ft/s) K = surface coefficient S = watershed slope (ft/ft) L = length of path (ft) t = travel time (minutes). 24

25 L 1220S pavememt 0.5 L 968S grassed waterway 0.5 woodlands 0.5 nearly bare untilled L S L 526S cultivated row crops 0.5 L 418 S L 302S short-grass pasture 0.5 forest w/heavy ground litter and hay meadows 0.5 NRCS Shallow Concentrated Flow Equations L 151S L = length of path (ft) S = watershed slope (ft/ft) t = travel time (minutes). 25

26 NRCS R-55 (1986) Concentrated Flow L 1220S paved 0.5 L 968S unpaved 0.5 L = length of path (ft) S = watershed slope (ft/ft) t = travel time (minutes). 26

27 Manning s Equation (1890) in-channel flow compute velocity as a function of n, R h, and S V R S n h + t L 60V V = average channel velocity (ft/s) n = roughness coefficient R h = hydraulic radius (ft) = A/P A = flow area (ft 2 ) P = wetted perimeter of flow area (ft) S = average channel or pipe slope (ft/ft) t = travel time (minutes). L = length of flow path (ft) t 89.2 R nl h S 27

28 NRCS Lag Equation (1975) lumped watershed flow for upper reaches of the watershed adjust for channel improvements and impervious area L CN S 0.7 L = hydraulic length of watershed ; longest flow path (ft) CN = runoff curve number S = average watershed slope (ft/ft) 28

29 NRCS Segmental Method (2010) hree flow types sheet kinematic wave concentrated velocity method (Fig NEH 630 Ch. 15) in-channel Manning s equation 1. Sheet 0.42 nl P S Concentrated 3. In-channel nl 89.2 R h S 29

30 Exercise 1. Compute time of concentration for the Echo Valley watershed with the data provided on the following pages. 30

31 Echo Valley Watershed five flow segments 1. Sheet 2. Concentrated #1 3. Pipe 4. Concentrated #2 5. Channel 31

32 Echo Valley Watershed 1. Sheet Flow Segment L = 30 ft S = ft/ft Dense grass 2P 24 = 2.73 in (Atlas 14) 0.42 nl P S n = 0.24 (able 3.1 R-55) t = 6.0 minutes 32

33 Echo Valley Watershed 2. Concentrated Flow #1 L = 1080 ft S = ft/ft Wooded L 302 S woodland 0.5 t = 11.1 minutes 33

34 Echo Valley Watershed 3. Pipe Flow L = 520 ft S = ft/ft 18 Concrete Pipe (n = 0.013) Manning s channel flow nl 89.2 R h S nl 35.4 D circ. pipe S t = 1.1 minutes 34

35 Echo Valley Watershed 4. Concentrated Flow #2 L = 790 ft S = ft/ft Grass waterway L 968S grassed waterway 0.5 t = 5.8 minutes 35

36 Echo Valley Watershed 5. Channel Flow A = 3.0 ft 2 WP = 5.0 ft S = ft/ft n = L = 2500 ft 89.2 nl R S t = 5.4 minutes 36

37 NRCS Segmental Method Echo Valley Watershed c = c = c = 29.4 minutes 37

38 NRCS NEH Ch. 15 ime of Concentration Contains the latest time of concentration methodologies recommended by the NRCS. (May 2010) 38

39 Example: ime of Concentration for Echo Valley WS 39

40 Echo Valley WS travel time flow segments 1. Sheet Flow Segment L = 30 ft, S = ft/ft Dense grass, 2 P 24 = 2.68 in 2. Concentrated Flow #1 L = 1080 ft, S = ft/ft Wooded 3. Pipe Flow L = 520 ft, S = ft/ft 18 Concrete Pipe (n = 0.013) 4. Concentrated Flow #2 L = 790 ft, S = ft/ft Grass waterway 5. Channel Flow A = 3.0 ft 2, WP = 5.0 ft S = ft/ft, n = L = 2500 ft 40

41 ime of Concentration in HydroCAD for Echo Valley 1. Highlight WS Node 2. Under Nodes tab 3. Select Edit 4. Under c tab 5. Double Click on first row 6. Choose Sheet Flow. 7. Enter appropriate data 8. Click OK 9. Double click second row 10.Choose Shallow Concentrated Flow 11.Enter data, click OK 12.Repeat for other segments. 41

42 Summary opics 1. ime of Concentration Definition 2. Segmental Flow 3. Sheet Flow 4. Concentrated Flow 5. Channel and Pipe Flow 6. ravel ime Equations 7. Example: Echo Valley Watershed Outcomes 1. Understand the concept of time of concentration. 2. Understand the differences between sheet flow, shallow concentrated flow and channel/pipe flow. 3. Be familiar with the NRCS and other travel time methods. 4. Be able to apply travel time equations in a segmental manner in order to compute a watershed time of concentration. 42

