Research Progress on Compilers for DSP Cores with Specifications

Size: px
Start display at page:

Download "Research Progress on Compilers for DSP Cores with Specifications"

Transcription

1 Research Progress on Compilers for DSP Cores with Specifications Ching-ren Lee, Jenq-Kuen Lee Programming Language Research Lab. Department of Computer Science National Tsing-Hua Univ.

2 Outline of Current Research Progress System Software for Power Managements Compilers Operating Systems Portability with Efficient DSP Libraries Pseudo Assembly (with Architectural Description Language) Annotation Languages for Compiler Optimizations Fast Prototyping of Compiler Toolkits with Specification in Architecture Description Language Automatic Toolkits Generation from ADL Compiler Optimizations from ADL 2001/6/25 1

3 Directions with Low Power Issues Relationships between CPU s component activities & power consumptions. A strategy to integrate different compiler schemes for low-power. Instruction sets to control power constructions. Evaluate power consumption models and simulators. 2001/6/25 2

4 Power ManagementsM at OS Layer Minimize Power Consumption while Meet the Deadline of Real-Time Tasks Accepted by IEEE Workshop on Power Management for Real-Time and Embedded Systems. 2001/6/25 3

5 Specifications for DSP libraries (Our Approach ) Pseudo Assembly with Architecture Description Languages Specification Compound Instruction Descriptions Equation Descriptions Matrix Operation Descriptions 2001/6/25 4

6 DSP Compilers DSP Compiler for TMS320C62x Optimizing Core-routine in Internet Telephony (G etc) An initial testbed for experimenting retargetting of dsp libraries 2001/6/25 5

7 DSP compiler for TMS320C62x Compiler Prototype based on SUIF and Our Back-End Part Machine-dependent Code Generation for TMS320C62x SUIF IR Scalar Optimization Machine-dependent Code Optimization 2001/6/25 6

8 Example of Equation Descriptions /*annotate( x= Sat(y+z), x,y,z:16) */ Word16 add(word16 var1,word16 var2) { Word16 var_out; Word32 L_somme; Word16 add(word16 var1,word16 var2) { return(_sadd((word32)var1<<16,(word3 2)var2<<16)>>16); L_somme = (Word32) var1 + (Word32) var2; var_out = sature(l_somme); return(var_out); Replacement with intrinsic assembly routines 2001/6/25 7

9 Annotations for Array Computations Example 1: /*$Annotation void matrix(matrix_name;dimension) */ /*$Annotation void matrix(matrix_name;(a11 a12 )(a21 a22 ) ) */ /*$Annotation void diagonal(matrix_name,d1 d2 ) */ /*$Annotation void transpose(matrix_name;dimension) */ /*$Annotation void permutation(matrix_name,p1 p2 ) */ /*$Annotation matrix kron(matrix ) */ /*$Annotation matrix compose(matrx,matrix result) */ Example 2: F 8 =( F 2 I 4 )( I 2 F 4 ) ( where is Kronerker tensor product) /* $Annotate compose( kron((f;2),(i;4)),(t;8;4), kron((i;2),(f;4)),(l;8;2), (F;8) ) */ 2001/6/25 8

10 Early Experiment Result in Performance Effects with Durbin routines in G (Equation Descriptions) Cycles With Equation Descriptions Original Code 0 No Optimization O0 O1 O2 O3 Original Code With Equation Descriptions 2001/6/25 9

11 Compiler Toolkits for DSP/SOC/Embedded System Rapid System Software Prototyping for DSP/SOC/E mbedded System System-On-a-Chip CPU/DSP core ROM SRAM DRAM peripherals ASIC DMA Retargetable Compilers and SDK Kits Architectural Description Language Simulator Environment 2001/6/25 10

12 Benefits of our ADL approaching ADL is a formalized specification that we can check the design if error exists at the early time by some (formal) verification and consistency checking like normal programming language Modification could be done easily with different target architectures and memory organizations for design space exploration Driving automatically the backend toolkits generation from a single specification Fast prototyping of HDL-based high level synthesis by translation from ADL s hardware structure information 2001/6/25 11

13 Optimizations with Specification in ADL Timing model information ( instruction execution cycles, memory access cycles ) directs compiler optimizations in speed. Power model information ( function unit and memory storage operation power consumption ) directs compiler optimizations in low power consumption. Resource model and operation behavior model (pipeline information, data path constraints, ) provide detail compiler optimization issues in instruction selection, resource allocation, scheduling. 2001/6/25 12

14 ORISAL An Object oriented Instruction Set Architecture Language Java-like ISA description language Available on instruction set level and cycleaccurate level modeling SoC IP interconnection configuration Power consumption model simulation 2001/6/25 13

15 ORISAL Features Object Oriented styles will reduce specification writing efforts from scratch and also give the designers a more natural view of reconfigurable IPs. Object Oriented styles will reduce mistakes compared to other imperative language based ADL. Simulator could be generated directly through the JAVA compiler and JVM without efforts. Power model gives the possibility of compiler optimizations in low power consumption and power estimation with simulator. 2001/6/25 14

