# Illumination and Shading

Save this PDF as:

Size: px
Start display at page:

Download "Illumination and Shading"

## Transcription

1 Illumination and Shading Illumination and Shading z Illumination Models y Ambient y Diffuse y Attenuation y Specular Reflection z Interpolated Shading Models y Flat, Gouraud, Phong y Problems CS4451: Fall

2 Illumination Models: Ambient Light z Simple illumination model I = k i z Use nondirectional lights I = I a k a z I a = ambient light intensity z k a = ambient-reflection coefficient z Uniform across surface Diffuse Light z Account for light position y Ignore viewer position z Proportional to cosq between N and L I = I p k d cosq = I p k d (N L) z Model: I = I a k a + I p k d (N L) CS4451: Fall

3 Attenuation: Distance z f att models distance from light I = I a k a + f att I p k d (N L) z Realistic f att = 1/(d L2 ) z Hard to control, so OpenGL uses f att = 1/(c 1 + c 2 d L + c 3 d L2 ) Attenuation: Atmospheric (fog, haze) z z f and z b : near/far depth-cue plane z s f and s b : scale factors z I dc : depth cue color z Given z f > z 0 > z b interpolate s f > s 0 > s b z Adjust intensity I = s 0 I + (1 - s 0 )I dc CS4451: Fall

4 Colored Lights (slightly different, but equivalent, to book) z O d : diffuse color y (O dr, O dg, O db ) z Compute for each component z i.e. red compenent is I R = I ar k a O dr + f att I pr k d O dr (N L) z Note: use O d for ambient and diffuse Specular Reflection: Phong Model z Account for viewer position y Create highlights z Based on cos n a = (R V) n L N R y Larger n, smaller highlight z k s : specular reflection coef. Q Q a V I = I a k a O d + f att I p [ k d O d (N L) + k s (R V) n ] CS4451: Fall

5 Multiple Light Sources z Obvious summation over m lights: I = I a k a O d + S f atti I pi [ k d O d (N L i ) + k s (R i V) n ] 1 0 m Shading Models: Flat Shading z Compute one color for polygon y Use polygon normal in lighting eqs. z Every pixel is assigned same color z Fast and simple z Shade of polygons independent CS4451: Fall

6 Gouraud Shading N 3 N 4 Navg N 1 N 2 z Compute vertex normals y Average normals of abutting polygons z Use vertex normal in lighting eqs. z Linearly interpolate vertex intensities y Along edges y Along scan lines V 1 V 2 A V is B V 4 V 3 CS4451: Fall

7 Gouraud Shading z Often appears dull, chalky y Lacks accurate specular component x If included, will be averaged over entire polygon z Mach banding y Artifact at discontinuities in intensity or intensity slope CS4451: Fall

8 Phong Shading z Linearly interpolate vertex normals y Compute lighting eqs. at each pixel x Normals must be backmapped to WC z Can use specular component CS4451: Fall

9 CS4451: Fall

10 Closeup: Flat, Gouraud, Phong Problems with Interpolated Shading z Polygonal silhouette z Perspective distortion V 1 V 2 A V is B V 4 V 3 CS4451: Fall

11 Problems with Interpolated Shading z Scanline/orientation dependent y Creates temporal aliasing when used to render animation frames: =? 8 4 Problems with Interpolated Shading z Shared vertices A B C z Unrepresentative vertex normals y Missed specular highlights y Missed geometry CS4451: Fall

12 Lighting, in practice z z z z Full lighting equation: I = I a k a O d + S f atti I pi [ k d O d (N L i ) + k s (R i V) n ] 1 0 m Ignore specular for now Each surface: O d, k a, k d, v i (i=0..n), N Each light: I a or d, f att (c 1, c 2, c 3 ), P L (position) At a given point z Start with ambient: I a k a O d y R/G/B using I ar, I ag, I ab, O dr, O dg, O db z For each Light, compute: f att I p k d O d (N L i ) y Position (P P ), normal (N P ) y L vector y d L y f att = 1/(c 1 + c 2 d L + c 3 d L2 ) y R/G/B using I pr, I pg, I pb, O dr, O dg, O db CS4451: Fall