Storm Drain Modeling HY-12 Rational Design

Storm Drain Modeling HY-12 Rational Design v. 10.1 WMS 10.1 Tutorial Learn how to design storm drain inlets, pipes, and other components of a storm drain system using FHWA's HY-12 storm drain analysis software and the WMS interface Objectives Define

More information

VOLUME & FLOW RATE CALCULATIONS

VOLUME & FLOW RATE CALCULATIONS A.2 FLOW RATE AND VOLUME CALCULATION EXAMPLE PROJECT NAME Industrial Site Example A-8 NOMENCLATURE A I = Impervious Area (acres) A P = Pervious Area (acres) A U = Contributing Undeveloped Upstream Area

More information

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox

More information

Evaluating Multiple Stormwater Analysis and Design Alternatives with StormCAD

Evaluating Multiple Stormwater Analysis and Design Alternatives with StormCAD Evaluating Multiple Stormwater Analysis and Design Alternatives with StormCAD Workshop Overview In this workshop you will use StormCAD to analyze an existing storm sewer system. You will add a parking

More information

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface v. 10.1 WMS 10.1 Tutorial Learn how to model urban areas using WMS' rational method interface Objectives Learn how to model urban areas using the Rational method, including how to compute rainfall intensity,

More information

Documentation for Velocity Method Segment Generator Glenn E. Moglen February 2005 (Revised March 2005)

Documentation for Velocity Method Segment Generator Glenn E. Moglen February 2005 (Revised March 2005) Documentation for Velocity Method Segment Generator Glenn E. Moglen February 2005 (Revised March 2005) The purpose of this document is to provide guidance on the use of a new dialog box recently added

More information

Appendix E-1. Hydrology Analysis

Appendix E-1. Hydrology Analysis Appendix E-1 Hydrology Analysis July 2016 HYDROLOGY ANALYSIS For Tentative Tract 20049 City of Chino Hills County of San Bernardino Prepared For: 450 Newport Center Drive, Suite 300 Newport Beach, CA 92660

More information

Objectives This tutorial shows you how to define data for and run a rational method model for a watershed in Orange County.

Objectives This tutorial shows you how to define data for and run a rational method model for a watershed in Orange County. v. 9.0 WMS 9.0 Tutorial Modeling Orange County Rational Method GIS Learn how to define a rational method hydrologic model for Orange County (California) from GIS data Objectives This tutorial shows you

More information

v Modeling Orange County Rational Method GIS Learn how to define a rational method hydrologic model for Orange County (California) from GIS data

v Modeling Orange County Rational Method GIS Learn how to define a rational method hydrologic model for Orange County (California) from GIS data v. 10.1 WMS 10.1 Tutorial Modeling Orange County Rational Method GIS Learn how to define a rational method hydrologic model for Orange County (California) from GIS data Objectives This tutorial shows how

More information

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County)

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Presented by: April 27, 2017 Matthew Zeve, P.E., CFM Harris County

More information

Learn how to link a hydrologic model to the SWMM storm drain model

Learn how to link a hydrologic model to the SWMM storm drain model v. 10.1 WMS 10.1 Tutorial Learn how to link a hydrologic model to the SWMM storm drain model Objectives Build a rational method hydrologic model and compute sub-basin flows. Import storm drain network

More information

Watershed Modeling HEC-HMS Interface

Watershed Modeling HEC-HMS Interface v. 10.1 WMS 10.1 Tutorial Learn how to set up a basic HEC-HMS model using WMS Objectives Build a basic HEC-HMS model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic

More information

DESIGN MANUAL CHAPTER 5: Open Channel Hydraulics

DESIGN MANUAL CHAPTER 5: Open Channel Hydraulics DESIGN MANUAL CHAPTER 5: Open Channel Hydraulics 5.0 OPEN CHANNEL HYDRAULICS...5-1 5.1 SYMBOLS AND DEFINITIONS...5-1 5.2 DESIGN CRITERIA...5-2 5.2.1 GENERAL CRITERIA...5-2 5.2.2 VELOCITY LIMITATIONS...5-3

More information

Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins.

Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins. v. 11.0 HEC-HMS WMS 11.0 Tutorial HEC-HMS Learn how to create multiple sub-basins using HEC-HMS Objectives Divide a single watershed into multiple sub-basins, and define routing between sub-basins. Prerequisite

More information

WMS 10.0 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model

WMS 10.0 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model v. 10.0 WMS 10.0 Tutorial Learn how to link a hydrologic model to the SWMM storm drain model Objectives Build a rational method hydrologic model and compute sub-basin flows. Import storm drain network

More information

H y d r o C A D. Owner's Manual

H y d r o C A D. Owner's Manual H y d r o C A D Stormwater Modeling System Version 8 Owner's Manual Copyright 2006 HydroCAD Software Solutions LLC. All rights reserved. HydroCAD is a registered trademark of HydroCAD Software Solutions

More information

WMS 9.1 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model

WMS 9.1 Tutorial Storm Drain Modeling SWMM Modeling Learn how to link a hydrologic model to the SWMM storm drain model v. 9.1 WMS 9.1 Tutorial Learn how to link a hydrologic model to the SWMM storm drain model Objectives Build a rational method hydrologic model and compute sub-basin flows. Import storm drain network information

More information

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface (GISbased) Delineate a watershed and build a MODRAT model

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface (GISbased) Delineate a watershed and build a MODRAT model v. 8.4 WMS 8.4 Tutorial Watershed Modeling MODRAT Interface (GISbased) Delineate a watershed and build a MODRAT model Objectives Delineate a watershed from a DEM and derive many of the MODRAT input parameters

More information

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS v. 9.1 WMS 9.1 Tutorial Learn how to setup a basic HEC-1 model using WMS Objectives Build a basic HEC-1 model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic parameters

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

Multi-Stage Outlet Structures

Multi-Stage Outlet Structures Methods in Stormwater Management Using HydroCAD Multi-Stage Outlet Structures H09 Multi-Stage Outlet Structures.pdf 1 Topics 1. Multi-State Outlet Structures Definition 2. Orifice and Weir Equations 3.

More information

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units Linear Routing: Floodrouting HEC-RAS Introduction Shirley Clark Penn State Harrisburg Robert Pitt University of Alabama April 26, 2004 Two (2) types of floodrouting of a hydrograph Linear Muskingum Reservoir

More information

WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 10.0 WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows users how to define a basic MODRAT model using

More information

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 8.4 WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows you how to define a basic MODRAT model using

More information

25 Using Numerical Methods, GIS & Remote Sensing 1

25 Using Numerical Methods, GIS & Remote Sensing 1 Module 6 (L22 L26): Use of Modern Techniques es in Watershed Management Applications of Geographical Information System and Remote Sensing in Watershed Management, Role of Decision Support System in Watershed

More information

Build a MODRAT model by defining a hydrologic schematic

Build a MODRAT model by defining a hydrologic schematic v. 11.0 WMS 11.0 Tutorial Build a MODRAT model by defining a hydrologic schematic Objectives Learn how to define a basic MODRAT model using the hydrologic schematic tree in WMS by building a tree and defining

More information

PCSWMM 2002 RUNOFF Block PAT AVENUE Storm Drainage Design

PCSWMM 2002 RUNOFF Block PAT AVENUE Storm Drainage Design PCSWMM 2002 RUNOFF Block PAT AVENUE Storm Drainage Design A Hello World Example Prepared by Robert Pitt and Alex Maestre, Department of Civil Engineering, University of Alabama April 10, 2002 Introduction

More information

Modeling Detention Ponds Malaysian Example (v2009)

Modeling Detention Ponds Malaysian Example (v2009) Modeling Detention Ponds Malaysian Example (v2009) This tutorial demonstrates the usability of xpswmm and xpstorm for simulating detention basins in urban areas. This fictitious example includes the use

More information

Introduction to Bentley PondPack

Introduction to Bentley PondPack Introduction to Bentley PondPack CE 365K Hydraulic Engineering Design Prepared by Cassandra Fagan and David Maidment Spring 2015 Contents Goals of the Tutorial... 1 Procedure... 1 (1) Opening Bentley PondPack...

More information

Appendix A - Design Charts and Nomographs

Appendix A - Design Charts and Nomographs Appendix A - Design Charts and Nomographs 4-22 Horry County Manual This Page Intentionally Left Blank Horry County Manual 4-23 4-24 Horry County Manual Horry County Manual 4-25 4-26 Horry County Manual

More information

OPEN CHANNEL HYDROLOGY AND DESIGN...

