Search Gone Wrong? CS 188: Artificial Intelligence Fall Today. Announcements. General Tree Search. Recap: Search. Lecture 3: A* Search 9/3/2009

Size: px
Start display at page:

Download "Search Gone Wrong? CS 188: Artificial Intelligence Fall Today. Announcements. General Tree Search. Recap: Search. Lecture 3: A* Search 9/3/2009"

Transcription

1 C 88: Artiicil Intelligence Fll 009 erch one Wrong? Lecture : A* erch 9//009 Pieter Aeel UC Berkeley Mny slides rom Dn Klein Announcements Assignments: Project 0 (Python tutoril): due Fridy /8 t 4:59m Project (erch): due Fridy /4 t 4:59m Wtch or oice hour seciics --- I roject Czr! till looking or roject rtners? --- Come to ront ter lecture. Try ir rogrmming, not divide-nd-conuer Account orms ville u ront during rek nd ter lecture Lecture Videos: will e linked rom lecture schedule ections strt tomorrow Hve un solving exercises! olutions will e osted online on Fridy ter lst section. Ater weeks o section we will evlute otentil overcrowdedness issues nd ind solution Tody Time nd sce comlexity o nd BF Itertive deeening --- est o oth worlds Uniorm cost serch reedy serch A* serch Heuristic design Admissiility, Consistency Tree serch rh serch Rec: erch enerl Tree erch erch rolem: ttes (conigurtions o the world) uccessor unction: unction rom sttes to lists o (stte, ction, cost) triles; drwn s grh trt stte nd gol test erch tree: Nodes: reresent lns or reching sttes Plns hve costs (sum o ction costs) erch Algorithm: ystemticlly uilds serch tree Chooses n ordering o the ringe (unexlored nodes) Imortnt ides: Fringe Exnsion Exlortion strtegy Detiled seudocode is in the ook! Min uestion: which ringe nodes to exlore?

2 Exmle erch Tree erch Algorithm Proerties Comlete? urnteed to ind solution i one exists? Otiml? urnteed to ind the lest cost th? Time comlexity? ce comlexity? Vriles: erch: Exnd out ossile lns Mintin ringe o unexnded lns Try to exnd s ew tree nodes s ossile n Numer o sttes in the rolem The verge rnching ctor B (the verge numer o successors) C* Cost o lest cost solution s m Deth o the shllowest solution Mx deth o the serch tree Algorithm Comlete Otiml Time ce Deth First erch N N N N O(B Ininite LMAX ) O(LMAX) Ininite With cycle checking, is comlete.* m tiers node nodes nodes TART OAL m nodes Ininite ths mke incomlete How cn we ix this? Algorithm Comlete Otiml Time ce w/ Pth Checking Y N O( m ) O(m) When is otiml? * Or grh serch next lecture. BF Algorithm Comlete Otiml Time ce BF w/ Pth Checking Y N O( m ) O(m) Y N* O( s+ ) O( s+ ) Comrisons When will BF outerorm? s tiers node nodes nodes When will outerorm BF? s nodes m nodes When is BF otiml?