13 Light Intensity Values z I a, I d yrepresent intensity yhave R,G,B components ydo not need to fall in the 0..1 range! x Often need I d >1 x Final computed I 1 Specular z A light might have a diffuse and specular specification, say I s y Allow slightly different colors, more control x Remember, it s a hack anyway! z I s would have RGB parts, as with I a, I d z Illumination formula becomes I = I a k a O d + S f atti [I pdi k d O d (N L i ) + I psi k s (R i V) n ] 1 0 m CS4451: Fall

### Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces

Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Outline Computational tools Reflection models Polygon shading Computation tools Surface normals Vector

More information

### CS5620 Intro to Computer Graphics

So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

### CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

More information

### Comp 410/510 Computer Graphics. Spring Shading

Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather

More information

### Interpolation using scanline algorithm

Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle top-down using scanline. Compute start and end color value of each pixel

More information

### Illumination & Shading

Illumination & Shading Goals Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware Why we need Illumination

More information

### Objectives. Continue discussion of shading Introduce modified Phong model Consider computation of required vectors

Objectives Continue discussion of shading Introduce modified Phong model Consider computation of required vectors 1 Lambertian Surface Perfectly diffuse reflector Light scattered equally in all directions

More information

### Illumination & Shading I

CS 543: Computer Graphics Illumination & Shading I Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu

More information

### Shading II. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Shading II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Continue discussion of shading Introduce modified Phong model

More information

### CEng 477 Introduction to Computer Graphics Fall

Illumination Models and Surface-Rendering Methods CEng 477 Introduction to Computer Graphics Fall 2007 2008 Illumination Models and Surface Rendering Methods In order to achieve realism in computer generated

More information

### Objectives. Shading II. Distance Terms. The Phong Reflection Model

Shading II Objectives Introduce distance terms to the shading model. More details about the Phong model (lightmaterial interaction). Introduce the Blinn lighting model (also known as the modified Phong

More information

### Illumination and Shading

Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture

More information

### Lessons Learned from HW4. Shading. Objectives. Why we need shading. Shading. Scattering

Lessons Learned from HW Shading CS Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Only have an idle() function if something is animated Set idle function to NULL, when

More information

### Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

### Illumination. Illumination CMSC 435/634

Illumination CMSC 435/634 Illumination Interpolation Illumination Illumination Interpolation Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel

More information

### Why we need shading?

Why we need shading? Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like But we want Light-material interactions cause each point to have a different

More information

### Three-Dimensional Graphics V. Guoying Zhao 1 / 55

Computer Graphics Three-Dimensional Graphics V Guoying Zhao 1 / 55 Shading Guoying Zhao 2 / 55 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material

More information

### Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading

Objectives Shading in OpenGL Introduce the OpenGL shading methods - per vertex shading vs per fragment shading - Where to carry out Discuss polygonal shading - Flat - Smooth - Gouraud CITS3003 Graphics

More information

### Computer Graphics. Illumination and Shading

() Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic

More information

### Illumination and Shading

Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

### Computer Graphics 1. Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010

Computer Graphics 1 Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons

More information

### Lighting/Shading II. Week 7, Mon Mar 1

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Lighting/Shading II Week 7, Mon Mar 1 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News Homework 3 out today Homework

More information

### LIGHTING AND SHADING

DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION LIGHTING AND SHADING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

### - Rasterization. Geometry. Scan Conversion. Rasterization

Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

More information

### Shading , Fall 2004 Nancy Pollard Mark Tomczak

15-462, Fall 2004 Nancy Pollard Mark Tomczak Shading Shading Concepts Shading Equations Lambertian, Gouraud shading Phong Illumination Model Non-photorealistic rendering [Shirly, Ch. 8] Announcements Written

More information

### CSE Intro to Computer Graphics. ANSWER KEY: Midterm Examination. November 18, Instructor: Sam Buss, UC San Diego

CSE 167 - Intro to Computer Graphics ANSWER KEY: Midterm Examination November 18, 2003 Instructor: Sam Buss, UC San Diego Write your name or initials on every page before beginning the exam. You have 75