OPEN CHANNEL HYDROLOGY AND DESIGN... SPALDING COUNTY, GEORGIA CHAPTER 5 5.0 OPEN CHANNEL HYDROLOGY AND DESIGN... 5-1 5.1 OVERVIEW... 5-1 5.1.1 INTRODUCTION... 5-1 5.1.2 OPEN CHANNEL TYPES... 5-1 5.2 SYMBOLS AND DEFINITIONS... 5-2 5.3 DESIGN

More information

Watershed Modeling Using Arc Hydro Tools. Geo HMS, and HEC-HMS

Watershed Modeling Using Arc Hydro Tools. Geo HMS, and HEC-HMS South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Civil and Environmental Engineering Faculty Publications Department of Civil and

More information

Appendix H Drainage Ditch Design - Lab TABLE OF CONTENTS APPENDIX H... 2

Appendix H Drainage Ditch Design - Lab TABLE OF CONTENTS APPENDIX H... 2 Appendix H Drainage Ditch Design - Lab TABLE OF CONTENTS APPENDIX H... 2 H.1 Ditch Design... 2 H.1.1 Introduction... 2 H.1.2 Link/Ditch Configuration... 2 H.2 Lab 19: Ditch Design... 3 H.2.1 Introduction...

More information

Volume 4. Carlson Hydrology 2007 Carlson Natural Regrade Carlson Software Inc.

Volume 4. Carlson Hydrology 2007 Carlson Natural Regrade Carlson Software Inc. Carlson Software 2007 Volume 4 Carlson Hydrology 2007 Carlson Natural Regrade 2007 Carlson Software Inc. User s manual August 8, 2006 Contents Chapter 1. Hydrology Module 1 Surface Menu....................................

More information

Culvert Studio User's Guide

Culvert Studio User's Guide Culvert Studio User's Guide 2 Culvert Studio Table of Contents Foreword 0 Part I Introduction 5 1 Installing... and Activating 6 2 Getting... Updates 7 3 About... This Guide 7 Part II Overview 9 1 The

More information

v. 8.4 Prerequisite Tutorials Watershed Modeling Advanced DEM Delineation Techniques Time minutes

v. 8.4 Prerequisite Tutorials Watershed Modeling Advanced DEM Delineation Techniques Time minutes v. 8.4 WMS 8.4 Tutorial Modeling Orange County Rational Method GIS Learn how to define a rational method hydrologic model for Orange County (California) from GIS data Objectives This tutorial shows you

More information

WinSLAMM v 10.2 User s Guide

WinSLAMM v 10.2 User s Guide WinSLAMM v 10.2 User s Guide Batch Editor, Cost Analysis, pre Development Runoff Volume Calculation lationandand Creating a Model File from a Data File Batch Editor Running a Set of Files Batch Editor

More information

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CONTENTS 1. Flow Classification 2. Chezy s and Manning Equation 3. Specific Energy 4. Surface Water Profiles 5. Hydraulic Jump 6. HEC-RAS 7. HEC-HMS

More information

Surveys and Maps for Drainage Design

Surveys and Maps for Drainage Design Surveys and Maps for Drainage Design SURVEY TYPES BENCH LEVEL Survey Used to determine the elevation of a point (1-D) PROFILE Survey Used to determine the elevations of a line (2-D) TOPOGRAPHIC Survey

More information

Volume 4 Carlson Hydrology 2007 Carlson Natural Regrade Carlson Software Inc.

Volume 4 Carlson Hydrology 2007 Carlson Natural Regrade Carlson Software Inc. Carlson Software 2007 Volume 4 Carlson Hydrology 2007 Carlson Natural Regrade 2007 Carlson Software Inc. User s manual August 8, 2006 Contents Chapter 1. Hydrology Module 1 Surface Menu... 2 Overview...

More information

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations:

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: ENV3104 Hydraulics II 2017 Assignment 1 Assignment 1 Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: Examiner: Jahangir Alam Due Date: 27 Apr 2017 Weighting: 1% Objectives

More information

This loads a preset standard set of data appropriate for Malaysian modeling projects.

This loads a preset standard set of data appropriate for Malaysian modeling projects. XP Software On-Site Detention (OSD) Example Step 1 Open xpswmm2010 program Or from Start menu select Programs XPS - then select xpswmm2010 Select Create From Template Save file, e.g. Filename.xp The program

More information

v Modeling Orange County Unit Hydrograph GIS Learn how to define a unit hydrograph model for Orange County (California) from GIS data

v Modeling Orange County Unit Hydrograph GIS Learn how to define a unit hydrograph model for Orange County (California) from GIS data v. 10.1 WMS 10.1 Tutorial Modeling Orange County Unit Hydrograph GIS Learn how to define a unit hydrograph model for Orange County (California) from GIS data Objectives This tutorial shows how to define

More information

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS

WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS v. 10.0 WMS 10.0 Tutorial Hydraulics and Floodplain Modeling HY-8 Modeling Wizard Learn how to model a culvert using HY-8 and WMS Objectives Define a conceptual schematic of the roadway, invert, and downstream

