ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Size: px
Start display at page:

Download "ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals"

Transcription

1 University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2019 HW5: Delay and Layout Sunday, February 17th Due: Friday, March 1st, 11:59pm Problems: All problems should use the AMI 0.60u C5N (3M,2P,high-res) technology setup in previous homeworks. For extra Cadence help refer to 1.htm and Piazza. This manual is for the older version of Cadence, but most steps are similar to what we are currently using with a different GUI. 1. Using Cadence simulation, what is the equivalent source-drain resistance R ds for a W = L = 1.5µm transistor with V gs = V ds = V dd = 5V (NMOS) or V gs = V ds = V dd = 5V (PMOS)? Answer for both NMOS and PMOS transistors. Include description of test circuit, circuit schematics, and simulation results in homework turnin. Part of the question is designing and understanding your test setup. 2. From a Cadence simulation, what is the RC time-constant for: (a) one transistor (W = L = 1.5µm) charging another transistor s gate input of the same size? (b) a transistor (W = L = 1.5µm) charging the gates of 4 transistors of the same size? (c) a transistor (W = L = 1.5µm) charging the gate of a single transistor 4 times the size of the driving transistor? (d) How do your answers to (a), (b), and (c) relate? Include description of test circuit, circuit schematics, and simulation results in homework turnin. Part of the question is designing and understanding your test setup. 3. According to your first-order transistor model from problem 1, what output does a CMOS inverter produce when V in = V dd, V 2 dd=5 V, V thn =800 mv, and V thp =-800 mv. Assume R on,p = R on,n. 4. Consider our MOS technology with the following parameters: V DD = 5V V T 0p = V T 0n = V T 0 = 0.8V 1

2 µ n = 530cm 2 /(V s) and µ p = 200cm 2 /(V s) t ox = 14.1nm λ = 0 ɛ ox = 3.9ɛ 0. (a) Using Cadence, design a CMOS inverter (i.e. size the transistors) such that the switching voltage, V th = 1/2V DD. Submit both the schematic and VTC verifying your design. (b) Using the Vpulse design a test schematic to measure the propagation delay and rise/fall times of your inverter from part (a) with a rail-to-rail input waveform with a period of 4ns, pulse width of 2ns, and rise/fall times of 10ps. Load your inverter with an identical inverter for your delay measurement. Submit the test schematic, input/output transient waveforms, and your delay measurements (propagation and rise/fall times). Left click Add Instance select vpulse from NCSU Analog Parts library. Fill the rest of the boxes. The figure below shows the input pulse that we have specified is bounded between 0 and 5V. It has an initial delay of 1ns, rise and fall time of 1ps and high/low duration of 2ns. In the Analog Design Environment go to Analyses Choose... Set the transient analysis with Stop Time as 8n. We have specified a transient 2

3 analysis from 0 to 8ns. Left click Outputs To be Plotted Select on Schematic. Select the input and output of the inverter. Refer to the previous section, DC analysis, for the necessary steps. The ADE window should look like the picture shown below. Run the simulation by pressing on the green traffic light icon. After few seconds you should be able to see the results of the transient analyses. Note: Make sure to save your schematic every time before simulation, or you will get an error. (c) Design a test schematic to measure the propagation delay of your inverter using a more realistic input. The input should be created by passing the Vpulse from part (b) through your inverter from part (a). Your inverter should still be loaded with an identical inverter. Submit the test schematic, input/output transient waveforms, and your delay measurements (propagation and rise/fall times). (d) Measure the avg power over 4 periods using the calculator to plot the average current through your inverter. 5. Cadence Symbols and Layout This problem is to complete the flow from schematic to layout and verification of your inverter from problem 4. (a) For the inverter you designed in problem 4, create a corresponding symbol. Submit your drawn symbol and schematic with your homework. The schematic is almost the same as before. But you need to add pins for the schematic. Left click Create Pin. In the Pin Names box type the following pin names: in, out, vdd, gnd. Also change the direction of the pins to input for in, output for out, Input/Output for vdd and gnd. A good example of schematic is show below. You can define the pin names as you wish. 3

4 The symbol editor lets you create a black box description of a cell using labels, pins, shapes, notes, and a selection box. Symbols make your design more readable, as you can use them in more complex designs, instead of individual transistors. In the Library Manager click once on your own library. Then left click File New Cell View. Select schematicsymbol and the View Name box will be automatically filled with symbol. Then the Viutuoso Symbol Editor should show up. Then click Create Shape to build the symbol for your schematic. A good example of symbol is shown below. Then we need to add pins to the symbol. Left click Create 4

5 Pin. In the Pin Names box type the following pin names: in, out, vdd, gnd. Also change the direction of the pins to input for in, output for out, Input/Output for vdd and gnd. Change the type to acthi. You are going to start placing the pins in the symbol in the order specified in the Pin Names box, i.e. first you will place the in pin, then out pin. The pins look a little different from the ones in the schematic, so be careful. You will notice that it is a box with a line attached. The end of the line will have the pin name. The box is the actual pin, so it must point AWAY from the rest of the symbol. Next we want to add label to the symbol. Left click Create Label... The last thing to add is a selection box. This will tell the software how much of the symbol is actually used. Create Selection box automatic. The symbol is now finished. (b) For the inverter you designed in problem 4, create the corresponding layout. Submit your layout with your homework. In Library Manager click File New Cell View, select Type to be layout and view will be filled with layout automatically. 5