16 Retargetable environment ORISAL semantics ORISAL syntax syntax ORISAL coding coding Compiler Assembler behavior Binary executable Simulator ORISAL behavior ORISAL activation ORISAL coding coding 2001/6/25 15

17 ORISAL Principles Resource declarations and operations construct ORISAL descriptions which describe the behaviors of the ISA Resources hold the state of the programmable architecture in form of the stored data value Operation definitions collect the description of different property of the system, i.e. operation behavior, ISA information, and timing. All the resources and operations are extensible and inheritable. 2001/6/25 16

18 ORISAL architecture sections Resource section: memory, register, ALU and functional unit definition. Operation section: general operations for instruction and could be consisted of some instruction instances. Instruction set section: atomic instruction operations Assembly spec. section: assembly spec and binary format Compiler spec. section: compiler back-end optimization information Runtime environment spec. section: User-defined section 2001/6/25 17

19 Resource declaration example { Hardware components spec. Predefined types : FUnit,Storage,Port,Connection,resource Primitive type: bit, byte,ubyte,int,uint,long,ulong Class FetchUnit extends Funit Fetch Unit Latch fetdeclatch; port fetporgport; FetchUnit.Timing[]= new int []{1,1,0; FetchUnit.Power []= new int []{20,10,5; Timing Maybe piplned timing Power An uniform unit Timing and Power are static data members of FUnit 2001/6/25 18

20 Resource declaration example (con t) Class DRAM extends Storage { byte type; uint size; byte width; uint accesstime; in(ras,cas,port); out(ras,cas,port); ; Class Register extends Storage { byte type; byte width; in(port); port out(); Register DataRegister[16]; statusregister StatusWord; DataRegister.type = {Register; DataRegister.width = 32; 2001/6/25 19

21 Resource declaration example (con t) lass fetprogport extends Port Connection ProgBus; etprogport.width = 256; lass PBUS1 extends Connection Bus1.Attach = {FetchUnit,PMBank1; Bus1.Width = 128; Class PBUS2 extends PBus1 {Attach = {FetchUnit,PMBank2; Grouping {PBus1,PBus2 ProgBus; Class PMBank1 extends DRAM { Connection PBus1; AccessWidth = 128; port read(uint index); write(unit index,port); 2001/6/25 20

22 Resource declaration example (con t) lass PMBank2 extends PMBank1; rouping {PMBank1,PMBank2 ProgMem; rogmem.accessaddress ={0,1024; rogmem.interleave = 2; lass DecodeUnit extends FUnit Latch fetdeclatch; Latch decexlatch1; Latch decexlatch2; Class ALU extends FUnit { resource source,dest,statusword; dest add(source,dest,statusword) { dest = source + dest; setflags(statusword); dest sub(source,dest,statusword) { dest = source - dest; setflags(statusword); 2001/6/25 21

23 Example of instruction ADD Class ALU1 extends ALU { Latch decexlatch1; Class ALU2 extends ALU { Latch decexlatch2; Class IS extends instruction { bit opcode[12:15]; bit opmode[9:11]; bit EffectiveAddress[0:10]; storage Operand[]; IS.operand = 2; DRAM Memory; Memory.type = {DRAM; Memory.size = 0x1000; Memory.width = 32; Memory.accessTime = /6/25 22

24 Example of instruction ADD Class add extends IS { uint opcode = 0xa; int operandtype[]=new int [] {Register, Register, Register; ALIAS Src Operand[0]; ALIAS Dest Operand[1]; void operation(void){ if (opmode == 0x01) Dest.in(ALU.add(Src.out(), Dest.out())); add.latancy = 1; 2001/6/25 23

25 Example of instruction JMP Class IS2 extends instruction { bit opcode[12:15]; bit EffectiveAddress[0:10]; Register PC; Class JMP extends IS2 { void operation(void){ PC.in(ProgMEM.read(EffectiveAddress)); 2001/6/25 24

26 Example of instruction Bcc Conditional jump Class statusregister extends Register { byte type; byte width; in(port,bit); port out(bit); Register PC; Class Bcc extends JMP { bit condition EffectiveAddress[7:10]; bit offset Effective[0:6]; void operation(void){ switch (condition) { case 0x01: if (statusword.out(1)) PC.in(ProgMEM.read(EffectiveAddress)); break; case 0x02: break; 2001/6/25 25

27 Conclusions Portability for efficient DSP libraries presents challenging research issues. ADL based specification is a major research topic in recent HW/SW co-design and retargetable software toolkits generation. Refining ORISAL is our first work 2001/6/25 26

Hardware/Software Co-design

Hardware/Software Co-design Hardware/Software Co-design Zebo Peng, Department of Computer and Information Science (IDA) Linköping University Course page: http://www.ida.liu.se/~petel/codesign/ 1 of 52 Lecture 1/2: Outline : an Introduction

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institution of Technology, Delhi

Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institution of Technology, Delhi Embedded Systems Dr. Santanu Chaudhury Department of Electrical Engineering Indian Institution of Technology, Delhi Lecture - 34 Compilers for Embedded Systems Today, we shall look at the compilers, which

More information

Introduction to Java Programming

Introduction to Java Programming Introduction to Java Programming Lecture 1 CGS 3416 Spring 2017 1/9/2017 Main Components of a computer CPU - Central Processing Unit: The brain of the computer ISA - Instruction Set Architecture: the specific

More information

Automatic Porting of Binary File Descriptor Library

Automatic Porting of Binary File Descriptor Library Automatic Porting of Binary File Descriptor Library Maghsoud Abbaspour Electrical and Computer Engineering University of Toronto Oct 19, 2001 maghsoud@eecg.toronto.edu Synthesis Reading Group Copyright

More information

Embedded Systems: Hardware Components (part I) Todor Stefanov

Embedded Systems: Hardware Components (part I) Todor Stefanov Embedded Systems: Hardware Components (part I) Todor Stefanov Leiden Embedded Research Center Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded System

More information

Code Generation for QEMU-SystemC Cosimulation from SysML

Code Generation for QEMU-SystemC Cosimulation from SysML Code Generation for QEMU- Cosimulation from SysML Da He, Fabian Mischkalla, Wolfgang Mueller University of Paderborn/C-Lab, Fuerstenallee 11, 33102 Paderborn, Germany {dahe, fabianm, wolfgang}@c-lab.de

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation In the analysis-synthesis model of a compiler, the front end analyzes a source program and creates an intermediate representation, from which the back end generates target

More information

BASIC COMPUTER ORGANIZATION. Operating System Concepts 8 th Edition

BASIC COMPUTER ORGANIZATION. Operating System Concepts 8 th Edition BASIC COMPUTER ORGANIZATION Silberschatz, Galvin and Gagne 2009 Topics CPU Structure Registers Memory Hierarchy (L1/L2/L3/RAM) Machine Language Assembly Language Running Process 3.2 Silberschatz, Galvin

More information

Automatic Porting of Binary File Descriptor Library

Automatic Porting of Binary File Descriptor Library Automatic Porting of Binary File Descriptor Library Maghsoud Abbaspour Electrical and Computer Engineering University of Toronto Oct 19, 2001 maghsoud@eecg.toronto.edu Synthesis Reading Group Copyright

More information

ECE 111 ECE 111. Advanced Digital Design. Advanced Digital Design Winter, Sujit Dey. Sujit Dey. ECE Department UC San Diego

ECE 111 ECE 111. Advanced Digital Design. Advanced Digital Design Winter, Sujit Dey. Sujit Dey. ECE Department UC San Diego Advanced Digital Winter, 2009 ECE Department UC San Diego dey@ece.ucsd.edu http://esdat.ucsd.edu Winter 2009 Advanced Digital Objective: of a hardware-software embedded system using advanced design methodologies

More information

Xtensa. Andrew Mihal 290A Fall 2002

Xtensa. Andrew Mihal 290A Fall 2002 Xtensa Andrew Mihal 290A Fall 2002 1 Outline Introduction Single processor Xtensa system architecture Exporting a programming model for single processor Multiple processor system architecture Exporting

More information

Platform-based Design

Platform-based Design Platform-based Design The New System Design Paradigm IEEE1394 Software Content CPU Core DSP Core Glue Logic Memory Hardware BlueTooth I/O Block-Based Design Memory Orthogonalization of concerns: the separation

More information

CHAPTER 1 Introduction to Computers and Java

CHAPTER 1 Introduction to Computers and Java CHAPTER 1 Introduction to Computers and Java Copyright 2016 Pearson Education, Inc., Hoboken NJ Chapter Topics Chapter 1 discusses the following main topics: Why Program? Computer Systems: Hardware and

More information

Synthesis-driven Exploration of Pipelined Embedded Processors Λ

Synthesis-driven Exploration of Pipelined Embedded Processors Λ Synthesis-driven Exploration of Pipelined Embedded Processors Λ Prabhat Mishra Arun Kejariwal Nikil Dutt pmishra@cecs.uci.edu arun kejariwal@ieee.org dutt@cecs.uci.edu Architectures and s for Embedded

More information

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630 Computers and Microprocessors Lecture 34 PHYS3360/AEP3630 1 Contents Computer architecture / experiment control Microprocessor organization Basic computer components Memory modes for x86 series of microprocessors

More information

are Softw Instruction Set Architecture Microarchitecture are rdw

are Softw Instruction Set Architecture Microarchitecture are rdw Program, Application Software Programming Language Compiler/Interpreter Operating System Instruction Set Architecture Hardware Microarchitecture Digital Logic Devices (transistors, etc.) Solid-State Physics

More information

Software Project. Lecturers: Ran Caneti, Gideon Dror Teaching assistants: Nathan Manor, Ben Riva