More information

Watershed Modeling Advanced DEM Delineation

Watershed Modeling Advanced DEM Delineation v. 10.1 WMS 10.1 Tutorial Watershed Modeling Advanced DEM Delineation Techniques Model manmade and natural drainage features Objectives Learn to manipulate the default watershed boundaries by assigning

More information

Background to Rock Roughness Equation

Background to Rock Roughness Equation Background to Rock Roughness Equation WATERWAY MANAGEMENT PRACTICES Photo 1 Rock-lined fish ramp Photo 2 Added culvert bed roughness Introduction Formulas such as the Strickler Equation have been commonly

More information

Watershed Modeling Orange County Hydrology Using GIS Data

Watershed Modeling Orange County Hydrology Using GIS Data v. 9.1 WMS 9.1 Tutorial Watershed Modeling Orange County Hydrology Using GIS Data Learn how to delineate sub-basins and compute soil losses for Orange County (California) hydrologic modeling Objectives

More information

Hydrologic Modeling using HEC-HMS

Hydrologic Modeling using HEC-HMS Hydrologic Modeling using HEC-HMS CE 412/512 Spring 2017 Introduction The intent of this exercise is to introduce you to the structure and some of the functions of the HEC-Hydrologic Modeling System (HEC-HMS),

More information

PACIFIC CENTER Anaheim, California

PACIFIC CENTER Anaheim, California HYDROLOGY REPORT PACIFIC CENTER Anaheim, California Prepared for Hines Company 4000 MacArthur Blvd. Suite 110 Newport Beach, CA 92660 949.313.2230 Prepared by Fuscoe Engineering, Inc. 16795 Von Karman,

More information

Spatial Hydrologic Modeling HEC-HMS Distributed Parameter Modeling with the MODClark Transform

Spatial Hydrologic Modeling HEC-HMS Distributed Parameter Modeling with the MODClark Transform v. 9.0 WMS 9.0 Tutorial Spatial Hydrologic Modeling HEC-HMS Distributed Parameter Modeling with the MODClark Transform Setup a basic distributed MODClark model using the WMS interface Objectives In this

More information

Watershed Modeling Using Online Spatial Data to Create an HEC-HMS Model

Watershed Modeling Using Online Spatial Data to Create an HEC-HMS Model v. 10.1 WMS 10.1 Tutorial Watershed Modeling Using Online Spatial Data to Create an HEC-HMS Model Learn how to setup an HEC-HMS model using WMS online spatial data Objectives This tutorial shows how to

More information

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE Lecture 3: Major hydrologic models-hspf, HEC and MIKE Major Hydrologic Models HSPF (SWM) HEC MIKE Hydrological Simulation Program-Fortran (HSPF) Commercial successor of the Stanford Watershed Model (SWM-IV)

More information

Appendix C.6. Best Management Practices for Construction Activities

Appendix C.6. Best Management Practices for Construction Activities Appendix C.6 Best Management Practices for Construction Activities In accordance with Section F.2 of San Diego Regional Water Quality Control Board (RWQCB) Order 2001-01 (Permit), the City of La Mesa has

More information

VDOT GEOPAK Drainage Training Manual

VDOT GEOPAK Drainage Training Manual VDOT GEOPAK Drainage Training Manual Training Manual 2004 Edition TRN007630-1/0002 Trademarks AccuDraw, Bentley, the B Bentley logo, MDL, MicroStation and SmartLine are registered trademarks; PopSet and

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model v. 9.1 WMS 9.1 Tutorial Integrate stream flow with your GSSHA overland flow model Objectives Learn how to add hydraulic channel routing to your GSSHA model and how to define channel properties. Learn how

More information

Soil Map Adams County Area, Parts of Adams and Denver Counties, Colorado ' 39''

Soil Map Adams County Area, Parts of Adams and Denver Counties, Colorado ' 39'' Soil Map Adams County Area, Parts of Adams and Denver Counties, Colorado 4411660 4411670 4411680 4411690 4411700 4411710 4411720 4411730 104 58' 39'' W 4411660 4411670 4411680 4411690 4411700 4411710 4411720

More information

DESCRIPTION SITE SUITABILITY. Advantages. Disadvantages. Alternative Names: Fiber Roll Barriers, Sediment Log, Coir Roll and Coir Log

DESCRIPTION SITE SUITABILITY. Advantages. Disadvantages. Alternative Names: Fiber Roll Barriers, Sediment Log, Coir Roll and Coir Log 4.5-q FIBER ROLL Alternative Names: Fiber Roll Barriers, Sediment Log, Coir Roll and Coir Log DESCRIPTION Fiber rolls are sediment control devices made from fibrous organic material, such as rice or coconut