6 After you create layout cellview, LSW window should show up as below. 6

7 Since we are using the AMI 0.6u technology, we only have an nwell process to use. Thus, the substrate will be a p-type substrate. We can always assume that the background is a p-subtrate. Now we will create a pmos transistor first. To do that, we need an nwell layer in which the pmos transistor will be formed. Note: You may adjust the minimum distance between the grids. In order to do it, in the Virtuoso Layout Editing window select Options Display. A new window will open. On that window, change Minor Spacing to a value that you want. In order to work efficiently, you can adjust it to 1 lambda which is 0.3 (it is actually 0.3u but in that window it will be written as 0.3). Here are some hotkeys that I have found to be very useful when designing layouts: Move about the layout view screen keyboard arrows (up, down, left, right) Fit entire layout onto screen f Zoom in/out Ctrl/Shift z Cancel previous command Esc Reveal all mask layers within each layout cell Shift f (Use Ctrl f to hide these layers) Properties q Create path p (Convenient for making interconnections between I/O pins of layout cell; need to select mask layer first from LSW window) Create rectangle of mask layer r (Select mask layer first from LSW) Create pin Ctrl p (Select mask layer first from LSW) Instantiate layout cell i Select more than one mask layer simultaneously Hold down Shift and click on each layer (Use Ctrl to deselect a particular layer) Undo u Copy c Delete d Move m Stretch s (Point to edge of mask layer first using mouse cursor) Ruler k (Erase ruler Shift k) Select nwell in LSW window, and move cursor to layout window. Type r, just click on the left mouse button to draw the rectangle of n-well region. If you want to change the dimension after drawing, move your cursor to the side where you want to extend or shorten such that the side is highlighted and then type s (stretch). The side will move with your cursor. Note: The ruler shown below can be invoked by typing k, the numbers represent the length in um (micrometers). You do not have to necessarily follow the dimensions shown below. In fact, it is probably a good idea to play around 7

8 with the lengths and widths in order to see how small a mask layer you can create without violating any of the design rules. Likewise, draw the nselect and pselect layers as shown in the figure below. The pselect is where you are creating the pmos transistor since this is where the p+ diffusion is going to be formed. Draw the p+ active layer on your layout as shown in the figure below. The orange shaded rectangle is the p+ active regions. The green shaded rectangle is the n+ active region. Next, draw the poly layer to form the gate of the transistor. The size of the pmos transistor shown below has W=1.5um and L=0.6um. Next we need to connect the active regions to metal lines so that they can be routed. The figure below shows the metal1 layer (blue line-shaded polygons) is connected to the active region by an active contact (cc, which is solid black). Remember that the design rule usually restricts the size of the contact to be 2lambda * 2lambda, which is 0.6u * 0.6u. The nselect creates an n+ diffusion in the nwell. This is the body pin of the pmos transistor, which should be connected to power (vdd). We ll touch on how to connect to the power supply later. 8

9 Next, you can proceed to create the nmos transistor but this time your nmos needs to be created in the nselect layer while the p+ diffusion of the nmos is in the pselect. The size of the nmos chosen in this design has the same dimension as the pmos (channel length 0.6um, width 1.5um). Note that since we are using an nwell technology, we don t need an explicit well for the nmos transistor (the pwell) since the background is p-substrate. The figure below shows the inverter. 9

10 The region between the two transistors would be used for pin definitions and for routing signals from one layout cell to another. The more the distance between the nmos and the pmos transistor, the more connections can be routed 10

11 and less problems to worry about in the future when designing big cells. However, a large distance may be inefficient and result in a very big layout. But for the sake of learning, we would rather choose to go with a large distance of around 15um. The gate of the transistors needs to be connected to the metal1 lines for it to be accessed. To do that there are some ready-to-use macros available for making contacts. To access a macro cell which has a poly-metal1 combo with a single contact, instantiate the cell M1 POLY (note capital letters) from the library NCSU TechLib ami06. Similarly, to access a metal1-metal2 combo with a via, instantiate the cell M1 M2 from the NCSU TechLib ami06 library. These cells will appear as a black box. To see through the cell, type Shift -f. This will make the cell visible. Remember that you cannot update this cell, since it is a standard library cell. The figure below shows the connection. The red-shaded polygon with a black square at the center and blue borderline is the M1 POLY contact. The blue-shaded polygon with a pink square at the center and pink borderline is the M1 M2 contact. 11

12 For simulation purposes and standard cell design rules, it is necessary to add the pin layer. They are identical in purpose to the input/output and vdd/gnd pins in the schematic view. Power and ground rail pins should be declared as Input/output. It would not be a bad idea to label your pins with the text layer, but make sure to name the labels the same as the pins in your schematic and put them on top of the labeled wires. Click on metal2 in the LSW window. Then press Ctrl-p in the layout editor window. A window 12

13 will pop up. Enter the name in for labeling input. Choose Display pin name option and define the pin as input. Then click on the left mouse button with the cursor placed at the top left corner of the metal2 square to be labeled. Then drag the mouse to the right bottom corner of the same metal2 square to be labeled. Click one more time inside the metal2 square to place the text. Do the same steps for placing an out pin except for the fact that you declare the pin as output. Next, select metal1 in LSW window, and type Ctrl-p. Type vdd for Temrinal Names and select I/O Type as Input/Output. The rest is the same as before. 13

14 (c) Perform a DRC and LVS on your inverter layout to ensure it passes the design rules and matches your scehmatic. Submit proof of passing both the DRC and LVS with your homework. Our next step in the Design Process is to perform a Design Rule Check, more commonly known as DRC on the layout. The DRC is a step taken to prompt us of any violations. To run the DRC, choose DRC... from the Verify menu in the layout view window. A pop-up menu will appear as below. Click ok to run DRC. Cadence then runs the DRC and reports the errors or warnings, if any, in the CIW window. A successful DRC ensures that the layout passes through the rules designed for faultless fabrication. However, it does not guarantee if it really represents the circuit you desire to fabricate. In our case, for an inverter, we really need a tool that can compare the connectivities of our layout with that of the schematic and ensure that it is really a layout for an inverter. One way 14