3 Itertive Deeening Itertive deeening uses s suroutine:. Do which only serches or ths o length or less.. I iled, do which only serches ths o length or less.. I iled, do which only serches ths o length or less..nd so on. Algorithm Comlete Otiml Time ce BF ID w/ Pth Checking Y N O( m ) O(m) Y N* O( s+ ) O( s+ ) Y N* O( s+ ) O(s) TART Costs on Actions d 5 8 OAL Notice tht BF inds the shortest th in terms o numer o trnsitions. It does not ind the lest-cost th. We will uickly cover n lgorithm which does ind the lest-cost th. c 9 8 h 4 4 e r Uniorm Cost erch Priority Queue Reresher Exnd cheest node irst: Fringe is riority ueue Cost contours d 4 c 6 e 9 e 5 h r 7 c 0 8 c 8 e d 9 h 8 r 5 h 7 r 0 c 6 A riority ueue is dt structure in which you cn insert nd retrieve (key, vlue) irs with the ollowing oertions:.ush(key, vlue).o() inserts (key, vlue) into the ueue. returns the key with the lowest vlue, nd removes it rom the ueue. You cn decrese key s riority y ushing it gin Unlike regulr ueue, insertions ren t constnt time, usully O(log n) We ll need riority ueues or cost-sensitive serch methods Uniorm Cost erch Uniorm Cost Issues Algorithm Comlete Otiml Time (in nodes) ce BF UC w/ Pth Checking Y N O( m ) O(m) Y N O( s+ ) O( s+ ) Y* Y O( C*/ε ) O( C*/ε ) Rememer: exlores incresing cost contours The good: UC is comlete nd otiml! c c c C*/ε tiers * UC cn il i ctions cn get ritrrily che The d: Exlores otions in every direction No inormtion out gol loction trt ol

4 Uniorm Cost erch Exmle erch Heuristics Any estimte o how close stte is to gol Designed or rticulr serch rolem Exmles: Mnhttn distnce, Eucliden distnce 0 5. Heuristics Best First / reedy erch Exnd the node tht seems closest Wht cn go wrong? Best First / reedy erch reedy A common cse: Best-irst tkes you stright to the (wrong) gol Worst-cse: like dlyguided in the worst cse Cn exlore everything Cn get stuck in loos i no cycle checking Like in comleteness (inite sttes w/ cycle checking) Uniorm Cost 4

5 Comining UC nd reedy Uniorm-cost orders y th cost, or ckwrd cost g(n) Best-irst orders y gol roximity, or orwrd cost h(n) d h=6 h=5 h= c h=7 h=6 A* erch orders y the sum: (n) = g(n) + h(n) 5 e h= h=0 Exmle: Teg renger When should A* terminte? hould we sto when we enueue gol? A h = h = B h = No: only sto when we deueue gol h = 0 h = 7 Is A* Otiml? A h = 6 5 h = 0 Wht went wrong? Actul d gol cost < estimted good gol cost We need estimtes to e less thn ctul costs! Admissile Heuristics Otimlity o A*: Blocking A heuristic h is dmissile (otimistic) i: where Exmles: 66 is the true cost to nerest gol Coming u with dmissile heuristics is most o wht s involved in using A* in rctice. 5 Proo: Wht could go wrong? We d hve to hve to o suotiml gol o the ringe eore * This cn t hen: Imgine suotiml gol is on the ueue ome node n which is suth o * must lso e on the ringe (why?) n will e oed eore 5

6 Proerties o A* UC vs A* Contours Uniorm-Cost A* Uniorm-cost exnded in ll directions trt ol A* exnds minly towrd the gol, ut does hedge its ets to ensure otimlity trt ol Exmle: Exlored ttes with A* Comrison reedy Uniorm Cost Heuristic: mnhttn distnce ignoring wlls A str Creting Admissile Heuristics Exmle: 8 Puzzle Most o the work in solving hrd serch rolems otimlly is in coming u with dmissile heuristics Oten, dmissile heuristics re solutions to relxed rolems, with new ctions ( some cheting ) ville 66 Indmissile heuristics re oten useul too (why?) 5 Wht re the sttes? How mny sttes? Wht re the ctions? Wht sttes cn I rech rom the strt stte? Wht should the costs e? 6