More information

MODRET VERSION 6.0 FOR WINDOWS 95. Setup Hydrograph Infiltration Routing Graphic Windows ReadMe

MODRET VERSION 6.0 FOR WINDOWS 95. Setup Hydrograph Infiltration Routing Graphic Windows ReadMe MODRET VERSION 6.0 FOR WINDOWS 95 EXPLANATIONS FOR MENU COMMAND OPTIONS FIRST SCREEN PROMPT Setup Hydrograph Infiltration Routing Graphic Windows ReadMe Select one of these options using the mouse and

More information

Storm Drain Modeling HY-12 Pump Station

Storm Drain Modeling HY-12 Pump Station v. 10.1 WMS 10.1 Tutorial Storm Drain Modeling HY-12 Pump Station Analysis Setup a simple HY-12 pump station storm drain model in the WMS interface with pump and pipe information Objectives Using the HY-12

More information

Automatic Discretization and Parameterization of Watersheds using a Digital Elevation Model

Automatic Discretization and Parameterization of Watersheds using a Digital Elevation Model Automatic Discretization and Parameterization of Watersheds using a Digital Elevation Model Ellen Hachborn, Karen Finney, Rob James, Nandana Perera, Tiehong Xiao WaterTech 2017 Computational Hydraulics

More information

Gavin Fields Senior Water Resources Engineer XP Solutions

Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Introduction Structures Hydraulic Model Building Q&A XP Solutions Software for modeling wastewater, stormwater, and

More information

Bentley OpenRoads Workshop 2017 FLUG Fall Training Event

Bentley OpenRoads Workshop 2017 FLUG Fall Training Event Bentley OpenRoads Workshop 2017 FLUG Fall Training Event F-1P - Designing with a Pond Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 www.bentley.com Practice Workbook This workbook is

More information

SurvCADD Hydrology Module

SurvCADD Hydrology Module SurvCADD Hydrology Module Overview The Hydrology Module consists of several routines that work together in sequence. This manual only explains the operation of the commands and not hydrology concepts.

More information

Questions and Answers

Questions and Answers Autodesk Storm and Sanitary Analysis Extension 2011 Questions and Answers Design stormwater and wastewater systems more effectively with integrated analysis. Contents 1. GENERAL PRODUCT INFORMATION...

More information

Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model

Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model v. 9.0 WMS 9.0 Tutorial Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model Build a watershed model to predict hydrologic reactions based on land use development in Maricopa

More information

Hysteresis in River Discharge Rating Curves. Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013

Hysteresis in River Discharge Rating Curves. Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013 Hysteresis in River Discharge Rating Curves Histerésis en las curvas de gasto en ríos (caudal/calado) Madrid, March 25, 2013 Marian Muste and Kyutae Lee IIHR Hydroscience & Engineering The University of

More information

Flood Routing for Continuous Simulation Models

Flood Routing for Continuous Simulation Models Improving Life through Science and Technology Flood Routing for Continuous Simulation Models J. Williams, W. Merkel, J. Arnold, J. Jeong 11 International SWAT Conference, Toledo, Spain, June 15-17, 11

More information

Watershed Modeling Maricopa Predictive HEC-1 Model. Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model

Watershed Modeling Maricopa Predictive HEC-1 Model. Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model v. 10.1 WMS 10.1 Tutorial Watershed Modeling Maricopa County: Master Plan Creating a Predictive HEC-1 Model Build a watershed model to predict hydrologic reactions based on land use development in Maricopa

More information

Spatial Hydrologic Modeling Using NEXRAD Rainfall Data in an HEC-HMS (MODClark) Model

Spatial Hydrologic Modeling Using NEXRAD Rainfall Data in an HEC-HMS (MODClark) Model v. 10.0 WMS 10.0 Tutorial Spatial Hydrologic Modeling Using NEXRAD Rainfall Data in an HEC-HMS (MODClark) Model Learn how to setup a MODClark model using distributed rainfall data Objectives Read an existing

More information

Peak Stormwater Engineering, LLC MEMORANDUM

Peak Stormwater Engineering, LLC MEMORANDUM Peak Stormwater Engineering, LLC 922 Cypress Lane, Louisville, CO 80027 Tel: (720) 239-1151 Fax: (720) 239-1191 Email: drapp@peakstormwater.com MEMORANDUM Date: To: Holly Piza, UDFCD Ken MacKenzie, UDFCD

More information

2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota. Eli Gruber, PE Brooke Conner, PE

2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota. Eli Gruber, PE Brooke Conner, PE 2D Large Scale Automated Engineering for FEMA Floodplain Development in South Dakota Eli Gruber, PE Brooke Conner, PE Project Acknowledgments FEMA Region 8 Staff: Brooke Conner, PE Casey Zuzak, GISP Ryan

