Illumination and Shading


 Beverley Hampton
 7 months ago
 Views:
Transcription
1 Illumination and Shading Illumination and Shading z Illumination Models y Ambient y Diffuse y Attenuation y Specular Reflection z Interpolated Shading Models y Flat, Gouraud, Phong y Problems CS4451: Fall
2 Illumination Models: Ambient Light z Simple illumination model I = k i z Use nondirectional lights I = I a k a z I a = ambient light intensity z k a = ambientreflection coefficient z Uniform across surface Diffuse Light z Account for light position y Ignore viewer position z Proportional to cosq between N and L I = I p k d cosq = I p k d (N L) z Model: I = I a k a + I p k d (N L) CS4451: Fall
3 Attenuation: Distance z f att models distance from light I = I a k a + f att I p k d (N L) z Realistic f att = 1/(d L2 ) z Hard to control, so OpenGL uses f att = 1/(c 1 + c 2 d L + c 3 d L2 ) Attenuation: Atmospheric (fog, haze) z z f and z b : near/far depthcue plane z s f and s b : scale factors z I dc : depth cue color z Given z f > z 0 > z b interpolate s f > s 0 > s b z Adjust intensity I = s 0 I + (1  s 0 )I dc CS4451: Fall
4 Colored Lights (slightly different, but equivalent, to book) z O d : diffuse color y (O dr, O dg, O db ) z Compute for each component z i.e. red compenent is I R = I ar k a O dr + f att I pr k d O dr (N L) z Note: use O d for ambient and diffuse Specular Reflection: Phong Model z Account for viewer position y Create highlights z Based on cos n a = (R V) n L N R y Larger n, smaller highlight z k s : specular reflection coef. Q Q a V I = I a k a O d + f att I p [ k d O d (N L) + k s (R V) n ] CS4451: Fall
5 Multiple Light Sources z Obvious summation over m lights: I = I a k a O d + S f atti I pi [ k d O d (N L i ) + k s (R i V) n ] 1 0 m Shading Models: Flat Shading z Compute one color for polygon y Use polygon normal in lighting eqs. z Every pixel is assigned same color z Fast and simple z Shade of polygons independent CS4451: Fall
6 Gouraud Shading N 3 N 4 Navg N 1 N 2 z Compute vertex normals y Average normals of abutting polygons z Use vertex normal in lighting eqs. z Linearly interpolate vertex intensities y Along edges y Along scan lines V 1 V 2 A V is B V 4 V 3 CS4451: Fall
7 Gouraud Shading z Often appears dull, chalky y Lacks accurate specular component x If included, will be averaged over entire polygon z Mach banding y Artifact at discontinuities in intensity or intensity slope CS4451: Fall
8 Phong Shading z Linearly interpolate vertex normals y Compute lighting eqs. at each pixel x Normals must be backmapped to WC z Can use specular component CS4451: Fall
9 CS4451: Fall
10 Closeup: Flat, Gouraud, Phong Problems with Interpolated Shading z Polygonal silhouette z Perspective distortion V 1 V 2 A V is B V 4 V 3 CS4451: Fall
11 Problems with Interpolated Shading z Scanline/orientation dependent y Creates temporal aliasing when used to render animation frames: =? 8 4 Problems with Interpolated Shading z Shared vertices A B C z Unrepresentative vertex normals y Missed specular highlights y Missed geometry CS4451: Fall
12 Lighting, in practice z z z z Full lighting equation: I = I a k a O d + S f atti I pi [ k d O d (N L i ) + k s (R i V) n ] 1 0 m Ignore specular for now Each surface: O d, k a, k d, v i (i=0..n), N Each light: I a or d, f att (c 1, c 2, c 3 ), P L (position) At a given point z Start with ambient: I a k a O d y R/G/B using I ar, I ag, I ab, O dr, O dg, O db z For each Light, compute: f att I p k d O d (N L i ) y Position (P P ), normal (N P ) y L vector y d L y f att = 1/(c 1 + c 2 d L + c 3 d L2 ) y R/G/B using I pr, I pg, I pb, O dr, O dg, O db CS4451: Fall
13 Light Intensity Values z I a, I d yrepresent intensity yhave R,G,B components ydo not need to fall in the 0..1 range! x Often need I d >1 x Final computed I 1 Specular z A light might have a diffuse and specular specification, say I s y Allow slightly different colors, more control x Remember, it s a hack anyway! z I s would have RGB parts, as with I a, I d z Illumination formula becomes I = I a k a O d + S f atti [I pdi k d O d (N L i ) + I psi k s (R i V) n ] 1 0 m CS4451: Fall
Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces
Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Outline Computational tools Reflection models Polygon shading Computation tools Surface normals Vector
More informationCS5620 Intro to Computer Graphics
So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading
More informationCPSC 314 LIGHTING AND SHADING
CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Pervertex attributes Vertex
More informationComp 410/510 Computer Graphics. Spring Shading
Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather
More informationInterpolation using scanline algorithm
Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle topdown using scanline. Compute start and end color value of each pixel
More informationIllumination & Shading
Illumination & Shading Goals Introduce the types of lightmaterial interactions Build a simple reflection modelthe Phong model that can be used with real time graphics hardware Why we need Illumination