7 Heuristic: Numer o tiles mislced Why is it dmissile? h(strt) = 8 This is relxedrolem heuristic 8 Puzzle I Averge nodes exnded when otiml th hs length 4 stes 8 stes stes UC 6,00.6 x 0 6 TILE 9 7 Wht i we hd n esier 8-uzzle where ny tile could slide ny direction t ny time, ignoring other tiles? Totl Mnhttn distnce Why dmissile? h(strt) = = 8 8 Puzzle II Averge nodes exnded when otiml th hs length 4 stes 8 stes stes TILE 9 7 MANHATTAN Puzzle III How out using the ctul cost s heuristic? Would it e dmissile? Would we sve on nodes exnded? Wht s wrong with it? Trivil Heuristics, Dominnce Dominnce: h h c i Heuristics orm semi-lttice: Mx o dmissile heuristics is dmissile With A*: trde-o etween ulity o estimte nd work er node! Trivil heuristics Bottom o lttice is the zero heuristic (wht does this give us?) To o lttice is the exct heuristic Other A* Alictions Pthing / routing rolems Resource lnning rolems Root motion lnning Lnguge nlysis Mchine trnsltion eech recognition Tree erch: Extr Work! Filure to detect reeted sttes cn cuse exonentilly more work. Why? 7

8 rh erch In BF, or exmle, we shouldn t other exnding the circled nodes (why?) d c h e r c h e r c rh erch Ide: never exnd stte twice How to imlement: Tree serch + list o exnded sttes (closed list) Exnd the serch tree node-y-node, ut Beore exnding node, check to mke sure its stte is new Python trick: store the closed list s set, not list Cn grh serch wreck comleteness? Why/why not? How out otimlity? Otimlity o A* rh erch Proo: New ossile rolem: nodes on th to * tht would hve een in ueue ren t, ecuse some worse n or the sme stte s some n ws deueued nd exnded irst (disster!) Tke the highest such n in tree Let e the ncestor which ws on the ueue when n ws exnded Assume () < (n) (n) < (n ) ecuse n is suotiml would hve een exnded eore n o n would hve een exnded eore n, too Contrdiction! Consistency Wit, how do we know rents hve etter -vles thn their successors? Couldn t we o some node n, nd ind its child n to hve lower vlue? YE: h = 0 h = 8 B g = 0 Wht cn we reuire to revent these inversions? Consistency: A h = 0 Rel cost must lwys exceed reduction in heuristic Otimlity Tree serch: A* otiml i heuristic is dmissile (nd nonnegtive) UC is secil cse (h = 0) rh serch: A* otiml i heuristic is consistent UC otiml (h = 0 is consistent) Consistency imlies dmissiility ummry: A* A* uses oth ckwrd costs nd (estimtes o) orwrd costs A* is otiml with dmissile heuristics Heuristic design is key: oten use relxed rolems In generl, nturl dmissile heuristics tend to e consistent 8

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. Example: Pancake Problem. Example: Pancake Problem Announcements Project : erch It s live! Due 9/. trt erly nd sk questions. It s longer thn most! Need prtner? Come up fter clss or try Pizz ections: cn go to ny, ut hve priority in your own C 88: Artificil

More information

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012

Uninformed Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 31 Jan 2012 1 Hl Dumé III (me@hl3.nme) Uninformed Serch Hl Dumé III Comuter Science University of Mrylnd me@hl3.nme CS 421: Introduction to Artificil Intelligence 31 Jn 2012 Mny slides courtesy of Dn Klein, Sturt

More information

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007

Announcements. CS 188: Artificial Intelligence Fall Recap: Search. Today. General Tree Search. Uniform Cost. Lecture 3: A* Search 9/4/2007 CS 88: Artificil Intelligence Fll 2007 Lecture : A* Serch 9/4/2007 Dn Klein UC Berkeley Mny slides over the course dpted from either Sturt Russell or Andrew Moore Announcements Sections: New section 06:

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificil Intelligence Fll 2008 Lecture 2: Queue-Bsed Serc 9/2/2008 Dn Klein UC Berkeley Mny slides from eiter Sturt Russell or Andrew Moore Announcements Written ssignments: One mini-omework ec

More information

CS 221: Artificial Intelligence Fall 2011

CS 221: Artificial Intelligence Fall 2011 CS 221: Artificil Intelligence Fll 2011 Lecture 2: Serch (Slides from Dn Klein, with help from Sturt Russell, Andrew Moore, Teg Grenger, Peter Norvig) Problem types! Fully observble, deterministic! single-belief-stte

More information

CS 188: Artificial Intelligence Fall Search Gone Wrong?