15 Cadence does this is by generating an Hspice netlist file from the layout and comparing it with the netlist for the schematic. This is the essence of the LVS tool. The first step is to extract all the connectivities and parasitic capacitances from your layout design. From the layout view window, choose Extract... under Verify menu. A window will pop-up. Make sure that the entries are as given below. For the entry in Switch Names, click on Set Switches. A window will pop-up. Choose the option for Extract parasitic caps. Finally, click on OK. The beauty of this extraction tool is that Cadence will recognize not only all the connections but also more importantly, if you have designed the layout correctly, it will also recognize all the nmos and pmos transistors. Your layout will then be extracted and while Cadence is doing so, the intermediary steps will be displayed in the CIW. It will tell you whether the extraction is successful or not. Open the extracted view of the cell from the Library Manager window. Press Shift-f to see the symbols for the active and passive devices appear in 15

16 the extraction view window. This is just symbolic to associate the portions of the layout with different devices. The extracted view will look something like this: The next step is to perform LVS. Since we generated a layout with certain a W and L for the transistors (for the case discussed here, both nmos and pmos W = 1.5u and L = 0.6u), the layout versus schematic operation will give you an error if the schematic against which the layout is compared has a different W and L for its pmos and nmos transistors. You need to make sure that Cadence is checking for certain LVS rules. To do so, click on NCSU 16

17 Modify LVS Rules from the layout view window of your inverter. A window should pop-up with a number of LVS options available for you to choose. For our purposes, you should verify that the following 4 items are selected: Allow FET Series Permutations, Combine Parallel FETs, Combine Parallel Capacitors, Compare FET Parameters. This check should be performed every time you are about to start an LVS. From the extracted layout window, choose Verify LVS. A pop-up menu will appear like below. If you already had an LVS directory, a window will pop-up which might say The selected LVS rule directory does not match the run form. Just select Form Contents and click OK. Run the LVS you can get the following result if it succeeds. 17

18 If there are any errors, click on Error Display in the LVS menu to view what went wrong. Click output from LVS window, you will see the following log file. It is very beneficial if you click on output window shown below. It will explain each of the terms in the above window in great detail. The si.log will also explain to you all the errors that it detected in both the schematic and layout views during the LVS comparison. One should realize that almost no one designs a perfect layout on the first attempt so do not expect to pass the LVS check on your first try. In most cases, there will be many errors reported by both the si.log file and the Error Display window. You should not be intimidated by all these errors. Many of these are, in fact, related to each other. Hence, once you fix one of these errors, many of the other errors should disappear. The idea is to concentrate on one error at a time, change the layout design accordingly and repeat the extraction and LVS steps until the layout and schematic views match perfectly with each other. (d) Using your test schematic created in 4(c), run a simulation of the analog extracted schematic generated from your layout to measure the dynamic per- 18

19 formance of your layout. The input should be created by passing the Vpulse from part 4(b) through your inverter from part 4(a). Your inverter should still be loaded with an identical inverter. Submit the test schematic, input/output transient waveforms, and your delay measurements (propagation and rise/fall times). Here are the instructions for post layout simulation. Open up the test schematic for the inverter. Select Launch ADE L. The same steps that you run simulation in previous homeworks. However, the one change that needs to be made is: goes to Setup Environment... and you will see the Environment Options window open up. Originally, the Switch View List should contain the following items: spectre cmos sch cmos.sch schematic veriloga In order for Cadence to simulate through the extracted view of the layout design instead of the schematic view, you will include an additional item (extracted) in the Switch View List such that it now contains the following: spectre cmos sch cmos.sch extracted schematic veriloga 19

Design rule illustrations for the AMI C5N process can be found at:

Design rule illustrations for the AMI C5N process can be found at: Cadence Tutorial B: Layout, DRC, Extraction, and LVS Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revised by C Young & Waqar A Qureshi -FS08 Document Contents Introduction

More information

Virtuoso Layout Editor

Virtuoso Layout Editor This tutorial will cover the basic steps involved in using the Cadence layout editor called Virtuoso, extracting layout, and running simulation on the layout. The inverter layout is used as an example

More information

TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION

TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION After finishing a schematic of your design (Tutorial-I), the next step is creating masks which are for

More information

EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits

EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits Contents Objective:... 2 Part 1: Introduction... 2 Part 2 Simulation of a CMOS Inverter... 3 Part 2.1 Attaching technology information... 3 Part

More information

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout)

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout) CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout) Joel Wilder, Aleksandar Milenkovic, ECE Dept., The University of Alabama in Huntsville Adapted from Virginia Tech, Dept.

More information

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction VLSI Lab Tutorial 3 Virtuoso Layout Editing Introduction 1.0 Introduction The purpose of this lab tutorial is to guide you through the design process in creating a custom IC layout for your CMOS inverter

More information

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS)

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) Objective Part A: To become acquainted with Spectre (or HSpice) by simulating an inverter,

More information

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group.

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group. Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Andrew Mason and the AMSaC lab group. Revision Notes: Aug. 2003 update and edit A. Mason add intro/revision/contents

More information

Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial

Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial Introduction This tutorial is an introduction to schematic capture and circuit simulation for ENGN1600 using Cadence Virtuoso. These courses

More information

Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics

Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics Introduction This tutorial describes how to generate a mask layout in the Cadence Virtuoso Layout Editor. Use of DIVA

More information

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #2, Schematic Capture, DC Analysis, Transient Analysis (Inverter, NAND2)

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #2, Schematic Capture, DC Analysis, Transient Analysis (Inverter, NAND2) CPE/EE 427, CPE 527, VLSI Design I: Tutorial #2, Schematic Capture, DC Analysis, Transient Analysis (Inverter, NAND2) Joel Wilder, Aleksandar Milenkovic, ECE Dept., The University of Alabama in Huntsville

More information

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL)

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL) EE115C Digital Electronic Circuits Tutorial 4: Schematic-driven Layout (Virtuoso XL) This tutorial will demonstrate schematic-driven layout on the example of a 2-input NAND gate. Simple Layout (that won

More information

ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool

ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool Contents Contents 1. General 2. Creating and Working On a Layout o 2.1 Undoing/Re-doing an Action o 2.2 Display Options