More informationObjectives. Continue discussion of shading Introduce modified Phong model Consider computation of required vectors
Objectives Continue discussion of shading Introduce modified Phong model Consider computation of required vectors 1 Lambertian Surface Perfectly diffuse reflector Light scattered equally in all directions
More informationIllumination & Shading I
CS 543: Computer Graphics Illumination & Shading I Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu
More informationShading II. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico
Shading II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Continue discussion of shading Introduce modified Phong model
More informationCEng 477 Introduction to Computer Graphics Fall
Illumination Models and SurfaceRendering Methods CEng 477 Introduction to Computer Graphics Fall 2007 2008 Illumination Models and Surface Rendering Methods In order to achieve realism in computer generated
More informationObjectives. Shading II. Distance Terms. The Phong Reflection Model
Shading II Objectives Introduce distance terms to the shading model. More details about the Phong model (lightmaterial interaction). Introduce the Blinn lighting model (also known as the modified Phong
More informationIllumination and Shading
Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspectivecorrect interpolation Texture
More informationLessons Learned from HW4. Shading. Objectives. Why we need shading. Shading. Scattering
Lessons Learned from HW Shading CS Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Only have an idle() function if something is animated Set idle function to NULL, when
More informationLets assume each object has a defined colour. Hence our illumination model is looks unrealistic.
Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary
More informationIllumination. Illumination CMSC 435/634
Illumination CMSC 435/634 Illumination Interpolation Illumination Illumination Interpolation Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel
More informationWhy we need shading?
Why we need shading? Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like But we want Lightmaterial interactions cause each point to have a different
More informationThreeDimensional Graphics V. Guoying Zhao 1 / 55
Computer Graphics ThreeDimensional Graphics V Guoying Zhao 1 / 55 Shading Guoying Zhao 2 / 55 Objectives Learn to shade objects so their images appear threedimensional Introduce the types of lightmaterial
More informationObjectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading
Objectives Shading in OpenGL Introduce the OpenGL shading methods  per vertex shading vs per fragment shading  Where to carry out Discuss polygonal shading  Flat  Smooth  Gouraud CITS3003 Graphics
More informationComputer Graphics. Illumination and Shading
() Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3D triangle and a 3D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic
More informationIllumination and Shading
Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour  navy blue, light green, etc. Exeriments show that there are distinct I
More informationComputer Graphics 1. Chapter 7 (June 17th, 2010, 24pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010
Computer Graphics 1 Chapter 7 (June 17th, 2010, 24pm): Shading and rendering 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons
More informationLighting/Shading II. Week 7, Mon Mar 1
University of British Columbia CPSC 314 Computer Graphics JanApr 2010 Tamara Munzner Lighting/Shading II Week 7, Mon Mar 1 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News Homework 3 out today Homework
More informationLIGHTING AND SHADING
DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION LIGHTING AND SHADING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters
More information Rasterization. Geometry. Scan Conversion. Rasterization
Computer Graphics  The graphics pipeline  Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing  So far,
More informationShading , Fall 2004 Nancy Pollard Mark Tomczak
15462, Fall 2004 Nancy Pollard Mark Tomczak Shading Shading Concepts Shading Equations Lambertian, Gouraud shading Phong Illumination Model Nonphotorealistic rendering [Shirly, Ch. 8] Announcements Written
More informationCSE Intro to Computer Graphics. ANSWER KEY: Midterm Examination. November 18, Instructor: Sam Buss, UC San Diego
CSE 167  Intro to Computer Graphics ANSWER KEY: Midterm Examination November 18, 2003 Instructor: Sam Buss, UC San Diego Write your name or initials on every page before beginning the exam. You have 75
More informationLighting and Shading. Slides: Tamar Shinar, Victor Zordon
Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2
More informationAmbient reflection. Jacobs University Visualization and Computer Graphics Lab : Graphics and Visualization 407
Ambient reflection Phong reflection is a local illumination model. It only considers the reflection of light that directly comes from the light source. It does not compute secondary reflection of light