CS 188: Artificial Intelligence Fall Search Gone Wrong? CS 188: Artificial Intelligence Fall 2009 Lecture 3: A* Search 9/3/2009 Pieter Aeel UC Berkeley Many slides from Dan Klein Search Gone Wrong? 1 Announcements Assignments: Project 0 (Python tutorial): due

More information

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley

AI Adjacent Fields. This slide deck courtesy of Dan Klein at UC Berkeley AI Adjcent Fields Philosophy: Logic, methods of resoning Mind s physicl system Foundtions of lerning, lnguge, rtionlity Mthemtics Forml representtion nd proof Algorithms, computtion, (un)decidility, (in)trctility

More information

CSEP 573 Artificial Intelligence Winter 2016

CSEP 573 Artificial Intelligence Winter 2016 CSEP 573 Artificil Intelligence Winter 2016 Luke Zettlemoyer Problem Spces nd Serch slides from Dn Klein, Sturt Russell, Andrew Moore, Dn Weld, Pieter Abbeel, Ali Frhdi Outline Agents tht Pln Ahed Serch

More information

Announcements. CS 188: Artificial Intelligence

Announcements. CS 188: Artificial Intelligence Announcements Projects: Looking for project partners? --- Come to front after lecture. Try pair programming, not divide-and-conquer Account forms available up front during break and after lecture Assignments

More information

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search

Today. Search Problems. Uninformed Search Methods. Depth-First Search Breadth-First Search Uniform-Cost Search Uninformed Serch [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.] Tody Serch Problems Uninformed Serch Methods

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence Winter 2016 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificil Intelligence Serch Instructor: Michele Vn Dyne [These slides were creted by Dn Klein nd Pieter Abbeel for CS188 Intro to AI t UC Berkeley. All CS188 mterils re vilble t http://i.berkeley.edu.]

More information

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence

Solving Problems by Searching. CS 486/686: Introduction to Artificial Intelligence Solving Prolems y Serching CS 486/686: Introduction to Artificil Intelligence 1 Introduction Serch ws one of the first topics studied in AI - Newell nd Simon (1961) Generl Prolem Solver Centrl component

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

CE 473: Artificial Intelligence. Autumn 2011

CE 473: Artificial Intelligence. Autumn 2011 CE 473: Artificial Intelligence Autumn 2011 A* Search Luke Zettlemoyer Based on slides from Dan Klein Multiple slides from Stuart Russell or Andrew Moore Today A* Search Heuristic Design Graph search Recap:

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

Today. Informed Search. Graph Search. Heuristics Greedy Search A* Search

Today. Informed Search. Graph Search. Heuristics Greedy Search A* Search Informed Search [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Today Informed Search Heuristics

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

CS 343H: Artificial Intelligence

CS 343H: Artificial Intelligence CS 343H: Artificial Intelligence Lecture 4: Informed Search 1/23/2014 Slides courtesy of Dan Klein at UC-Berkeley Unless otherwise noted Today Informed search Heuristics Greedy search A* search Graph search

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Informed Search Prof. Scott Niekum University of Texas at Austin [These slides based on ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

CSCI 446: Artificial Intelligence

CSCI 446: Artificial Intelligence CSCI 446: Artificial Intelligence Informed Search Instructor: Michele Van Dyne [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Today Informed Search Informed Search Heuristics Greedy Search A* Search Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Instructor: Adm Sheffer. TA: Cosmin Pohot. 1pm Mondys, Wednesdys, nd Fridys. http://mth.cltech.edu/~2015-16/2term/m006/ Min ook: Introduction to Grph

More information

Ma/CS 6b Class 1: Graph Recap

Ma/CS 6b Class 1: Graph Recap M/CS 6 Clss 1: Grph Recp By Adm Sheffer Course Detils Adm Sheffer. Office hour: Tuesdys 4pm. dmsh@cltech.edu TA: Victor Kstkin. Office hour: Tuesdys 7pm. 1:00 Mondy, Wednesdy, nd Fridy. http://www.mth.cltech.edu/~2014-15/2term/m006/