Software Project. Lecturers: Ran Caneti, Gideon Dror Teaching assistants: Nathan Manor, Ben Riva Software Project Lecturers: Ran Caneti, Gideon Dror Teaching assistants: Nathan Manor, Ben Riva Emails: (canetti/benriva)@post.tau.ac.il nathan.manor@gmail.com gideon@mta.ac.il http://www.cs.tau.ac.il/~roded/courses/soft-project10.html

More information

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation Language Implementation Methods The Design and Implementation of Programming Languages Compilation Interpretation Hybrid In Text: Chapter 1 2 Compilation Interpretation Translate high-level programs to

More information

Special Topics for Embedded Programming

Special Topics for Embedded Programming 1 Special Topics for Embedded Programming ETH Zurich Fall 2018 Reference: The C Programming Language by Kernighan & Ritchie 1 2 Overview of Topics Microprocessor architecture Peripherals Registers Memory

More information

DSP Core Instruction Set Architecture Design. Shih-Chieh Chang

DSP Core Instruction Set Architecture Design. Shih-Chieh Chang DSP Core Instruction Set Architecture Design Shih-Chieh Chang Overview of Proposed Architecture Modified Harvard architecture (PM, XDM, YDM) Two parallel instructions per cycle Five-stage pipeline Zero-overhead

More information

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware.

Department of Computer Science, Institute for System Architecture, Operating Systems Group. Real-Time Systems '08 / '09. Hardware. Department of Computer Science, Institute for System Architecture, Operating Systems Group Real-Time Systems '08 / '09 Hardware Marcus Völp Outlook Hardware is Source of Unpredictability Caches Pipeline

More information

17. Instruction Sets: Characteristics and Functions

17. Instruction Sets: Characteristics and Functions 17. Instruction Sets: Characteristics and Functions Chapter 12 Spring 2016 CS430 - Computer Architecture 1 Introduction Section 12.1, 12.2, and 12.3 pp. 406-418 Computer Designer: Machine instruction set

More information

Chapter 4. The Processor Designing the datapath

Chapter 4. The Processor Designing the datapath Chapter 4 The Processor Designing the datapath Introduction CPU performance determined by Instruction Count Clock Cycles per Instruction (CPI) and Cycle time Determined by Instruction Set Architecure (ISA)

More information

Outline. Introduction to Java. What Is Java? History. Java 2 Platform. Java 2 Platform Standard Edition. Introduction Java 2 Platform

Outline. Introduction to Java. What Is Java? History. Java 2 Platform. Java 2 Platform Standard Edition. Introduction Java 2 Platform Outline Introduction to Java Introduction Java 2 Platform CS 3300 Object-Oriented Concepts Introduction to Java 2 What Is Java? History Characteristics of Java History James Gosling at Sun Microsystems

More information

Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation

Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation Computer Organization CS 231-01 Data Representation Dr. William H. Robinson November 12, 2004 Topics Power tends to corrupt; absolute power corrupts absolutely. Lord Acton British historian, late 19 th

More information

Hardware Modelling. Design Flow Overview. ECS Group, TU Wien

Hardware Modelling. Design Flow Overview. ECS Group, TU Wien Hardware Modelling Design Flow Overview ECS Group, TU Wien 1 Outline Difference: Hardware vs. Software Design Flow Steps Specification Realisation Verification FPGA Design Flow 2 Hardware vs. Software:

More information

Lecture 1: Preliminaries

Lecture 1: Preliminaries Lecture 1: Preliminaries Edgardo Molina Department of Computer Science City College of New York August 30, 2011 Edgardo Molina (CS@CCNY) Lecture 1 August 30, 2011 1 / 44 Info and Schedule Course Info and

More information

Reminder: tutorials start next week!

Reminder: tutorials start next week! Previous lecture recap! Metrics of computer architecture! Fundamental ways of improving performance: parallelism, locality, focus on the common case! Amdahl s Law: speedup proportional only to the affected

More information

Computer Software: Introduction

Computer Software: Introduction Software: A collection of programs Computer Software: Introduction Program: Sequence of instructions for the computer to carry out Programs written using a programming language Types of languages: Machine

More information

I ve been getting this a lot lately So, what are you teaching this term? Computer Organization. Do you mean, like keeping your computer in place?

I ve been getting this a lot lately So, what are you teaching this term? Computer Organization. Do you mean, like keeping your computer in place? I ve been getting this a lot lately So, what are you teaching this term? Computer Organization. Do you mean, like keeping your computer in place? here s the monitor, here goes the CPU, Do you need a class

More information

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Hardware Design Environments Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Outline Welcome to COE 405 Digital System Design Design Domains and Levels of Abstractions Synthesis

More information

Multiple Choice Type Questions

Multiple Choice Type Questions Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Computer Architecture Subject Code: CS 403 Multiple Choice Type Questions 1. SIMD represents an organization that.