More informationShading and Illumination
Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω
More informationIllumination and Shading
Illumination and Shading Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL computes illumination at vertices illumination Shading
More informationCSE 690: GPGPU. Lecture 2: Understanding the Fabric  Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department
CSE 690: GPGPU Lecture 2: Understanding the Fabric  Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely
More informationGeneral Hidden Surface Removal Algorithms. Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science CS 460/560
Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced
More informationSEOUL NATIONAL UNIVERSITY
Fashion Technology 5. 3D Garment CAD1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Featurebased design Pattern Design 2D Parametric design 3D
More informationOrthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E AddisonWesley 2015
Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather
More informationCSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011
CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,
More informationPhotorealism: Ray Tracing
Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any
More informationSurface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot.  a mesh of spline patches:
Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by:  a mesh of polygons: 200 polys 1,000
More informationIllumination Models and SurfaceRendering Methods. Chapter 10
Illumination Models and SurfaceRendering Methods Chapter 10 Illumination and Surface Rendering Given scene specifications object positions, optical properties of the surface, viewer position, viewing
More informationColor and Light. CSCI 4229/5229 Computer Graphics Summer 2008
Color and Light CSCI 4229/5229 Computer Graphics Summer 2008 Solar Spectrum Human Trichromatic Color Perception Are A and B the same? Color perception is relative Transmission,Absorption&Reflection Light
More informationThe Traditional Graphics Pipeline
Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs
More informationLight Sources. Spotlight model
lecture 12 Light Sources sunlight (parallel) Sunny day model : "point source at infinity"  lighting  materials: diffuse, specular, ambient spotlight  shading: Flat vs. Gouraud vs Phong light bulb ambient
More informationLighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch
15462 Computer Graphics I Lecture 7 Lighting and Shading February 12, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Light Sources Phong Illumination Model
More informationShading. Flat shading Gouraud shading Phong shading
Shading Flat shading Gouraud shading Phong shading Flat Shading and Perception Lateral inhibition: exaggerates perceived intensity Mach bands: perceived stripes along edges Icosahedron with Sphere Normals
More informationIllumination and Shading ECE 567
Illumination and Shading ECE 567 Overview Lighting Models Ambient light Diffuse light Specular light Shading Models Flat shading Gouraud shading Phong shading OpenGL 2 Introduction To add realism to drawings
More informationØ Sampling Theory" Ø Fourier Analysis Ø Antialiasing Ø Supersampling Strategies" Ø The Hall illumination model. Ø Original ray tracing paper
CS 431/636 Advanced Rendering Techniques Ø Dr. David Breen Ø Korman 105D Ø Wednesday 6PM 8:50PM Presentation 6 5/16/12 Questions from ast Time? Ø Sampling Theory" Ø Fourier Analysis Ø Antialiasing Ø Supersampling
More informationCS452/552; EE465/505. Lighting & Shading
CS452/552; EE465/505 Lighting & Shading 217 15 Outline! More on Lighting and Shading Read: Angel Chapter 6 Lab2: due tonight use ASDW to move a 2D shape around; 1 to center Local Illumination! Approximate
More informationPHIGS PLUS For Scientific Graphics
PHIGS PLUS For Scientific Graphics Roger A. Crawfis Lawrence Livermore National Lab PO Box 808, L301 Livermore, CA 94550 This paper was prepared for the NCGA 91 Conference to be held April 2225, 1991
More informationMethodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010)
Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 11: OpenGL 3 http://inst.eecs.berkeley.edu/~cs184 Methodology for Lecture Lecture deals with lighting (teapot shaded as in HW1) Some Nate
More informationCOMP environment mapping Mar. 12, r = 2n(n v) v
Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,
More informationCSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016
CSE 167: Introduction to Computer Graphics Lecture #8: Textures Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due this Friday Midterm next Tuesday
More informationCSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012
CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:
More informationCS 5625 Lec 2: Shading Models
CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?
More informationFrom Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.