More information

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT Evaluation Form Evaluator Information Name: Jeff Hagan Date: Feb. 17, 2000 Software Information Title of Software: Purpose: Publisher: CulvertMaster Culvert Hydraulic Design Haestad Methods, Inc. Version:

More information

Tutorial 6 - Subdivision - Pre Development

Tutorial 6 - Subdivision - Pre Development Tutorial 6 - Subdivision - Pre Development In this tutorial, you will learn about: 2. 3. 4. 5. 6. 7. 8. 9. 10. 2. Using a Template Adding a Background Image and Using the Zoom Tool Creating Nodes Creating

More information

Lesson 7: Gathering Stand-Level Information

Lesson 7: Gathering Stand-Level Information Lesson 7: Gathering Stand-Level Information Review and Introduction In previous lessons, you learned how to establish and take measurements in sample plots. Now we will begin to transition toward using

More information

On Automatic Calibration of the SWMM Model

On Automatic Calibration of the SWMM Model On Automatic Calibration of the SWMM Model Van-Thanh-Van Nguyen, Hamed Javaheri and Shie-Yui Liong Conceptual urban runoff (CUR) models, such as the U.S. Environmental Protection Agency Storm Water Management

More information

WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results

WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results Objectives This tutorial demonstrates different ways

More information

URBAN & RURAL RUNOFF ROUTING APPLICATION GETTING STARTED MANUAL

URBAN & RURAL RUNOFF ROUTING APPLICATION GETTING STARTED MANUAL URBAN & RURAL RUNOFF ROUTING APPLICATION GETTING STARTED MANUAL Copyright 2013 XP Solutions. All right reserved. No part of this publication maybe reproduced in any form by any means without the written

More information

Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois

Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois Benefits of 2D Modeling for Urban Stormwater Master Planning Niles, Illinois Patrick Lach, P.E., CFM, Hey and Associates, Inc. Steve Vinezeano, ICMA CM, LEED AP Assistant Village Manager Three Geographic

More information

EFH2 Computer Program Estimating Runoff and Peak Discharge. User s Manual August Photo credit NRCSIA99447

EFH2 Computer Program Estimating Runoff and Peak Discharge. User s Manual August Photo credit NRCSIA99447 EFH2 Computer Program Estimating Runoff and Peak Discharge User s Manual Photo credit NRCSIA99447 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on

More information

HEC-22 Inlets in INFOSWMM and H2OMAP SWMM v12

HEC-22 Inlets in INFOSWMM and H2OMAP SWMM v12 HEC-22 Inlets in INFOSWMM and H2OMAP SWMM v12 Table of Contents How the Inlet and Overland Junctions are Defined 3 Why Would You Use the HEC-22 Inlets Option? 4 Types of Inlets 5 Nodes in InfoSWMM and

More information

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling?

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? Rishab Mahajan, Emily Campbell and Matt Bardol March 8, 2017 Outline Reasons for hydraulic modeling 1D Modeling 2D Modeling-

More information

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the

More information

PCSWMM 2002 EXTRAN Block PAT AVENUE Storm Drainage Design

PCSWMM 2002 EXTRAN Block PAT AVENUE Storm Drainage Design PCSWMM 2002 EXTRAN Block PAT AVENUE Storm Drainage Design A Hello World Example Prepared by Dr. Robert Pitt and Jason Kirby, Department of Civil Engineering, University of Alabama August 20, 2002 Introduction

More information

George Mason University Department of Civil, Environmental and Infrastructure Engineering

George Mason University Department of Civil, Environmental and Infrastructure Engineering George Mason University Department of Civil, Environmental and Infrastructure Engineering Dr. Celso Ferreira Prepared by Lora Baumgartner December 2015 Revised by Brian Ross July 2016 Exercise Topic: Getting

More information

INPUT DATA PROCEDURES

INPUT DATA PROCEDURES 79 SECTION 7 INPUT DATA PROCEDURES This section describes the forms and message boxes used to enter input data for an RSRAP optimization problem. These forms and message boxes implement Steps 1 through

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results

WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results v. 9.1 WMS 9.1 Tutorial GSSHA Modeling Basics Post-Processing and Visualization of GSSHA Model Results Learn how to visualize GSSHA model results Objectives This tutorial demonstrates different ways of

More information

Introduction to Compound Channel Flow Analysis for Floodplains

Introduction to Compound Channel Flow Analysis for Floodplains Introduction to Compound Channel Flow Analysis for Floodplains by Kelly McAtee, P.E., LEED A.P. Course Summary Natural and restored waterways do not usually posses the typical cross-sectional areas undergraduate