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY. Department of Computer science and engineering

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY. Department of Computer science and engineering DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY Department of Computer science and engineering Year :II year CS6303 COMPUTER ARCHITECTURE Question Bank UNIT-1OVERVIEW AND INSTRUCTIONS PART-B

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

Summer 2003 Lecture 14 07/02/03

Summer 2003 Lecture 14 07/02/03 Summer 2003 Lecture 14 07/02/03 LAB 6 Lab 6 involves interfacing to the IBM PC parallel port Use the material on wwwbeyondlogicorg for reference This lab requires the use of a Digilab board Everyone should

More information

EC-801 Advanced Computer Architecture

EC-801 Advanced Computer Architecture EC-801 Advanced Computer Architecture Lecture 5 Instruction Set Architecture I Dr Hashim Ali Fall 2018 Department of Computer Science and Engineering HITEC University Taxila!1 Instruction Set Architecture

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Programming 1 - Honors

Programming 1 - Honors Programming 1 - Honors Lecture 1 COP 3014 Spring 2017 January 10, 2017 Main Components of a computer CPU - Central Processing Unit: The brain of the computer. ISA - Instruction Set Architecture: the specific

More information

DSPACE: LISA Methodology

DSPACE: LISA Methodology DSPACE: LISA Methodology Maximilian Odendahl ESA DSP Day, Noordwjik, 28.8.2012 Institute for Communication Technologies and Embedded Systems Outline 2 Introduction DSPACE Requirements LISA Methodology

More information

CPSC 213. Introduction to Computer Systems. Scalars and Arrays. Unit 1b

CPSC 213. Introduction to Computer Systems. Scalars and Arrays. Unit 1b CPSC 213 Introduction to Computer Systems Unit 1b Scalars and Arrays 1 Reading Companion 2.2.3, 2.3, 2.4.1-2.4.3, 2.6 Textbook Array Allocation and Access 1ed: 3.8 2ed: 3.8 2 Design Plan 3 Examine Java

More information

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER ASSEMBLY LANGUAGE PROGRAMMING CHAPTER 2 8051 ASSEMBLY LANGUAGE PROGRAMMING Registers Register are used to store information temporarily: A byte of data to be processed An address pointing to the data to be fetched The vast majority

More information

Chapter 1: Introduction to Computers and Java

Chapter 1: Introduction to Computers and Java Chapter 1: Introduction to Computers and Java Starting Out with Java: From Control Structures through Objects Fifth Edition by Tony Gaddis Chapter Topics Chapter 1 discusses the following main topics:

More information

What is a compiler? Xiaokang Qiu Purdue University. August 21, 2017 ECE 573

What is a compiler? Xiaokang Qiu Purdue University. August 21, 2017 ECE 573 What is a compiler? Xiaokang Qiu Purdue University ECE 573 August 21, 2017 What is a compiler? What is a compiler? Traditionally: Program that analyzes and translates from a high level language (e.g.,

More information

What is a compiler? var a var b mov 3 a mov 4 r1 cmpi a r1 jge l_e mov 2 b jmp l_d l_e: mov 3 b l_d: ;done

What is a compiler? var a var b mov 3 a mov 4 r1 cmpi a r1 jge l_e mov 2 b jmp l_d l_e: mov 3 b l_d: ;done What is a compiler? What is a compiler? Traditionally: Program that analyzes and translates from a high level language (e.g., C++) to low-level assembly language that can be executed by hardware int a,

More information

Computer Architecture Dr. Charles Kim Howard University

Computer Architecture Dr. Charles Kim Howard University EECE416 Microcomputer Fundamentals Computer Architecture Dr. Charles Kim Howard University 1 Computer Architecture Computer Architecture Art of selecting and interconnecting hardware components to create

More information

8/23/2014. Chapter Topics. Introduction. Java History. Why Program? Java Applications and Applets. Chapter 1: Introduction to Computers and Java

8/23/2014. Chapter Topics. Introduction. Java History. Why Program? Java Applications and Applets. Chapter 1: Introduction to Computers and Java Chapter 1: Introduction to Computers and Java Starting Out with Java: From Control Structures through Objects Fifth Edition by Tony Gaddis Chapter Topics Chapter 1 discusses the following main topics:

More information

CS Programming In C

CS Programming In C CS 24000 - Programming In C Week 16: Review Zhiyuan Li Department of Computer Science Purdue University, USA This has been quite a journey Congratulation to all students who have worked hard in honest

More information

What do Compilers Produce?

What do Compilers Produce? What do Compilers Produce? Pure Machine Code Compilers may generate code for a particular machine, not assuming any operating system or library routines. This is pure code because it includes nothing beyond

More information

2 rd class Department of Programming. OOP with Java Programming

2 rd class Department of Programming. OOP with Java Programming 1. Structured Programming and Object-Oriented Programming During the 1970s and into the 80s, the primary software engineering methodology was structured programming. The structured programming approach

More information

System-level simulation (HW/SW co-simulation) Outline. EE290A: Design of Embedded System ASV/LL 9/10

System-level simulation (HW/SW co-simulation) Outline. EE290A: Design of Embedded System ASV/LL 9/10 System-level simulation (/SW co-simulation) Outline Problem statement Simulation and embedded system design functional simulation performance simulation POLIS implementation partitioning example implementation