More information

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe

CSCI 104. Rafael Ferreira da Silva. Slides adapted from: Mark Redekopp and David Kempe CSCI 0 fel Ferreir d Silv rfsilv@isi.edu Slides dpted from: Mrk edekopp nd Dvid Kempe LOG STUCTUED MEGE TEES Series Summtion eview Let n = + + + + k $ = #%& #. Wht is n? n = k+ - Wht is log () + log ()

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018

Premaster Course Algorithms 1 Chapter 6: Shortest Paths. Christian Scheideler SS 2018 Premster Course Algorithms Chpter 6: Shortest Pths Christin Scheieler SS 8 Bsic Grph Algorithms Overview: Shortest pths in DAGs Dijkstr s lgorithm Bellmn-For lgorithm Johnson s metho SS 8 Chpter 6 Shortest

More information

Artificial Intelligence Informed Search

Artificial Intelligence Informed Search Artificial Intelligence Informed Search Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter Abbeel for

More information

Informed Search A* Algorithm

Informed Search A* Algorithm Informed Search A* Algorithm CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Most slides have

More information

ITEC2620 Introduction to Data Structures

ITEC2620 Introduction to Data Structures ITEC0 Introduction to Dt Structures Lecture 7 Queues, Priority Queues Queues I A queue is First-In, First-Out = FIFO uffer e.g. line-ups People enter from the ck of the line People re served (exit) from

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Search Algorithms Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Today Agents that Plan Ahead Search Problems

More information

Pointer Analysis. CSE 501 Spring 15

Pointer Analysis. CSE 501 Spring 15 Pointer Anlysis CSE 501 Sring 15 Course Outline St8c nlysis Dtflow nd strct interret8on Alic8ons We re here Beyond generl- urose lnguges Progrm Verific8on Dynmic nlysis New comilers Tody Intro to ointer

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA Heuristic Search Rob Platt Northeastern University Some images and slides are used from: AIMA Recap: What is graph search? Start state Goal state Graph search: find a path from start to goal what are the

More information

this grammar generates the following language: Because this symbol will also be used in a later step, it receives the

this grammar generates the following language: Because this symbol will also be used in a later step, it receives the LR() nlysis Drwcks of LR(). Look-hed symols s eplined efore, concerning LR(), it is possile to consult the net set to determine, in the reduction sttes, for which symols it would e possile to perform reductions.

More information

Compilers Spring 2013 PRACTICE Midterm Exam

Compilers Spring 2013 PRACTICE Midterm Exam Compilers Spring 2013 PRACTICE Midterm Exm This is full length prctice midterm exm. If you wnt to tke it t exm pce, give yourself 7 minutes to tke the entire test. Just like the rel exm, ech question hs

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Lexical Analysis: Constructing a Scanner from Regular Expressions

Lexical Analysis: Constructing a Scanner from Regular Expressions Lexicl Anlysis: Constructing Scnner from Regulr Expressions Gol Show how to construct FA to recognize ny RE This Lecture Convert RE to n nondeterministic finite utomton (NFA) Use Thompson s construction

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grmmrs Descriing Lnguges We've seen two models for the regulr lnguges: Finite utomt ccept precisely the strings in the lnguge. Regulr expressions descrie precisely the strings in the lnguge.