More information

Automated Calibration of the GSSHA Watershed Model: A Look at Accuracy and Viability for Routine Hydrologic Modeling

Automated Calibration of the GSSHA Watershed Model: A Look at Accuracy and Viability for Routine Hydrologic Modeling Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2009-11-23 Automated Calibration of the GSSHA Watershed Model: A Look at Accuracy and Viability for Routine Hydrologic Modeling

More information

Introduction to GISHydroNXT. GIS Based Hydrologic Analysis in Maryland gishydro.eng.umd.edu

Introduction to GISHydroNXT. GIS Based Hydrologic Analysis in Maryland gishydro.eng.umd.edu Introduction to GISHydroNXT GIS Based Hydrologic Analysis in Maryland gishydro.eng.umd.edu Training Manual 4th Edition August 2018 Dr. Kaye L. Brubaker Associate Professor Department of Civil and Environmental

More information

Objectives Read a delineated watershed and setup and run an HSPF model for the watershed.

Objectives Read a delineated watershed and setup and run an HSPF model for the watershed. v. 9.1 WMS 9.1 Tutorial Setup a basic HSPF model Objectives Read a delineated watershed and setup and run an HSPF model for the watershed. Prerequisite Tutorials Watershed Modeling DEM Delineation Watershed

More information

Faculty of Engineering. Irrigation & Hydraulics Department Excel Tutorial (1)

Faculty of Engineering. Irrigation & Hydraulics Department Excel Tutorial (1) Problem Statement: Excel Tutorial (1) Create an Excel spread sheet that can calculate the flow area A, wetted perimeter P, hydraulic radius R, top water surface width B, and hydraulic depth D for the following

More information

2-D Hydraulic Modeling Theory & Practice

2-D Hydraulic Modeling Theory & Practice 2-D Hydraulic Modeling Theory & Practice Author: Maged A. Aboelata, PhD, PE, CFM Presenter: Heather Zhao, PE, CFM October 2017 Presentation Outline * 1-D vs. 2-D modeling * Theory of 2-D simulation * Commonly

More information

AutoCAD Civil 3D 2010 Education Curriculum Instructor Guide Unit 4: Environmental Design

AutoCAD Civil 3D 2010 Education Curriculum Instructor Guide Unit 4: Environmental Design AutoCAD Civil 3D 2010 Education Curriculum Instructor Guide Unit 4: Environmental Design Lesson 2 Watershed Analysis Overview In this lesson, you learn about how AutoCAD Civil 3D software is used to analyze

More information

SiphoniTec. User s Guide

SiphoniTec. User s Guide SiphoniTec A Siphonic Roof Drainage Design Utility The Level Approach to Roof Drainage User s Guide Release 2.0 RAINWATER MANAGEMENT SOLUTIONS 1260 West Riverside Drive Salem, Virginia 24153 Telephone:

More information

Bentleyuser.dk Årsmøde 2009 Nordic Civil 2009

Bentleyuser.dk Årsmøde 2009 Nordic Civil 2009 Bentleyuser.dk Årsmøde 2009 Nordic Civil 2009 9.-11. November 2009, Munkebjerg Hotel, Vejle Workshop - X3 Using InRoads Storm & Sanitary V8i Presenter: Robert Nice, Solutions Engineer, Bentley Systems

More information

Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine)

Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine) Cloud-Computing Based Real-Time Flood Simulation (RealFlood Engine) Jennifer G Duan, PhD., PE Principal, KKC Engineering (UA Tech Launch) Associate Professor Delbert R. Lewis Distinguished Professor Civil

More information

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry 2D Model Implementation for Complex Floodplain Studies Sam Crampton, P.E., CFM Dewberry 2D Case Studies Case Study 1 Rain-on-Grid 2D floodplain simulation for unconfined flat topography in coastal plain

More information

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves

JCE 4600 Fundamentals of Traffic Engineering. Horizontal and Vertical Curves JCE 4600 Fundamentals of Traffic Engineering Horizontal and Vertical Curves Agenda Horizontal Curves Vertical Curves Passing Sight Distance 1 Roadway Design Motivations Vehicle performance Acceleration

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Applicant Type (Conditional Use Permit, Variance, Tract Map, etc.): Applicant: Address: Phone(s): Fax:

Applicant Type (Conditional Use Permit, Variance, Tract Map, etc.): Applicant: Address: Phone(s): Fax: ENVIRONMENTAL QUESTIONNAIRE City of Twentynine Palms Community Development Department 6136 Adobe Road Twentynine Palms, CA 92277 (760) 367-6799 Fax (760) 367-5400 29palms.org : Please complete each statement

More information