More information

CS755 CAD TOOL TUTORIAL

CS755 CAD TOOL TUTORIAL CS755 CAD TOOL TUTORIAL CREATING SCHEMATIC IN CADENCE Shi-Ting Zhou shi-ting@cs.wisc.edu After you have figured out what you want to design, and drafted some pictures and diagrams, it s time to input schematics

More information

Revision Notes: July2004 Generate tutorial for single transistor analysis. Based on existing schematic entry tutorial developed for ECE410

Revision Notes: July2004 Generate tutorial for single transistor analysis. Based on existing schematic entry tutorial developed for ECE410 Cadence Analog Tutorial 1: Schematic Entry and Transistor Characterization Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revision Notes: July2004 Generate tutorial for

More information

EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015

EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015 EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015 Contents Objective:... 2 Part 1 Creating a layout... 2 1.1 Run DRC Early and Often... 2 1.2 Create N active and connect the transistors... 3 1.3 Vias...

More information

Microelectronica. Full-Custom Design with Cadence Tutorial

Microelectronica. Full-Custom Design with Cadence Tutorial Área Científica de Electrónica Microelectronica Full-Custom Design with Cadence Tutorial AustriaMicroSystems C35B3 (HIT-Kit 3.70) Marcelino Santos Table of contends 1. Starting Cadence... 3 Starting Cadence

More information

Cadence IC Design Manual

Cadence IC Design Manual Cadence IC Design Manual For EE5518 ZHENG Huan Qun Lin Long Yang Revised on May 2017 Department of Electrical & Computer Engineering National University of Singapore 1 P age Contents 1 INTRODUCTION...

More information

UNIVERSITY OF WATERLOO

UNIVERSITY OF WATERLOO UNIVERSITY OF WATERLOO UW ASIC DESIGN TEAM: Cadence Tutorial Description: Part I: Layout & DRC of a CMOS inverter. Part II: Extraction & LVS of a CMOS inverter. Part III: Post-Layout Simulation. The Cadence

More information

EE434 ASIC & Digital Systems. From Layout to SPICE Simulation (Virtuoso, Calibre, HSpice) Spring 2017 Dae Hyun Kim

EE434 ASIC & Digital Systems. From Layout to SPICE Simulation (Virtuoso, Calibre, HSpice) Spring 2017 Dae Hyun Kim EE434 ASIC & Digital Systems From Layout to SPICE Simulation (Virtuoso, Calibre, HSpice) Spring 2017 Dae Hyun Kim daehyun@eecs.wsu.edu 1 Preparation for Lab2 Download the following file into your working

More information

EE 330 Laboratory 3 Layout, DRC, and LVS

EE 330 Laboratory 3 Layout, DRC, and LVS EE 330 Laboratory 3 Layout, DRC, and LVS Spring 2018 Contents Objective:... 2 Part 1 creating a layout... 2 1.1 Run DRC... 2 1.2 Stick Diagram to Physical Layer... 3 1.3 Bulk Connections... 3 1.4 Pins...

More information

EE115C Digital Electronic Circuits. Tutorial 2: Hierarchical Schematic and Simulation

EE115C Digital Electronic Circuits. Tutorial 2: Hierarchical Schematic and Simulation EE115C Digital Electronic Circuits Tutorial 2: Hierarchical Schematic and Simulation The objectives are to become familiar with Virtuoso schematic editor, learn how to create the symbol view of basic primitives,

More information

ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018

ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018 ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018 Introduction This project will first walk you through the setup

More information

VLSI Lab Tutorial 1. Cadence Virtuoso Schematic Composer Introduction

VLSI Lab Tutorial 1. Cadence Virtuoso Schematic Composer Introduction VLSI Lab Tutorial 1 Cadence Virtuoso Schematic Composer Introduction 1.0 Introduction The purpose of the first lab tutorial is to help you become familiar with the schematic editor, Virtuoso Schematic

More information

EECE 285 VLSI Design. Cadence Tutorial EECE 285 VLSI. By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski

EECE 285 VLSI Design. Cadence Tutorial EECE 285 VLSI. By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski Cadence Tutorial EECE 285 VLSI By: Kevin Dick Co-author: Jeff Kauppila Co-author: Dr. Arthur Witulski 1 Table of Contents Purpose of Cadence 1) The Purpose of Cadence pg. 4 Linux 1) The Purpose of Linux

More information

Process technology and introduction to physical

Process technology and introduction to physical Neuromorphic Engineering II Lab 3, Spring 2014 1 Lab 3 March 10, 2014 Process technology and introduction to physical layout Today you will start to learn to use the Virtuoso layout editor XL which is

More information

Cadence Tutorial. Introduction to Cadence 0.18um, Implementation and Simulation of an inverter. A. Moradi, A. Miled et M. Sawan

Cadence Tutorial. Introduction to Cadence 0.18um, Implementation and Simulation of an inverter. A. Moradi, A. Miled et M. Sawan Cadence Tutorial Introduction to Cadence 0.18um, Implementation and Simulation of an inverter A. Moradi, A. Miled et M. Sawan Section 1: Introduction to Cadence You will see how to create a new library

More information

EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial

EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial Dept. of Electrical and Computer Engineering University of California, Davis September 26, 2011 Reading: Rabaey Chapters 1, 2, A,

More information

Guide to the CSE 577 Lab and Cad tools

Guide to the CSE 577 Lab and Cad tools Guide to the CSE 577 Lab and Cad tools 1. Introduction The objective of this tutorial is to give you an overview to (1) setup the Cadence and Synopsys hspice tools for your account in IST 218 Lab, (2)

More information

FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY LAB SHEET DIGITAL INTEGRATED CIRCUIT

FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY LAB SHEET DIGITAL INTEGRATED CIRCUIT FACULTY OF ENGINEERING MULTIMEDIA UNIVERSITY LAB SHEET DIGITAL INTEGRATED CIRCUIT DIC1: Schematic Design Entry, Simulation & Verification DIC2: Schematic Driven Layout Drawing (SDL) Design Rule Check (DRC)

More information

CS/EE 5720/6720 Analog IC Design Tutorial for Schematic Design and Analysis using Spectre

CS/EE 5720/6720 Analog IC Design Tutorial for Schematic Design and Analysis using Spectre CS/EE 5720/6720 Analog IC Design Tutorial for Schematic Design and Analysis using Spectre Introduction to Cadence EDA: The Cadence toolset is a complete microchip EDA (Electronic Design Automation) system,

More information

More information can be found in the Cadence manuals Virtuoso Layout Editor User Guide and Cadence Hierarchy Editor User Guide.