More information

### Lighting and Shading. Slides: Tamar Shinar, Victor Zordon

Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2

More information

### Ambient reflection. Jacobs University Visualization and Computer Graphics Lab : Graphics and Visualization 407

Ambient reflection Phong reflection is a local illumination model. It only considers the reflection of light that directly comes from the light source. It does not compute secondary reflection of light

More information

### Shading and Illumination

Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω

More information

### Illumination and Shading

Illumination and Shading Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL computes illumination at vertices illumination Shading

More information

### CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

### General Hidden Surface Removal Algorithms. Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science CS 460/560

Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

### SEOUL NATIONAL UNIVERSITY

Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information

### Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

### CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

### Photorealism: Ray Tracing

Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any

More information

### Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

More information

### Illumination Models and Surface-Rendering Methods. Chapter 10

Illumination Models and Surface-Rendering Methods Chapter 10 Illumination and Surface- Rendering Given scene specifications object positions, optical properties of the surface, viewer position, viewing

More information

### Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008

Color and Light CSCI 4229/5229 Computer Graphics Summer 2008 Solar Spectrum Human Trichromatic Color Perception Are A and B the same? Color perception is relative Transmission,Absorption&Reflection Light

More information

### The Traditional Graphics Pipeline

Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

### Light Sources. Spotlight model

lecture 12 Light Sources sunlight (parallel) Sunny day model : "point source at infinity" - lighting - materials: diffuse, specular, ambient spotlight - shading: Flat vs. Gouraud vs Phong light bulb ambient

More information

### Lighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch

15-462 Computer Graphics I Lecture 7 Lighting and Shading February 12, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Light Sources Phong Illumination Model

More information

### Shading. Flat shading Gouraud shading Phong shading

Shading Flat shading Gouraud shading Phong shading Flat Shading and Perception Lateral inhibition: exaggerates perceived intensity Mach bands: perceived stripes along edges Icosahedron with Sphere Normals

More information

### Illumination and Shading ECE 567

Illumination and Shading ECE 567 Overview Lighting Models Ambient light Diffuse light Specular light Shading Models Flat shading Gouraud shading Phong shading OpenGL 2 Introduction To add realism to drawings

More information

### Ø Sampling Theory" Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling Strategies" Ø The Hall illumination model. Ø Original ray tracing paper

CS 431/636 Advanced Rendering Techniques Ø Dr. David Breen Ø Korman 105D Ø Wednesday 6PM 8:50PM Presentation 6 5/16/12 Questions from ast Time? Ø Sampling Theory" Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling

More information

### CS452/552; EE465/505. Lighting & Shading

CS452/552; EE465/505 Lighting & Shading 2-17 15 Outline! More on Lighting and Shading Read: Angel Chapter 6 Lab2: due tonight use ASDW to move a 2D shape around; 1 to center Local Illumination! Approximate

More information

### PHIGS PLUS For Scientific Graphics

PHIGS PLUS For Scientific Graphics Roger A. Crawfis Lawrence Livermore National Lab PO Box 808, L-301 Livermore, CA 94550 This paper was prepared for the NCGA 91 Conference to be held April 22-25, 1991

More information

### Methodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010)

Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 11: OpenGL 3 http://inst.eecs.berkeley.edu/~cs184 Methodology for Lecture Lecture deals with lighting (teapot shaded as in HW1) Some Nate

More information

### COMP environment mapping Mar. 12, r = 2n(n v) v

Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,

More information

### CSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #8: Textures Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due this Friday Midterm next Tuesday

More information

### CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:

More information

### CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

More information

### From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

### 5.2 Shading in OpenGL

Fall 2017 CSCI 420: Computer Graphics 5.2 Shading in OpenGL Hao Li http://cs420.hao-li.com 1 Outline Normal Vectors in OpenGL Polygonal Shading Light Sources in OpenGL Material Properties in OpenGL Example:

More information

### Announcements. Written Assignment 2 out (due March 8) Computer Graphics

Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading

More information

### OpenGL. Prior work vast 11/17/2009. Reflections a difficult problem. Problem of rendering reflections. Reflected-scene approximation

Reflections a difficult problem Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks Purdue University Every reflector is a portal onto a world which is as rich as the directly observed scene and

