Anatomic parcellation based on DTI data with FSL taking the example of SMA/preSMA

Size: px
Start display at page:

Download "Anatomic parcellation based on DTI data with FSL taking the example of SMA/preSMA"

Transcription

1 Groupe de Travail IRMf/MEG 02/2014 Anatomic parcellation based on DTI data with FSL taking the example of SMA/preSMA Magdalena Wutte, Lucile Brun & Boris Burle SMA/preSMA

2 Parcellation - what for? - connectivity fingerprints - allows us to separate brain areas based on their WM connections Behrens, Johansen-Berg et al, Nature Neuroscience, 2003

3 Different types of parcellation - with targets: parcel an area based on its differential connection to predefined regions (e.g. thalamus Behrens2003, cingulate cortex Beckmann2009) - blind: parcel an area based on its differential connection to the whole brain SMA/preSMA Johansen-Berg2004 Operculum (Broca area) Klein2007

4 Principle of blind parcellation Seed mask : dorso-medial frontal cortex Target mask : whole brain Estimate diffusion tensors Preprocessing (movement correction etc) Split seed mask according to those fingerprints Tractography Search for differential connectivity fingerprints in seed mask (cross correlation/clustering)

5 Data from fmri center (copy-pasted from Olivier:) sujet/ anat01/ sujet_anat01.nii (1x1x1mm3) sujet_diffusion/ sujet_dwi.nii (1.89x1.89x2.33mm3) anatomie, T1 diffusion, 36 directions + 8 images T2 (b=0) (4D image) for all subjects the same: bvals weights for each volume (0 = T2, 1000 = diffusion) bvecs gradient directions nr directions : restricts tractography, e.g. crossing fibers can not be modelled with 36 (bedpost)

6 The software/toolbox FSL - FDT: FMRI Diffusion Toolbox - Linux platform - bash-based - user interface/command line (copy-pasted from Olivier:) IRM fonctionnelle IRM anat, segmentation, VBM IRM diffusion : FMRIB s diffusion Toolbox: FDT Tract-Based Spatial Statistics: TBSS Deux tutoriaux:

7 Overview of analysis steps Create masks Preprocessing fslview Brainvisa FSL preprocessing tools (fslreorient, bet, flirt) FSL FDT toolbox (eddy_correct) Estimate diffusion tensors FSL FDT toolbox Tractography Correlation/Clustering [the complete pipeline/commands in wiki] Matlab

8 Create mask Seed mask : Target mask : - one slice at x: -4 - y: -22 to y 30 - z: superior of cingulate sulcus - in MNI space - then transformed to individual spaces - goal was to determine border SMA/preSMA (around y 0, vertical line From AC) - subsample to 4mm voxels (fslmaths) (due to processing time)

9 Preprocessing 1) conversion to nifti: Brainvisa 2) get all images in the same orientation (fslreorient2std) T1 DTI 3) extraction of B0 images from *_dwi.nii ('nodif.nii'; as registration target in flirt and as reference volume in eddy_correct) 4) brain extraction/skull stripping of T1 image (bet) 5) transformation matrices from one space to the other (individual > MNI, indivt1 > indivdti; flirt)

10 Preprocessing 6) Apply those matrices to the seed mask (MNI>indivT1) 7) Realignment (motion correction; FDT diffusion > eddy_correct) uses co-registration of each dti volume to nodif image Data for next steps: - skull stripped anatomy (*_brain.nii) - preprocessed dti data (data.nii) - dti brain mask (nodif.nii) - subsampled target brain mask - seed mask

11 Estimate diffusion tensors: bedpostx Pdd : principle diffusion direction

12 Estimate diffusion tensors : bedpostx Input : data.nii.gz, nodif_brain_mask.nii.gz, bvals, bvec Output : dti01.bedpostx/ Here : only 1 fiber estimated because we have only 36 directions Processing time : ~2-3 h Does the same as dtifit used for TBSS; Difference : 1) can estimate crossing fibers ; 2) quantifies uncertainty of pdd (bayesian modelling) needed for probabilistic tractography (probtrackx needs its output) Different nomenclature : e.g. dyads1.nii.gz == dti_fa.nii.gz

13 Estimate diffusion tensors : bedpostx

14 Tractography

15 Tractography Streamline (deterministic tractography) Principle diffusion direction If we would have no noise and perfect data we could use deterministic, but we don't...

16 Tractography : probtrackx How confident are we? Measure of uncertainty. Probabilistic rather than deterministic tractography > from bedpostx : distribution of directions per voxel > run n streamlines from seed randomly choosing orientation from voxel > spatially overlap results : probabilistic map (number of lines)

17 Tractography : probtrackx the dorso-medial mask Target is the (subsampled) whole-brain seed in anat space, not diffusion space

18 Tractography : probtrackx Runs for 30 min 2h output we need : fdt_matrix2.dot

19 Principle of blind parcellation with Matlab: Cross-correlation of connectivity profiles number of fibers fdt_matrix2.dot native cross correlation matrix c dorso-medial dorso-medial orr e whole brain lati on [0.3] dorso-medial Clustering of the cross correlation matrix Split mask according to those clusters

20 Results : Group Parcels n=30 Tracts y = -8 y = 20 SMA presma threshold nr subjects

21 Individuals - differences crosshair at [-4 0 0]

22 Limitations/Troubleshooting Clusters are sometimes not clear cut

23 Limitations/Troubleshooting Different algorithms different results kmeans 2 cluster kmeans 2 cluster kmeans 3 cluster kmeans 3 cluster spectral spectral