From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card  Graphics Processing Unit (GPU)
More information5.2 Shading in OpenGL
Fall 2017 CSCI 420: Computer Graphics 5.2 Shading in OpenGL Hao Li http://cs420.haoli.com 1 Outline Normal Vectors in OpenGL Polygonal Shading Light Sources in OpenGL Material Properties in OpenGL Example:
More informationAnnouncements. Written Assignment 2 out (due March 8) Computer Graphics
Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading
More informationOpenGL. Prior work vast 11/17/2009. Reflections a difficult problem. Problem of rendering reflections. Reflectedscene approximation
Reflections a difficult problem Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks Purdue University Every reflector is a portal onto a world which is as rich as the directly observed scene and
More informationWorking with the BCC Brick Generator
Working with the BCC Brick Generator Brick is a versatile generator of tiled surfaces with realistic texture and lighting controls. The bricks can act as a Þlter on a layer or generate a brick surface
More informationReflectedScene Impostors for Realistic Reflections at Interactive Rates
Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks Purdue University ReflectedScene Impostors for Realistic Reflections at Interactive Rates Reflections a difficult problem Every reflector is
More informationCMSC427 Shading Intro. Credit: slides from Dr. Zwicker
CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces
More informationShading Languages. Seminar Computer Graphics. Markus Kummerer
Shading Languages Markus Kummerer ABSTRACT Shading Languages provide a highly flexible approach for creating visual structures in computer imagery. The RenderMan Interface provides an API for scene description,
More informationSo far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.
11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives
More informationLights, Colour and Materials In OpenGL
Illumination Models Lights, Colour and Materials In OpenGL Illumination models are used to generate the colour of an object s surface at a given point on that surface. The factors that govern the illumination
More informationIntroduction to 3D Graphics
Introduction to 3D Graphics Using OpenGL 3D 1/46 Classical Polygon Graphics (H/W) Pipeline Mesh objects with 3D polygons (triangles or quads usually) Apply material properties to each object (for reflectance
More informationCS 431/636 Advanced Rendering Techniques
CS 431/636 Advanced Rendering Techniques Dr. David Breen Matheson 308 Thursday 6PM 8:50PM Presentation 7 5/23/06 Questions from Last Time? Hall Shading Model Shadows Reflections Refractions Slide Credits
More informationRasterization Overview
Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer
More informationCSE 681 Illumination and Phong Shading
CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our
More informationLight source estimation using feature points from specular highlights and cast shadows
Vol. 11(13), pp. 168177, 16 July, 2016 DOI: 10.5897/IJPS2015.4274 Article Number: F492B6D59616 ISSN 19921950 Copyright 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps
More informationWorking with the BCC Bump Map Generator
Working with the BCC Bump Map Generator Bump mapping is used to create three dimensional detail on an image based on the luminance information in the image. The luminance value of each pixel of the image
More informationReading. Texture Mapping. Nonparametric texture mapping. Texture mapping. Required. Angel, 8.6, 8.7, 8.9, 8.10,
Reading Required Angel, 8.6, 8.7, 8.9, 8.10, 9.139.13.2 Recommended Texture Mapping Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications 6(11): 5667, November 1986. Optional
More informationWednesday, 26 January 2005, 14:OO  17:OO h.
Delft University of Technology Faculty Electrical Engineering, Mathematics, and Computer Science Mekelweg 4, Delft TU Delft Examination for Course IN41 5 13D Computer Graphics and Virtual Reality Please
More informationUsing Shaders for Lighting
Using Shaders for Lighting Mike Bailey mjb@cs.oregonstate.edu Lighting Definitions L N R E N = Normal L = Light vector E = Eye vector R = Light reflection vector ER = Eye reflection vector Color = LightColor
More information3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts  Coordinate Systems. 3D Concepts Displaying 3D Models
3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts
More informationCENG 477 Introduction to Computer Graphics. Ray Tracing: Shading
CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays
More informationSurface Reflection Models
Surface Reflection Models Frank Losasso (flosasso@nvidia.com) Introduction One of the fundamental topics in lighting is how the light interacts with the environment. The academic community has researched
More informationIllumination and Reflection in OpenGL CS 460/560. Computer Graphics. Shadows. PhotoRealism: Ray Tracing. Binghamton University.
Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced
More informationChapter 3. Illumination Models and SurfaceRendering Methods. Department of Computer Science and Engineering
Chapter 3 Illumination Models and SurfaceRendering Methods 31 3.1 Overview For a realistic display of a scene the lighting effects should appear naturally. An illumination model, also called a lighting
More informationShadow Algorithms. CSE 781 Winter HanWei Shen
Shadow Algorithms CSE 781 Winter 2010 HanWei Shen Why Shadows? Makes 3D Graphics more believable Provides additional cues for the shapes and relative positions of objects in 3D What is shadow? Shadow:
More informationShading, lighting, & BRDF Theory. Cliff Lindsay, PHD
Shading, lighting, & BRDF Theory Cliff Lindsay, PHD Overview of today s lecture BRDF Characteristics Lights in terms of BRDFs Classes of BRDFs Ambient light & Shadows in terms of BRDFs Decomposing Reflection
More informationgraphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1
graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using objectorder processing primitives processed oneatatime
More informationComputer graphics (cs602) Final term mcqs fall 2013 Libriansmine
Computer graphics (cs602) Final term mcqs fall 2013 Libriansmine Question # 1 Total Marks: 1 Consider the following problem from lighting: A point (P1) is at (0, 0, 0) with normal equal to 1/(2*sqrt(2))*(sqrt(2),
More informationMathematical Tools in Computer Graphics with C# Implementations Table of Contents
Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, WilliHans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation
More informationCG Surfaces: Materials, Shading, and Texturing
CG Surfaces: Materials, Shading, and Texturing ART/CSC/FST 220 Spring 2007 From text: 3D for Beginners, Chapter 7 Art of Maya (pages 116126, 185194) Shading and texturing involves materials and their
More informationOverview: Ray Tracing & The Perspective Projection Pipeline
Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,
More informationGraphics Hardware and OpenGL
Graphics Hardware and OpenGL Ubi Soft, Prince of Persia: The Sands of Time What does graphics hardware have to do fast? Camera Views Different views of an object in the world 1 Camera Views Lines from
More informationCS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST
CS 380  GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1 Markus Hadwiger, KAUST Reading Assignment #4 (until Feb. 23) Read (required): Programming Massively Parallel Processors book, Chapter
More informationMali Demos: Behind the Pixels. Stacy Smith
Mali Demos: Behind the Pixels Stacy Smith Mali Graphics: Behind the demos Mali Demo Team: Doug Day Stacy Smith (Me) Sylwester Bala Roberto Lopez Mendez PHOTOGRAPH UNAVAILABLE These days I spend more time
More informationTEXTURE MAPPING. DVA338 Computer Graphics Thomas Larsson, Afshin Ameri
TEXTURE MAPPING DVA338 Computer Graphics Thomas Larsson, Afshin Ameri OVERVIEW Motivation Texture Mapping Coordinate Mapping (2D, 3D) Perspective Correct Interpolation Texture Filtering Mipmapping Anisotropic
More informationCOURSE DELIVERY PLAN  THEORY Page 1 of 6
COURSE DELIVERY PLAN  THEORY Page 1 of 6 Department of Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : Department of Computer Science and Engineering Regulation : 2013 Sub. Code
More informationRaycast Rendering Maya 2013
2000 2012 Michael O'Rourke Raycast Rendering Maya 2013 (See also the Intro to Lights and Rendering tutorial for an introduction to the basics of rendering an image) Concept There are several algorithms
More informationVRT 2.0 Stefan Seipel, Hans Molin, Lars Winkler Pettersson, Mikael Erlandsson Version 2.0 9/30/2003 i
VRT 2.0 Stefan Seipel, Hans Molin, Lars Winkler Pettersson, Mikael Erlandsson Version 2.0 9/30/2003 i ii Table of Contents Table of contents VRT Module Index VRT Modules Here is a list of all modules:
More informationAGDC PerPixel Shading. Sim Dietrich
AGDC PerPixel Shading Sim Dietrich Goal Of This Talk The new features of Dx8 and the next generation of HW make huge strides in the area of PerPixel Shading Most developers have yet to adopt PerPixel
More informationLecture 10: Shading Languages. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)
Lecture 10: Shading Languages Kayvon Fatahalian CMU 15869: Graphics and Imaging Architectures (Fall 2011) Review: role of shading languages Renderer handles surface visibility tasks  Examples: clip,
More informationSAMPLING AND NOISE. Increasing the number of samples per pixel gives an antialiased image which better represents the actual scene.
SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from
More informationPointBased rendering on GPU hardware. Advanced Computer Graphics 2008
PointBased rendering on GPU hardware Advanced Computer Graphics 2008 Outline Why use the GPU? Splat rasterization Imagealigned squares Perspective correct rasterization Splat shading Flat shading Gouroud
More informationShaders (some slides taken from David M. course)
Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501  Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture
More informationIntroduction to 3D Graphics
Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is
More informationCOM337 COMPUTER GRAPHICS Other Topics
COM337 COMPUTER GRAPHICS Other Topics Animation, Surface Details, Global Illumination Kurtuluş Küllü based on the book by Hearn, Baker, and Carithers There are some other important issues and topics that
More informationTexture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science
Texture Mapping CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce Mapping Methods  Texture Mapping  Environment Mapping  Bump Mapping Consider
More informationRendering Algorithms: Realtime indirect illumination. Spring 2010 Matthias Zwicker
Rendering Algorithms: Realtime indirect illumination Spring 2010 Matthias Zwicker Today Realtime indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant
More information