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22)

Homework. Context Free Languages III. Languages. Plan for today. Context Free Languages. CFLs and Regular Languages. Homework #5 (due 10/22) Homework Context Free Lnguges III Prse Trees nd Homework #5 (due 10/22) From textbook 6.4,b 6.5b 6.9b,c 6.13 6.22 Pln for tody Context Free Lnguges Next clss of lnguges in our quest! Lnguges Recll. Wht

More information

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona CSc 453 Compilers nd Systems Softwre 4 : Lexicl Anlysis II Deprtment of Computer Science University of Arizon collerg@gmil.com Copyright c 2009 Christin Collerg Implementing Automt NFAs nd DFAs cn e hrd-coded

More information

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona

Implementing Automata. CSc 453. Compilers and Systems Software. 4 : Lexical Analysis II. Department of Computer Science University of Arizona Implementing utomt Sc 5 ompilers nd Systems Softwre : Lexicl nlysis II Deprtment of omputer Science University of rizon collerg@gmil.com opyright c 009 hristin ollerg NFs nd DFs cn e hrd-coded using this

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Lesson 11 MA Nick Egbert

Lesson 11 MA Nick Egbert Lesson MA 62 Nick Eert Overview In this lesson we return to stndrd Clculus II mteril with res etween curves. Recll rom irst semester clculus tht the deinite interl hd eometric menin, nmel the re under

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup

Regular Expression Matching with Multi-Strings and Intervals. Philip Bille Mikkel Thorup Regulr Expression Mtching with Multi-Strings nd Intervls Philip Bille Mikkel Thorup Outline Definition Applictions Previous work Two new problems: Multi-strings nd chrcter clss intervls Algorithms Thompson

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

2-3 search trees red-black BSTs B-trees

2-3 search trees red-black BSTs B-trees 2-3 serch trees red-lck BTs B-trees 3 2-3 tree llow 1 or 2 keys per node. 2-node: one key, two children. 3-node: two keys, three children. ymmetric order. Inorder trversl yields keys in scending order.

More information

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) *

Languages. L((a (b)(c))*) = { ε,a,bc,aa,abc,bca,... } εw = wε = w. εabba = abbaε = abba. (a (b)(c)) * Pln for Tody nd Beginning Next week Interpreter nd Compiler Structure, or Softwre Architecture Overview of Progrmming Assignments The MeggyJv compiler we will e uilding. Regulr Expressions Finite Stte

More information

COMBINATORIAL PATTERN MATCHING

COMBINATORIAL PATTERN MATCHING COMBINATORIAL PATTERN MATCHING Genomic Repets Exmple of repets: ATGGTCTAGGTCCTAGTGGTC Motivtion to find them: Genomic rerrngements re often ssocited with repets Trce evolutionry secrets Mny tumors re chrcterized

More information

Network Interconnection: Bridging CS 571 Fall Kenneth L. Calvert All rights reserved

Network Interconnection: Bridging CS 571 Fall Kenneth L. Calvert All rights reserved Network Interconnection: Bridging CS 57 Fll 6 6 Kenneth L. Clvert All rights reserved The Prolem We know how to uild (rodcst) LANs Wnt to connect severl LANs together to overcome scling limits Recll: speed

More information

521495A: Artificial Intelligence

521495A: Artificial Intelligence 521495A: Artificial Intelligence Informed Search Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu Slides adopted from http://ai.berkeley.edu Today Informed Search Heuristics Greedy

More information

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015

Finite Automata. Lecture 4 Sections Robb T. Koether. Hampden-Sydney College. Wed, Jan 21, 2015 Finite Automt Lecture 4 Sections 3.6-3.7 Ro T. Koether Hmpden-Sydney College Wed, Jn 21, 2015 Ro T. Koether (Hmpden-Sydney College) Finite Automt Wed, Jn 21, 2015 1 / 23 1 Nondeterministic Finite Automt

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

CS 430 Spring Mike Lam, Professor. Parsing

CS 430 Spring Mike Lam, Professor. Parsing CS 430 Spring 2015 Mike Lm, Professor Prsing Syntx Anlysis We cn now formlly descrie lnguge's syntx Using regulr expressions nd BNF grmmrs How does tht help us? Syntx Anlysis We cn now formlly descrie

More information

Stack. A list whose end points are pointed by top and bottom

Stack. A list whose end points are pointed by top and bottom 4. Stck Stck A list whose end points re pointed by top nd bottom Insertion nd deletion tke plce t the top (cf: Wht is the difference between Stck nd Arry?) Bottom is constnt, but top grows nd shrinks!