More information

Computer Systems and Networks. ECPE 170 Jeff Shafer University of the Pacific. MIPS Assembly

Computer Systems and Networks. ECPE 170 Jeff Shafer University of the Pacific. MIPS Assembly ECPE 170 Jeff Shafer University of the Pacific MIPS Assembly 2 Lab Schedule This Week Activities MIPS discussion Practice problems (whiteboard) Using the QtSPIM simulator Discuss available resources Lab

More information

Optimizing Cache Coherent Subsystem Architecture for Heterogeneous Multicore SoCs

Optimizing Cache Coherent Subsystem Architecture for Heterogeneous Multicore SoCs Optimizing Cache Coherent Subsystem Architecture for Heterogeneous Multicore SoCs Niu Feng Technical Specialist, ARM Tech Symposia 2016 Agenda Introduction Challenges: Optimizing cache coherent subsystem

More information

Digital Signal Processor Core Technology

Digital Signal Processor Core Technology The World Leader in High Performance Signal Processing Solutions Digital Signal Processor Core Technology Abhijit Giri Satya Simha November 4th 2009 Outline Introduction to SHARC DSP ADSP21469 ADSP2146x

More information

Design of Embedded Systems

Design of Embedded Systems Design of Embedded Systems An Introduction http://www.cs.lth.se/edan15 Krzysztof Kuchcinski Krzysztof.Kuchcinski@cs.lth.se Department of Computer Science Lund Institute of Technology Sweden February 24,

More information

Sunburst Design - Verilog-2001 Design & Best Coding Practices by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.

Sunburst Design - Verilog-2001 Design & Best Coding Practices by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc. World Class Verilog & SystemVerilog Training Sunburst Design - Verilog-2001 Design & Best Coding Practices by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc. Cliff Cummings

More information

Design Methodologies. Kai Huang

Design Methodologies. Kai Huang Design Methodologies Kai Huang News Is that real? In such a thermally constrained environment, going quad-core only makes sense if you can properly power gate/turbo up when some cores are idle. I have

More information

Hardware-near Programming in the Common Language Infrastructure

Hardware-near Programming in the Common Language Infrastructure Hardware-near Programming in the Common Language Infrastructure Stefan Richter, Andreas Rasche and Andreas Polze Hasso-Plattner-Institute at University of Potsdam ISORC 2007 7-9 May, 2007 Santorini Island,

More information

Road Map. Road Map. Motivation (Cont.) Motivation. Intel IXA 2400 NP Architecture. Performance of Embedded System Application on Network Processor

Road Map. Road Map. Motivation (Cont.) Motivation. Intel IXA 2400 NP Architecture. Performance of Embedded System Application on Network Processor Performance of Embedded System Application on Network Processor 2006 Spring Directed Study Project Danhua Guo University of California, Riverside dguo@cs.ucr.edu 06-07 07-2006 Motivation NP Overview Programmability

More information

Simulink -based Programming Environment for Heterogeneous MPSoC

Simulink -based Programming Environment for Heterogeneous MPSoC Simulink -based Programming Environment for Heterogeneous MPSoC Katalin Popovici katalin.popovici@mathworks.com Software Engineer, The MathWorks DATE 2009, Nice, France 2009 The MathWorks, Inc. Summary

More information

CS 152 Computer Architecture and Engineering Lecture 1 Single Cycle Design

CS 152 Computer Architecture and Engineering Lecture 1 Single Cycle Design CS 152 Computer Architecture and Engineering Lecture 1 Single Cycle Design 2014-1-21 John Lazzaro (not a prof - John is always OK) TA: Eric Love www-inst.eecs.berkeley.edu/~cs152/ Play: 1 Today s lecture

More information

ISA: The Hardware Software Interface

ISA: The Hardware Software Interface ISA: The Hardware Software Interface Instruction Set Architecture (ISA) is where software meets hardware In embedded systems, this boundary is often flexible Understanding of ISA design is therefore important

More information

General Purpose Signal Processors

General Purpose Signal Processors General Purpose Signal Processors First announced in 1978 (AMD) for peripheral computation such as in printers, matured in early 80 s (TMS320 series). General purpose vs. dedicated architectures: Pros:

More information

When an instruction is initially read from memory it goes to the Instruction register.

When an instruction is initially read from memory it goes to the Instruction register. CS 320 Ch. 12 Instruction Sets Computer instructions are written in mnemonics. Mnemonics typically have a 1 to 1 correspondence between a mnemonic and the machine code. Mnemonics are the assembly language

More information

EE382V: System-on-a-Chip (SoC) Design

EE382V: System-on-a-Chip (SoC) Design EE382V: System-on-a-Chip (SoC) Design Lecture 8 HW/SW Co-Design Sources: Prof. Margarida Jacome, UT Austin Andreas Gerstlauer Electrical and Computer Engineering University of Texas at Austin gerstl@ece.utexas.edu

More information

COP4020 Programming Languages. Compilers and Interpreters Robert van Engelen & Chris Lacher