More information can be found in the Cadence manuals Virtuoso Layout Editor User Guide and Cadence Hierarchy Editor User Guide. Chapter 6 Building with Layout This chapter consists of two parts. The first describes the generation of layout views and the second deals with the various tools used for verifying the layout, both physical

More information

EE 330 Spring Laboratory 2: Basic Boolean Circuits

EE 330 Spring Laboratory 2: Basic Boolean Circuits EE 330 Spring 2013 Laboratory 2: Basic Boolean Circuits Objective: The objective of this experiment is to investigate methods for evaluating the performance of Boolean circuits. Emphasis will be placed

More information

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group.

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revision Notes: Jan. 2006 Updated for use with spectre simulator

More information

Lab 2. Standard Cell layout.

Lab 2. Standard Cell layout. Lab 2. Standard Cell layout. The purpose of this lab is to demonstrate CMOS-standard cell design. Use the lab instructions and the cadence manual (http://www.es.lth.se/ugradcourses/cadsys/cadence.html)

More information

CMOS Design Lab Manual

CMOS Design Lab Manual CMOS Design Lab Manual Developed By University Program Team CoreEl Technologies (I) Pvt. Ltd. 1 Objective Objective of this lab is to learn the Mentor Graphics HEP2 tools as well learn the flow of the

More information

ECE471/571 Energy Ecient VLSI Design

ECE471/571 Energy Ecient VLSI Design ECE471/571 Energy Ecient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30pm on Friday, January 30 th 2015 Introduction This project will rst walk you through the setup for

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation NTU IC541CA 1 Assumed Knowledge This lab assumes use of the Electric

More information

Logging in, starting a shell tool, and starting the Cadence Tool Suite

Logging in, starting a shell tool, and starting the Cadence Tool Suite EEE 4134 VLSI I Laboratory Lab 0 (Introductory Lab) Logging into Cadence Server, Tool Setup, Cell Library Creation, Introduction to Custom IC Design flow Objectives: To login, start a shell tool and start

More information

Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter

Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter Cadence Tutorial: Schematic Entry and Circuit Simulation of a CMOS Inverter Introduction This tutorial describes the steps involved in the design and simulation of a CMOS inverter using the Cadence Virtuoso

More information

EE4111 Advanced Analog Electronics Design. Spring 2009 Experiment #4 April 6 ~ April 17

EE4111 Advanced Analog Electronics Design. Spring 2009 Experiment #4 April 6 ~ April 17 EE4111 Advanced Analog Electronics Design Spring 2009 Experiment #4 April 6 ~ April 17 Setup Cadence in VLSI Lab 1) Copy files $ cp r /home/grads/ee4111ta ~/ 2) Edit your.cshrc file -- Include the following

More information

The Procedure for Laying out the inverter in TSMC s 0.35 micron Technogy using MOSIS SCMOS SCN4M_SUBM design rules.

The Procedure for Laying out the inverter in TSMC s 0.35 micron Technogy using MOSIS SCMOS SCN4M_SUBM design rules. Page 1 of 5 CADENCE TUTORIAL Creating Layout of an inverter: click on File->library->new a Create Library form appears, fill it as follows: in the name field enter: inverter select "Attach to existing

More information

DOWNLOAD PDF CADENCE WAVEFORM CALCULATOR USER GUIDE

DOWNLOAD PDF CADENCE WAVEFORM CALCULATOR USER GUIDE Chapter 1 : CSE / Cadence Tutorial The Cadence Design Communities support Cadence users and technologists interacting to exchange ideas, news, technical information, and best practices to solve problems

More information

Cadence Schematic Tutorial. EEE5320/EEE4306 Fall 2015 University of Florida ECE

Cadence Schematic Tutorial. EEE5320/EEE4306 Fall 2015 University of Florida ECE Cadence Schematic Tutorial EEE5320/EEE4306 Fall 2015 University of Florida ECE 1 Remote access You may access the Linux server directly from the NEB Computer Lab using your GatorLink username and password.

More information

Composite Layout CS/EE N-type from the top. N-type Transistor. Diffusion Mask. Polysilicon Mask

Composite Layout CS/EE N-type from the top. N-type Transistor. Diffusion Mask. Polysilicon Mask Composite Layout CS/EE 6710 Introduction to Layout Inverter Layout Example Layout Design Rules Drawing the mask layers that will be used by the fabrication folks to make the devices Very different from

More information

Virtuoso Schematic Composer

Virtuoso Schematic Composer is a schematic design tool from Cadence. In this tutorial you will learn how to put electrical components, make wire connections, insert pins and check for connection error. Start Cadence Custom IC Design

More information

CMOS Process Flow. Layout CAD Tools

CMOS Process Flow. Layout CAD Tools CMOS Process Flow See supplementary power point file for animated CMOS process flow (see class ece410 website and/or* http://www.multimedia.vt.edu/ee5545/): This file should be viewed as a slide show It

More information

Lab 1: An Introduction to Cadence

Lab 1: An Introduction to Cadence GIF-4201/GEL-7016 (Micro-électronique) Lab 1: An Introduction to Cadence Schematic, simulation and layout Gabriel Gagnon-Turcotte, Mehdi Noormohammadi Khiarak and Benoit Gosselin Department of Electrical

More information

A Tutorial on Using the Cadence Virtuoso Editor to create a CMOS Inverter with CMOSIS5 Technology

A Tutorial on Using the Cadence Virtuoso Editor to create a CMOS Inverter with CMOSIS5 Technology A Tutorial on Using the Cadence Virtuoso Editor to create a CMOS Inverter with CMOSIS Technology Developed by Ted Obuchowicz VLSI/CAD Specialist, Dept. of Electrical and Computer Engineering Concordia

More information

Introduction to laboratory exercises in Digital IC Design.