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

CS 432 Fall Mike Lam, Professor a (bc)* Regular Expressions and Finite Automata

CS 432 Fall Mike Lam, Professor a (bc)* Regular Expressions and Finite Automata CS 432 Fll 2017 Mike Lm, Professor (c)* Regulr Expressions nd Finite Automt Compiltion Current focus "Bck end" Source code Tokens Syntx tree Mchine code chr dt[20]; int min() { flot x = 42.0; return 7;

More information

What is Search? Intro to Search. Search problems. Finding goals in trees. Why is goal search not trivial? Blind Search Methods

What is Search? Intro to Search. Search problems. Finding goals in trees. Why is goal search not trivial? Blind Search Methods What is Search? lind Search Methods Search as an Tool S, DS, DS, US, ids Search is one of the most powerful approaches to problem solving in Search is a universal problem solving mechanism that Systematically

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

The Structure of Forward, Reverse, and Transverse Path Graphs in The Pattern Recognition Algorithms of Sellers

The Structure of Forward, Reverse, and Transverse Path Graphs in The Pattern Recognition Algorithms of Sellers The Structure of Forwrd, Reverse, nd Trnsverse Pth Grhs in The Pttern Recognition Algorithms of Sellers Lewis Lsser Dertment of Mthemtics nd Comuter Science York College/CUNY Jmic, New York 11451 llsser@york.cuny.edu

More information

Heuristic Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Heuristic Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Heuristic Search Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Recap: What is graph search? Start state Goal state Graph search: find a path

More information

Suffix Tries. Slides adapted from the course by Ben Langmead

Suffix Tries. Slides adapted from the course by Ben Langmead Suffix Tries Slides dpted from the course y Ben Lngmed en.lngmed@gmil.com Indexing with suffixes Until now, our indexes hve een sed on extrcting sustrings from T A very different pproch is to extrct suffixes

More information

Presentation Martin Randers

Presentation Martin Randers Presenttion Mrtin Rnders Outline Introduction Algorithms Implementtion nd experiments Memory consumption Summry Introduction Introduction Evolution of species cn e modelled in trees Trees consist of nodes

More information

Lists in Lisp and Scheme

Lists in Lisp and Scheme Lists in Lisp nd Scheme Lists in Lisp nd Scheme Lists re Lisp s fundmentl dt structures, ut there re others Arrys, chrcters, strings, etc. Common Lisp hs moved on from eing merely LISt Processor However,

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

Algorithm Design (5) Text Search

Algorithm Design (5) Text Search Algorithm Design (5) Text Serch Tkshi Chikym School of Engineering The University of Tokyo Text Serch Find sustring tht mtches the given key string in text dt of lrge mount Key string: chr x[m] Text Dt:

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

CS481: Bioinformatics Algorithms

CS481: Bioinformatics Algorithms CS481: Bioinformtics Algorithms Cn Alkn EA509 clkn@cs.ilkent.edu.tr http://www.cs.ilkent.edu.tr/~clkn/teching/cs481/ EXACT STRING MATCHING Fingerprint ide Assume: We cn compute fingerprint f(p) of P in

More information

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08

CS412/413. Introduction to Compilers Tim Teitelbaum. Lecture 4: Lexical Analyzers 28 Jan 08 CS412/413 Introduction to Compilers Tim Teitelum Lecture 4: Lexicl Anlyzers 28 Jn 08 Outline DFA stte minimiztion Lexicl nlyzers Automting lexicl nlysis Jlex lexicl nlyzer genertor CS 412/413 Spring 2008

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

Page. Harsh Reality. Dynamic Memory Allocation. Malloc Package. Process Memory Image. Assumptions. Malloc Example

Page. Harsh Reality. Dynamic Memory Allocation. Malloc Package. Process Memory Image. Assumptions. Malloc Example Hrsh Relity Memory Mtters Memory is not unbounded It must be llocted nd mnged 1 Mny lictions re memory dominted Esecilly those bsed on comlex, grh lgorithms Memory referencing bugs esecilly ernicious Effects