More information

### Working with the BCC Brick Generator

Working with the BCC Brick Generator Brick is a versatile generator of tiled surfaces with realistic texture and lighting controls. The bricks can act as a Þlter on a layer or generate a brick surface

More information

### Reflected-Scene Impostors for Realistic Reflections at Interactive Rates

Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks Purdue University Reflected-Scene Impostors for Realistic Reflections at Interactive Rates Reflections a difficult problem Every reflector is

More information

### CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

### Shading Languages. Seminar Computer Graphics. Markus Kummerer

Shading Languages Markus Kummerer ABSTRACT Shading Languages provide a highly flexible approach for creating visual structures in computer imagery. The RenderMan Interface provides an API for scene description,

More information

### So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

More information

### Lights, Colour and Materials In OpenGL

Illumination Models Lights, Colour and Materials In OpenGL Illumination models are used to generate the colour of an object s surface at a given point on that surface. The factors that govern the illumination

More information

### Introduction to 3D Graphics

Introduction to 3D Graphics Using OpenGL 3D 1/46 Classical Polygon Graphics (H/W) Pipeline Mesh objects with 3D polygons (triangles or quads usually) Apply material properties to each object (for reflectance

More information

### CS 431/636 Advanced Rendering Techniques

CS 431/636 Advanced Rendering Techniques Dr. David Breen Matheson 308 Thursday 6PM 8:50PM Presentation 7 5/23/06 Questions from Last Time? Hall Shading Model Shadows Reflections Refractions Slide Credits

More information

### Rasterization Overview

Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

### CSE 681 Illumination and Phong Shading

CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our

More information

### Light source estimation using feature points from specular highlights and cast shadows

Vol. 11(13), pp. 168-177, 16 July, 2016 DOI: 10.5897/IJPS2015.4274 Article Number: F492B6D59616 ISSN 1992-1950 Copyright 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps

More information

### Working with the BCC Bump Map Generator

Working with the BCC Bump Map Generator Bump mapping is used to create three dimensional detail on an image based on the luminance information in the image. The luminance value of each pixel of the image

More information

### Reading. Texture Mapping. Non-parametric texture mapping. Texture mapping. Required. Angel, 8.6, 8.7, 8.9, 8.10,

Reading Required Angel, 8.6, 8.7, 8.9, 8.10, 9.13-9.13.2 Recommended Texture Mapping Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications 6(11): 56--67, November 1986. Optional

More information

### Wednesday, 26 January 2005, 14:OO - 17:OO h.

Delft University of Technology Faculty Electrical Engineering, Mathematics, and Computer Science Mekelweg 4, Delft TU Delft Examination for Course IN41 5 1-3D Computer Graphics and Virtual Reality Please

More information

### Using Shaders for Lighting

Using Shaders for Lighting Mike Bailey mjb@cs.oregonstate.edu Lighting Definitions L N R E N = Normal L = Light vector E = Eye vector R = Light reflection vector ER = Eye reflection vector Color = LightColor

More information

### 3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

More information

### CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

### Surface Reflection Models

Surface Reflection Models Frank Losasso (flosasso@nvidia.com) Introduction One of the fundamental topics in lighting is how the light interacts with the environment. The academic community has researched

More information

### Illumination and Reflection in OpenGL CS 460/560. Computer Graphics. Shadows. Photo-Realism: Ray Tracing. Binghamton University.

Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

### Chapter 3. Illumination Models and Surface-Rendering Methods. Department of Computer Science and Engineering

Chapter 3 Illumination Models and Surface-Rendering Methods 3-1 3.1 Overview For a realistic display of a scene the lighting effects should appear naturally. An illumination model, also called a lighting

More information

### Shadow Algorithms. CSE 781 Winter Han-Wei Shen

Shadow Algorithms CSE 781 Winter 2010 Han-Wei Shen Why Shadows? Makes 3D Graphics more believable Provides additional cues for the shapes and relative positions of objects in 3D What is shadow? Shadow:

More information

### Shading, lighting, & BRDF Theory. Cliff Lindsay, PHD

Shading, lighting, & BRDF Theory Cliff Lindsay, PHD Overview of today s lecture BRDF Characteristics Lights in terms of BRDFs Classes of BRDFs Ambient light & Shadows in terms of BRDFs Decomposing Reflection