Introduction to laboratory exercises in Digital IC Design. Introduction to laboratory exercises in Digital IC Design. A digital ASIC typically consists of four parts: Controller, datapath, memory, and I/O. The digital ASIC below, which is an FFT/IFFT co-processor,

More information

Professor Muller Fall 2016 Sameet Ramakrishnan Eric Chang Adapted from prior EE140 and EE141 labs. EE 140/240A Lab 0 Full IC Design Flow

Professor Muller Fall 2016 Sameet Ramakrishnan Eric Chang Adapted from prior EE140 and EE141 labs. EE 140/240A Lab 0 Full IC Design Flow Professor Muller Fall 2016 Sameet Ramakrishnan Eric Chang Adapted from prior EE140 and EE141 labs EE 140/240A Lab 0 Full IC Design Flow In this lab, you will walk through the full process an analog designer

More information

Fall 2008: EE5323 VLSI Design I using Cadence

Fall 2008: EE5323 VLSI Design I using Cadence 1 of 23 9/17/2008 6:47 PM Fall 2008: EE5323 VLSI Design I using Cadence This tutorial has been adapted from EE5323 offered in Fall 2007. Thanks to Jie Gu, Prof. Chris Kim and Satish Sivaswamy of the University

More information

CMOS INVERTER LAYOUT TUTORIAL

CMOS INVERTER LAYOUT TUTORIAL PRINCESS SUMAYA UNIVERSITY FOR TECHNOLOGY CMOS INVERTER LAYOUT TUTORIAL We will start the inverter by drawing a PMOS. The first step is to draw a poly layer. Click on draw a rectangle and choose the poly

More information

Mentor Graphics VLSI CAD Tutorials

Mentor Graphics VLSI CAD Tutorials VLSI Design Flow Using Mentor-Graphics Tools Mentor Graphics VLSI CAD Tutorials School of Engineering Santa Clara University Santa Clara, CA 95053 At the Design Center, School of Engineering, of Santa

More information

Cadence Tutorial C: Simulating DC and Timing Characteristics 1

Cadence Tutorial C: Simulating DC and Timing Characteristics 1 Cadence Tutorial C: Simulating DC and Timing Characteristics Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group Last updated by Patrick O Hara SS15 Document Contents Introduction

More information

EE 140/240A - Full IC Design Flow Tutorial

EE 140/240A - Full IC Design Flow Tutorial Original document by Filip Maksimovic & Mike Lorek, Spring 2015, derived from earlier EE141 lab manuals Revisions for IC6 by David Burnett & Thaibao Phan, Spring 2016 Revisions made by Nandish Mehta to

More information

Amplifier Simulation Tutorial. Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5)

Amplifier Simulation Tutorial. Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5) Amplifier Simulation Tutorial Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5) Yongsuk Choi, Marvin Onabajo This tutorial provides a quick introduction to the use of Cadence tools

More information

EE 471: Transport Phenomena in Solid State Devices

EE 471: Transport Phenomena in Solid State Devices EE 471: Transport Phenomena in Solid State Devices HW7 Due: 4/17/18 For this homework, you will download a free PC version of the industry standard SPICE circuit simulator called LTspice, provided by Linear

More information

Cadence Tutorial D: Using Design Variables and Parametric Analysis Document Contents Introduction Using Design Variables Apply Apply

Cadence Tutorial D: Using Design Variables and Parametric Analysis Document Contents Introduction Using Design Variables Apply Apply Cadence Tutorial D: Using Design Variables and Parametric Analysis Created for the MSU VLSI program by Casey Wallace Last Updated by: Patrick O Hara SS15 Document Contents Introduction Using Design Variables

More information

CADENCE SETUP. ECE4430-Analog IC Design

CADENCE SETUP. ECE4430-Analog IC Design CADENCE SETUP This short tutorial shows how to configure Cadence to use the NCSU Cadence Design Kit (CDK) with access to the ON Semiconductor C5 0.5-µm and the TSMC 0.35-µm CMOS processes libraries. In

More information

Select the technology library: NCSU_TechLib_ami06, then press OK.

Select the technology library: NCSU_TechLib_ami06, then press OK. ECE 126 Inverter Tutorial: Schematic & Symbol Creation Created for GWU by Anis Nurashikin Nordin & Thomas Farmer Tutorial adapted from: http://www.ee.ttu.edu/ee/cadence/commondirectory/final%20tutorials/digitalcircuitsimulationusingvirtuoso.doc

More information

ANALOG MICROELECTRONICS ( A)

ANALOG MICROELECTRONICS ( A) ANALOG MICROELECTRONICS (304-534A) IBM 130 nm CMOS Technology An Introduction to Cadence Virtuoso Layout Tool and the Analog Simulation Environment Prepared By - Azhar A. Chowdhury Updated by Ming Yang

More information

Verifying the Multiplexer Layout

Verifying the Multiplexer Layout 4 This chapter introduces you to interactive verification. You will perform two different tests in the Virtuoso layout editor while using Assura interactive verification products. One test uses the Design

More information

Layout and Layout Verification. of an Inverter Circuit

Layout and Layout Verification. of an Inverter Circuit Layout and Layout Verification of an Inverter Circuit Santa Clara University Department of Electrical Engineering By Piyush Panwar Under Guidance of Dr Samiha Mourad Date of Last Revision: August 7, 2010

More information

University of California, Davis College of Engineering Department of Electrical and Computer Engineering. EEC118 EXPERIMENT No.