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to djcent tht do not overlp shre n rm from the sme vertex point re clled djcent ngles. me the djcent cute ngles in this digrm rm is shred y + + me vertex point for + + + is djcent to + djcent simply mens

More information

Context-Free Grammars

Context-Free Grammars Context-Free Grmmrs Descriing Lnguges We've seen two models for the regulr lnguges: Finite utomt ccept precisely the strings in the lnguge. Regulr expressions descrie precisely the strings in the lnguge.

More information

Looking up objects in Pastry

Looking up objects in Pastry Review: Pstry routing tbles 0 1 2 3 4 7 8 9 b c d e f 0 1 2 3 4 7 8 9 b c d e f 0 1 2 3 4 7 8 9 b c d e f 0 2 3 4 7 8 9 b c d e f Row0 Row 1 Row 2 Row 3 Routing tble of node with ID i =1fc s - For ech

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics,

Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, Graphs vs trees up front; use grid too; discuss for BFS, DFS, IDS, UCS Cut back on A* optimality detail; a bit more on importance of heuristics, performance data Pattern DBs? General Tree Search function

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Informtion Retrievl nd Orgnistion Suffix Trees dpted from http://www.mth.tu.c.il/~himk/seminr02/suffixtrees.ppt Dell Zhng Birkeck, University of London Trie A tree representing set of strings { } eef d

More information

The Distributed Data Access Schemes in Lambda Grid Networks

The Distributed Data Access Schemes in Lambda Grid Networks The Distributed Dt Access Schemes in Lmbd Grid Networks Ryot Usui, Hiroyuki Miygi, Yutk Arkw, Storu Okmoto, nd Noki Ymnk Grdute School of Science for Open nd Environmentl Systems, Keio University, Jpn

More information

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7.

CS 241. Fall 2017 Midterm Review Solutions. October 24, Bits and Bytes 1. 3 MIPS Assembler 6. 4 Regular Languages 7. CS 241 Fll 2017 Midterm Review Solutions Octoer 24, 2017 Contents 1 Bits nd Bytes 1 2 MIPS Assemly Lnguge Progrmming 2 3 MIPS Assemler 6 4 Regulr Lnguges 7 5 Scnning 9 1 Bits nd Bytes 1. Give two s complement

More information

Thirty-fourth Annual Columbus State Invitational Mathematics Tournament. Instructions

Thirty-fourth Annual Columbus State Invitational Mathematics Tournament. Instructions Thirty-fourth Annul Columbus Stte Invittionl Mthemtics Tournment Sponsored by Columbus Stte University Deprtment of Mthemtics Februry, 008 ************************* The Mthemtics Deprtment t Columbus Stte

More information

Pointer Analysis. What is Points-to Analysis? Outline. What is Points-to Analysis? What is Points-to Analysis? What is Pointer Analysis? Rupesh Nasre.

Pointer Analysis. What is Points-to Analysis? Outline. What is Points-to Analysis? What is Points-to Analysis? What is Pointer Analysis? Rupesh Nasre. Pointer Anlysis Wht is? Ruesh Nsre. CS6843 Anlysis IIT Mdrs Jn 2014 = &x; = ; if ( == *) { } else { } oints to x 4 Outline Wht is? Introduction Pointer nlysis s DFA rolem Design decisions nlysis, Steensgrd's

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example:

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example: cisc1110 fll 2010 lecture VI.2 cll y vlue function prmeters more on functions more on cll y vlue nd cll y reference pssing strings to functions returning strings from functions vrile scope glol vriles

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distriuted Systems Principles nd Prdigms Chpter 11 (version April 7, 2008) Mrten vn Steen Vrije Universiteit Amsterdm, Fculty of Science Dept. Mthemtics nd Computer Science Room R4.20. Tel: (020) 598 7784

More information