COP4020 Programming Languages. Compilers and Interpreters Robert van Engelen & Chris Lacher COP4020 ming Languages Compilers and Interpreters Robert van Engelen & Chris Lacher Overview Common compiler and interpreter configurations Virtual machines Integrated development environments Compiler

More information

Assembly: Review. Computer Science and Engineering College of Engineering The Ohio State University. Lecture 14

Assembly: Review. Computer Science and Engineering College of Engineering The Ohio State University. Lecture 14 Assembly: Review Computer Science and Engineering College of Engineering The Ohio State University Lecture 14 Definition Recall: Translation A source program is translated into a target program Each language

More information

CSI32 Object-Oriented Programming

CSI32 Object-Oriented Programming Outline Department of Mathematics and Computer Science Bronx Community College February 2, 2015 Outline Outline 1 Chapter 1 Cornerstones of Computing Textbook Object-Oriented Programming in Python Goldwasser

More information

The Processor: Datapath and Control. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

The Processor: Datapath and Control. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University The Processor: Datapath and Control Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Introduction CPU performance factors Instruction count Determined

More information

Metodologie di Progettazione Hardware e Software

Metodologie di Progettazione Hardware e Software POLITECNICO DI MILANO Metodologie di Progettazione Hardware e Software Reconfigurable Computing - Design Flow - Marco D. Santambrogio marco.santabrogio@polimi.it Outline 2 Retargetable Compiler Basic Idea

More information

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c 9/7/17

More information

Compiler Construction D7011E

Compiler Construction D7011E Compiler Construction D7011E Lecture 8: Introduction to code generation Viktor Leijon Slides largely by Johan Nordlander with material generously provided by Mark P. Jones. 1 What is a Compiler? Compilers

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

Machine (Assembly) Language

Machine (Assembly) Language Machine (Assembly) Language Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 4: Machine Language

More information

Cpu Architectures Using Fixed Length Instruction Formats

Cpu Architectures Using Fixed Length Instruction Formats Cpu Architectures Using Fixed Length Instruction Formats Fixed-length instructions (RISC's). + allow easy fetch Load-store architectures. can do: add r1=r2+r3 What would be a good thing about having many

More information

Computer Components. Software{ User Programs. Operating System. Hardware

Computer Components. Software{ User Programs. Operating System. Hardware Computer Components Software{ User Programs Operating System Hardware What are Programs? Programs provide instructions for computers Similar to giving directions to a person who is trying to get from point

More information

ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O

ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O ECE2049-E17 Lecture 4 1 ECE2049 E17 Lecture 4 MSP430 Architecture & Intro to Digital I/O Administrivia Homework 1: Due today by 7pm o Either place in box in ECE office or give to me o Office hours tonight!

More information

A Novel Methodology for the Design of Application-Specific Instruction-Set Processors (ASIPs) Using a Machine Description Language

A Novel Methodology for the Design of Application-Specific Instruction-Set Processors (ASIPs) Using a Machine Description Language 1338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001 A Novel Methodology for the Design of Application-Specific Instruction-Set Processors

More information

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions)

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions) By the end of this course, students should CIS 1.5 Course Objectives a. Understand the concept of a program (i.e., a computer following a series of instructions) b. Understand the concept of a variable

More information

Crafting a Compiler with C (II) Compiler V. S. Interpreter

Crafting a Compiler with C (II) Compiler V. S. Interpreter Crafting a Compiler with C (II) 資科系 林偉川 Compiler V S Interpreter Compilation - Translate high-level program to machine code Lexical Analyzer, Syntax Analyzer, Intermediate code generator(semantics Analyzer),

More information

Intel X86 Assembler Instruction Set Opcode Table

Intel X86 Assembler Instruction Set Opcode Table Intel X86 Assembler Instruction Set Opcode Table x86 Instruction Set Reference. Derived from the September 2014 version of the Intel 64 and IA-32 LGDT, Load Global/Interrupt Descriptor Table Register.

More information

Summer 2003 Lecture 1 06/09/03

Summer 2003 Lecture 1 06/09/03 Summer 2003 Lecture 1 06/09/03 General Overview of Class: This class is an introduction to the low level operation of microprocessor-based computer systems. We will cover the operation of the Central Processor

More information

CSE P 501 Compilers. Static Semantics Hal Perkins Winter /22/ Hal Perkins & UW CSE I-1

CSE P 501 Compilers. Static Semantics Hal Perkins Winter /22/ Hal Perkins & UW CSE I-1 CSE P 501 Compilers Static Semantics Hal Perkins Winter 2008 1/22/2008 2002-08 Hal Perkins & UW CSE I-1 Agenda Static semantics Types Attribute grammars Representing types Symbol tables Note: this covers

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

Basic Concepts COE 205. Computer Organization and Assembly Language Dr. Aiman El-Maleh

Basic Concepts COE 205. Computer Organization and Assembly Language Dr. Aiman El-Maleh Basic Concepts COE 205 Computer Organization and Assembly Language Dr. Aiman El-Maleh College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals [Adapted from slides of