More information

### graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

### Computer graphics (cs602) Final term mcqs fall 2013 Libriansmine

Computer graphics (cs602) Final term mcqs fall 2013 Libriansmine Question # 1 Total Marks: 1 Consider the following problem from lighting: A point (P1) is at (0, 0, 0) with normal equal to 1/(2*sqrt(2))*(sqrt(2),

More information

### Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

### CG Surfaces: Materials, Shading, and Texturing

CG Surfaces: Materials, Shading, and Texturing ART/CSC/FST 220 Spring 2007 From text: 3D for Beginners, Chapter 7 Art of Maya (pages 116-126, 185-194) Shading and texturing involves materials and their

More information

### Overview: Ray Tracing & The Perspective Projection Pipeline

Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,

More information

### Graphics Hardware and OpenGL

Graphics Hardware and OpenGL Ubi Soft, Prince of Persia: The Sands of Time What does graphics hardware have to do fast? Camera Views Different views of an object in the world 1 Camera Views Lines from

More information

### CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST

CS 380 - GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1 Markus Hadwiger, KAUST Reading Assignment #4 (until Feb. 23) Read (required): Programming Massively Parallel Processors book, Chapter

More information

### Mali Demos: Behind the Pixels. Stacy Smith

Mali Demos: Behind the Pixels Stacy Smith Mali Graphics: Behind the demos Mali Demo Team: Doug Day Stacy Smith (Me) Sylwester Bala Roberto Lopez Mendez PHOTOGRAPH UNAVAILABLE These days I spend more time

More information

### TEXTURE MAPPING. DVA338 Computer Graphics Thomas Larsson, Afshin Ameri

TEXTURE MAPPING DVA338 Computer Graphics Thomas Larsson, Afshin Ameri OVERVIEW Motivation Texture Mapping Coordinate Mapping (2D, 3D) Perspective Correct Interpolation Texture Filtering Mip-mapping Anisotropic

More information

### COURSE DELIVERY PLAN - THEORY Page 1 of 6

COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : Department of Computer Science and Engineering Regulation : 2013 Sub. Code

More information

### Raycast Rendering Maya 2013

2000 2012 Michael O'Rourke Raycast Rendering Maya 2013 (See also the Intro to Lights and Rendering tutorial for an introduction to the basics of rendering an image) Concept There are several algorithms

More information

### VRT 2.0 Stefan Seipel, Hans Molin, Lars Winkler Pettersson, Mikael Erlandsson Version 2.0 9/30/2003 i

VRT 2.0 Stefan Seipel, Hans Molin, Lars Winkler Pettersson, Mikael Erlandsson Version 2.0 9/30/2003 i ii Table of Contents Table of contents VRT Module Index VRT Modules Here is a list of all modules:

More information

### AGDC Per-Pixel Shading. Sim Dietrich

AGDC Per-Pixel Shading Sim Dietrich Goal Of This Talk The new features of Dx8 and the next generation of HW make huge strides in the area of Per-Pixel Shading Most developers have yet to adopt Per-Pixel

More information

### Lecture 10: Shading Languages. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)

Lecture 10: Shading Languages Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Review: role of shading languages Renderer handles surface visibility tasks - Examples: clip,

More information

### SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene.

SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from

More information

### Point-Based rendering on GPU hardware. Advanced Computer Graphics 2008

Point-Based rendering on GPU hardware Advanced Computer Graphics 2008 Outline Why use the GPU? Splat rasterization Image-aligned squares Perspective correct rasterization Splat shading Flat shading Gouroud

More information

### Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

### Introduction to 3D Graphics

Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is

More information

### COM337 COMPUTER GRAPHICS Other Topics

COM337 COMPUTER GRAPHICS Other Topics Animation, Surface Details, Global Illumination Kurtuluş Küllü based on the book by Hearn, Baker, and Carithers There are some other important issues and topics that

More information

### Texture Mapping. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Texture Mapping CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce Mapping Methods - Texture Mapping - Environment Mapping - Bump Mapping Consider

More information

### Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information