University of California, Davis College of Engineering Department of Electrical and Computer Engineering. EEC118 EXPERIMENT No. I. OBJECTIVE University of California, Davis College of Engineering Department of Electrical and Computer Engineering EEC118 EXPERIMENT No. 1 MAGIC TUTORIAL The objective of this experiment is to learn

More information

The original document link is

The original document link is Tutorial:Analog Artist with HSPICE The original document link is http://www.eda.ncsu.edu/wiki/tutorial:analog_artist_with_hspice This tutorial will introduce you to the Cadence Environment: specifically

More information

PSpice Tutorial. Physics 160 Spring 2006

PSpice Tutorial. Physics 160 Spring 2006 PSpice Tutorial This is a tutorial designed to guide you through the simulation assignment included in the first homework set. You may either use the program as installed in the lab, or you may install

More information

Tutorial on getting started in Cadence. Advanced Analog Circuits Spring 2015 Instructor: Prof. Harish Krishnaswamy TA: Jahnavi Sharma

Tutorial on getting started in Cadence. Advanced Analog Circuits Spring 2015 Instructor: Prof. Harish Krishnaswamy TA: Jahnavi Sharma Tutorial on getting started in Cadence Advanced Analog Circuits Spring 2015 Instructor: Prof. Harish Krishnaswamy TA: Jahnavi Sharma Getting Started Start Cadence from the terminal by using the command

More information

Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine

Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine Using Cadence Virtuoso, a UNIX based OrCAD PSpice like program, Remotely on a Windows Machine A. Launch PuTTY. 1. Load the Saved Session that has Enable X11 forwarding and the Host Name is cvl.ece.vt.edu.

More information

S Exercise 1C Testing the Ring Oscillator

S Exercise 1C Testing the Ring Oscillator S-87.3148 Exercise 1C Testing the Ring Oscillator Aalto University School of Electrical Engineering Department of Micro- and Nanosciences (ECDL) 10.9.2014 1 1 Building the test bench In this exercise,

More information

AMS 0.18 µm PDK Setup and Cadence Tutorial Contributors

AMS 0.18 µm PDK Setup and Cadence Tutorial Contributors AMS 0.18 µm PDK Setup and Cadence Tutorial Contributors Muhammad Ahmed, Sita Asar, and Ayman Fayed, Power Management Research Lab, https://pmrl.osu.edu, Department of Electrical and Computer Engineering,

More information

Laboratory 3. EE 342 (VLSI Circuit Design) - Using Spectre netlist and Calculator for simulation

Laboratory 3. EE 342 (VLSI Circuit Design) - Using Spectre netlist and Calculator for simulation EE 342 (VLSI Circuit Design) Laboratory 3 - Using Spectre netlist and Calculator for simulation By Mulong Li, 2013 1 Background knowledge Spectre: is a SPICE-class circuit simulator. It provides the basic

More information

EDA-BASED DESIGN PRACTICAL LABORATORY SESSION No. 3

EDA-BASED DESIGN PRACTICAL LABORATORY SESSION No. 3 LABORATOIRE DE SYSTEMES MICROELECTRONIQUES EPFL STI IMM LSM ELD Station nº 11 CH-1015 Lausanne Téléphone : Fax : E-mail : Site web : +4121 693 6955 +4121 693 6959 lsm@epfl.ch lsm.epfl.ch EDA-BASED DESIGN

More information

EE5323/5324 VLSI Design I/II using Cadence

EE5323/5324 VLSI Design I/II using Cadence 1 of 18 2009-1-23 23:58 Spring 2009: EE5323/5324 VLSI Design I/II using Cadence This tutorial has been adapted from EE5323 offered in Fall 2007. Thanks to Jie Gu, Prof. Chris Kim and Satish Sivaswamy of

More information

Cadence Virtuoso Simulation of a pixel

Cadence Virtuoso Simulation of a pixel MEMS AND MICROSENSORS 2018/2019 Cadence Virtuoso Simulation of a pixel 11/12/2018 Giorgio Mussi giorgio.mussi@polimi.it Introduction In this lab, we will use Cadence Virtuoso to simulate a sub-array of

More information

ECE425: Introduction to VLSI System Design Machine Problem 3 Due: 11:59pm Friday, Dec. 15 th 2017

ECE425: Introduction to VLSI System Design Machine Problem 3 Due: 11:59pm Friday, Dec. 15 th 2017 ECE425: Introduction to VLSI System Design Machine Problem 3 Due: 11:59pm Friday, Dec. 15 th 2017 In this MP, you will use automated tools to synthesize the controller module from your MP2 project into

More information

Figure 1: ADE Test Editor

Figure 1: ADE Test Editor Due to some issues that ADE GXL simulation environment has (probably because of inappropriate setup), we will run simulations in the ADE L design environment, which includes all the necessary tools that

More information

HOMEWORK 9 CMPEN 411 Due: 4/12/ :30pm

HOMEWORK 9 CMPEN 411 Due: 4/12/ :30pm HOMEWORK 9 CMPEN 411 Due: 4/12/2016 11:30pm Learning Objective Complete the full 8 bit RISC microprocessor chip design by placing the processor core design into the 40 pin 'tiny' chip pad frame. Do verify

More information

LTSPICE MANUAL. For Teaching Module EE4415 ZHENG HAUN QUN. December 2016

LTSPICE MANUAL. For Teaching Module EE4415 ZHENG HAUN QUN. December 2016 LTSPICE MANUAL For Teaching Module EE4415 ZHENG HAUN QUN December 2016 DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINNERING NATIONAL UNIVERSITY OF SINGAPORE Contents 1. Introduction... 2 1.1 Installation...