More information

Graduate Institute of Electronics Engineering, NTU Advanced VLSI SOPC design flow

Graduate Institute of Electronics Engineering, NTU Advanced VLSI SOPC design flow Advanced VLSI SOPC design flow Advisor: Speaker: ACCESS IC LAB What s SOC? IP classification IP reusable & benefit Outline SOPC solution on FPGA SOPC design flow pp. 2 What s SOC? Definition of SOC Advantage

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

Programming 1. Lecture 1 COP 3014 Fall August 28, 2017

Programming 1. Lecture 1 COP 3014 Fall August 28, 2017 Programming 1 Lecture 1 COP 3014 Fall 2017 August 28, 2017 Main Components of a computer CPU - Central Processing Unit: The brain of the computer. ISA - Instruction Set Architecture: the specific set of

More information

LX4180. LMI: Local Memory Interface CI: Coprocessor Interface CEI: Custom Engine Interface LBC: Lexra Bus Controller

LX4180. LMI: Local Memory Interface CI: Coprocessor Interface CEI: Custom Engine Interface LBC: Lexra Bus Controller System-on-Chip 32-bit Embedded Processor LX4180 Product Brief R3000-class RISC Processor Core: Executes MIPS I instruction set*. Offers designers a familiar programming environment and choice of third

More information

Introduction. CS 2210 Compiler Design Wonsun Ahn

Introduction. CS 2210 Compiler Design Wonsun Ahn Introduction CS 2210 Compiler Design Wonsun Ahn What is a Compiler? Compiler: A program that translates source code written in one language to a target code written in another language Source code: Input

More information

Introduction: From Nand to Tetris

Introduction: From Nand to Tetris Introduction: From Nand to Tetris Building a Modern Computer From First Principles www.nand2tetris.org Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Introduction slide

More information

Programming Fundamentals (CS 302 ) Dr. Ihsan Ullah. Lecturer Department of Computer Science & IT University of Balochistan

Programming Fundamentals (CS 302 ) Dr. Ihsan Ullah. Lecturer Department of Computer Science & IT University of Balochistan Programming Fundamentals (CS 302 ) Dr. Ihsan Ullah Lecturer Department of Computer Science & IT University of Balochistan 1 Outline p Introduction p Program development p C language and beginning with

More information

Introduction. Definition. What is an embedded system? What are embedded systems? Challenges in embedded computing system design. Design methodologies.

Introduction. Definition. What is an embedded system? What are embedded systems? Challenges in embedded computing system design. Design methodologies. Introduction What are embedded systems? Challenges in embedded computing system design. Design methodologies. What is an embedded system? Communication Avionics Automobile Consumer Electronics Office Equipment

More information

ESE Back End 2.0. D. Gajski, S. Abdi. (with contributions from H. Cho, D. Shin, A. Gerstlauer)

ESE Back End 2.0. D. Gajski, S. Abdi. (with contributions from H. Cho, D. Shin, A. Gerstlauer) ESE Back End 2.0 D. Gajski, S. Abdi (with contributions from H. Cho, D. Shin, A. Gerstlauer) Center for Embedded Computer Systems University of California, Irvine http://www.cecs.uci.edu 1 Technology advantages

More information

Re-configurable VLIW processor for streaming data

Re-configurable VLIW processor for streaming data International Workshop NGNT 97 Re-configurable VLIW processor for streaming data V. Iossifov Studiengang Technische Informatik, FB Ingenieurwissenschaften 1, FHTW Berlin. G. Megson School of Computer Science,

More information

CS 5803 Introduction to High Performance Computer Architecture: RISC vs. CISC. A.R. Hurson 323 Computer Science Building, Missouri S&T

CS 5803 Introduction to High Performance Computer Architecture: RISC vs. CISC. A.R. Hurson 323 Computer Science Building, Missouri S&T CS 5803 Introduction to High Performance Computer Architecture: RISC vs. CISC A.R. Hurson 323 Computer Science Building, Missouri S&T hurson@mst.edu 1 Outline How to improve CPU time? Complex Instruction

More information

Computer Architecture Review CS 595

Computer Architecture Review CS 595 Computer Architecture Review CS 595 1 The von Neumann Model Von Neumann (1946) proposed that a fundamental model of a computer should include 5 primary components: Memory Processing Unit Input Device(s)

More information

UNIT I. Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK-4. 1

UNIT I. Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK-4. 1 Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK-4. 1 UNIT I Introduction: Components of System Software: Text editors, Loaders, Assemblers, Macro processors, Compilers, Debuggers. Machine Structure,

More information

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit)

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit) Memory COncepts Address Contents Memory is divided into addressable units, each with an address (like an array with indices) Addressable units are usually larger than a bit, typically 8, 16, 32, or 64

More information

Programming Languages Third Edition. Chapter 7 Basic Semantics

Programming Languages Third Edition. Chapter 7 Basic Semantics Programming Languages Third Edition Chapter 7 Basic Semantics Objectives Understand attributes, binding, and semantic functions Understand declarations, blocks, and scope Learn how to construct a symbol

More information