More information

HOMEWORK 10 CMPEN 411 Due: 4/28/ :30pm

HOMEWORK 10 CMPEN 411 Due: 4/28/ :30pm HOMEWORK 10 CMPEN 411 Due: 4/28/2016 11:30pm Instruction First, fabrication ready the full 8 bit RISC microprocessor chip: redesign the chip (its components) to fit the entire chip fitted into the 40 pin

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.374: Analysis and Design of Digital Integrated Circuits Using MAGIC Fall 2003 Issued: 9/04/00 Basic Usage

More information

ECE 683 OSU DIGITAL CELL LIBRARY DOCUMENTATION. Matt Silverman 12/5/2005. Timing Characterization Using Cadence

ECE 683 OSU DIGITAL CELL LIBRARY DOCUMENTATION. Matt Silverman 12/5/2005. Timing Characterization Using Cadence ECE 683 OSU DIGITAL CELL LIBRARY DOCUMENTATION Matt Silverman 12/5/2005 Timing Characterization Using Cadence TABLE OF CONTENTS INTRODUCTION... 3 TRANSIENT ANALYSIS WITH CADENCE -------------------------------------------------------------------

More information

EE 330 Laboratory Experiment Number 11

EE 330 Laboratory Experiment Number 11 EE 330 Laboratory Experiment Number 11 Design and Simulation of Digital Circuits using Hardware Description Languages Fall 2017 Contents Purpose:... 3 Background... 3 Part 1: Inverter... 4 1.1 Simulating

More information

Setting up an initial ".tcshrc" file

Setting up an initial .tcshrc file ECE445 Fall 2005 Introduction to SaberSketch The SABER simulator is a tool for computer simulation of analog systems, digital systems and mixed signal systems. SaberDesigner consists of the three tools,

More information

Lab 2: Functional Simulation Using. Affirma Analog Simulator

Lab 2: Functional Simulation Using. Affirma Analog Simulator Lab 2: Functional Simulation Using Affirma Analog Simulator This Lab will go over: 1. Creating a test bench 2. Simulation in Spectre Spice using the Analog Design environment 1. Creating a test bench:

More information

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 26 March 2017 Disclaimer: This course

More information

EEC 118 Spring 2011 Lab #5 Manchester Carry-Chain Adder

EEC 118 Spring 2011 Lab #5 Manchester Carry-Chain Adder EEC 118 Spring 2011 Lab #5 Manchester Carry-Chain Adder Rajeevan Amirtharajah Dept. of Electrical and Computer Engineering University of California, Davis Issued: May 9, 2011 Due: May 20, 2011, 5 PM in

More information

IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3

IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3 IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3 Ritafaria D 1, Thallapalli Saibaba 2 Assistant Professor, CJITS, Janagoan, T.S, India Abstract In this paper

More information

OPUS -- AMS 3.2. Version Manual

OPUS -- AMS 3.2. Version Manual OPUS -- AMS 3.2 Version 4.4.3 Manual for students designing VLSI integrated circuits at the VLSI laboratory of the DED (V2-324) using the OPUS Design Environment on Sun workstations under the UNIX Operating

More information

Introduction to Design Architect

Introduction to Design Architect SANTA CLARA UNIVERSITY Dept. of Electrical Engineering Mentor Graphics Tutorials Introduction to Design Architect Yiching Chen Sangeetha Raman S. Krishnan I. Introduction II. This document contains a step-by-step

More information

Intro to Cadence. Brady Salz. ECE483 Spring 17

Intro to Cadence. Brady Salz. ECE483 Spring 17 Intro to Cadence Brady Salz ECE483 Spring 17 What We re Doing Learn you a Cadence Learn simulation vocabulary Basic schematic guidelines Simulation results Init Before we begin, open a terminal: $ module

More information

Chapter 4 Determining Cell Size

Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size The third tutorial is designed to give you a demonstration in using the Cell Size Calculator to obtain the optimal cell size for your circuit

More information

TUTORIAL 1. V1.1 Update on Sept 17, 2003 ECE 755. Part 1: Design Architect IC

TUTORIAL 1. V1.1 Update on Sept 17, 2003 ECE 755. Part 1: Design Architect IC TUTORIAL 1 V1.1 Update on Sept 17, 2003 ECE 755 Part 1: Design Architect IC DA-IC provides a design environment comprising tools to create schematics, symbols and run simulations. The schematic editor

More information

RC Extraction. of an Inverter Circuit

RC Extraction. of an Inverter Circuit RC Extraction of an Inverter Circuit Santa Clara University Department of Electrical Engineering Under Guidance of Dr Samiha Mourad & Dr Shoba Krishnan Date of Last Revision: February 1, 2010 Copyright

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE60: CMOS Analog Circuits L: Fabrication and Layout - (8.8.0) B. Mazhari Dept. of EE, IIT Kanpur Suppose we have a Silicon wafer which is P-type and we wish to create a region within it which is N-type

More information

The Design and Simulation of an Inverter

The Design and Simulation of an Inverter The Design and Simulation of an Inverter Cadence Tutorial This tutorial has been devised to run through all the steps involved in the design and simulation of a CMOS inverter using the Cadence CAD tools.

More information

Cadence Virtuoso Layout Connectivity Mark- Net Tutorial

Cadence Virtuoso Layout Connectivity Mark- Net Tutorial Cadence Virtuoso Layout Connectivity Mark- Net Tutorial Digital VLSI Chip Design CAD manual addendum When you re drawing layout, especially of a complex cell, it s sometimes hard to see exactly what your

More information

Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation

Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation Lab 1: Cadence Custom IC design tools- Setup, Schematic capture and simulation Brittany Duffy EE 330- Integrated Electronics Lab Section B Professor Randy Geiger 1/24/13 Introduction The main goal of this

More information

Complete Tutorial (Includes Schematic & Layout)

Complete Tutorial (Includes Schematic & Layout) Complete Tutorial (Includes Schematic & Layout) Download 1. Go to the "Download Free PCB123 Software" button or click here. 2. Enter your e-mail address and for your primary interest in the product. (Your

More information