24 Useful links/sources Many images from: (lecture/practical) Our scripts + a (Marseille specific) howto available at: (questions to magdalena.wutte@univ-amu.fr or lucile.brun@univ-amu.fr) Useful links: FSL course :

PANDA Manual Zaixu Cui & Suyu Zhong & Gaolang Gong

PANDA Manual Zaixu Cui & Suyu Zhong & Gaolang Gong PANDA Manual Zaixu Cui & Suyu Zhong & Gaolang Gong National Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University, China Contents Overview Setup Files/Directories selection Preparing

More information

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING Francesca Pizzorni Ferrarese Pipeline overview WM and GM Segmentation Registration Data reconstruction Tractography

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N, Vendrella P. Restingstate functional magnetic resonance imaging activity and connectivity and cognitive

More information

Diffusion model fitting and tractography: A primer

Diffusion model fitting and tractography: A primer Diffusion model fitting and tractography: A primer Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 03/18/10 Why n how Diffusion model fitting and tractography 0/18 Why

More information

Overview of fmri Analysis Software. McConnell BIC Open Methods Meetup January 13th 2013

Overview of fmri Analysis Software. McConnell BIC Open Methods Meetup January 13th 2013 Overview of fmri Analysis Software McConnell BIC Open Methods Meetup January 13th 2013 FSL Michael Ferreira Outline Introduction MRI scanners and fmri equipment FSL Image formats and conversion FSLView

More information

Acceleration of Probabilistic Tractography Using Multi-GPU Parallel Processing. Jungsoo Lee, Sun Mi Park, Dae-Shik Kim

Acceleration of Probabilistic Tractography Using Multi-GPU Parallel Processing. Jungsoo Lee, Sun Mi Park, Dae-Shik Kim Acceleration of Probabilistic Tractography Using Multi-GPU Parallel Processing Jungsoo Lee, Sun Mi Park, Dae-Shik Kim Introduction In particular, probabilistic tractography requires relatively long computation

More information

Playing with data from lab

Playing with data from lab Playing with data from lab Getting data off the scanner From the Patient Browser, select the folder for the study you want (or within that study, the set of images you want), and then from the Transfer

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

TractoR and Other Software

TractoR and Other Software TractoR and Other Software Jon Clayden DIBS Teaching Seminar, 11 Dec 2015 Photo by José Martín Ramírez Carrasco https://www.behance.net/martini_rc TractoR A set of R packages Additional

More information

TractoR and Other Software

TractoR and Other Software TractoR and Other Software Jon Clayden DIBS Teaching Seminar, 15 Nov 2016 Photo by José Martín Ramírez Carrasco https://www.behance.net/martini_rc TractoR A platform for multimodal

More information

BrainSuite Lab Exercises. presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014

BrainSuite Lab Exercises. presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014 BrainSuite Lab Exercises presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014 1. Opening and Displaying an MRI Start BrainSuite Drag and drop the T1 image from the native space

More information

The WU-Minn HCP Open Access Initial Data Release: User Guide. Appendix 2 File Names and Directory Structure for Minimally Pre-Processed Data

The WU-Minn HCP Open Access Initial Data Release: User Guide. Appendix 2 File Names and Directory Structure for Minimally Pre-Processed Data The WU-Minn HCP Open Access Initial Data Release: User Guide Appendix 2 File Names and Directory Structure for Minimally Pre-Processed Data Version 2 release: 21 December 2012 Table of Contents File Names

More information

Automated MR Image Analysis Pipelines

Automated MR Image Analysis Pipelines Automated MR Image Analysis Pipelines Andy Simmons Centre for Neuroimaging Sciences, Kings College London Institute of Psychiatry. NIHR Biomedical Research Centre for Mental Health at IoP & SLAM. Neuroimaging

More information

Reproducibility of Whole-brain Structural Connectivity Networks

Reproducibility of Whole-brain Structural Connectivity Networks Reproducibility of Whole-brain Structural Connectivity Networks Christopher Parker Thesis for Masters of Research in Medical and Biomedical Imaging Supervised by Prof. Sebastien Ourselin and Dr Jonathan

More information

FSL Workshop Session 3 David Smith & John Clithero

FSL Workshop Session 3 David Smith & John Clithero FSL Workshop 12.09.08 Session 3 David Smith & John Clithero What is MELODIC? Probabilistic ICA Improves upon standard ICA Allows for inference Avoids over-fitting Three stage process ( ppca ) 1.) Dimension

More information

Description of files included in the IIT Human Brain Atlas (v.4.1)

Description of files included in the IIT Human Brain Atlas (v.4.1) Description of files included in the IIT Human Brain Atlas (v.4.1) Summary: The IIT Human Brain Atlas contains anatomical, DTI, and HARDI templates, probabilistic gray matter labels, probabilistic connectivity-based

More information

syngo.mr Neuro 3D: Your All-In-One Post Processing, Visualization and Reporting Engine for BOLD Functional and Diffusion Tensor MR Imaging Datasets

syngo.mr Neuro 3D: Your All-In-One Post Processing, Visualization and Reporting Engine for BOLD Functional and Diffusion Tensor MR Imaging Datasets syngo.mr Neuro 3D: Your All-In-One Post Processing, Visualization and Reporting Engine for BOLD Functional and Diffusion Tensor MR Imaging Datasets Julien Gervais; Lisa Chuah Siemens Healthcare, Magnetic

More information

Multimodal Imaging Brain Connectivity Analysis (MIBCA)

Multimodal Imaging Brain Connectivity Analysis (MIBCA) Multimodal Imaging Brain Connectivity Analysis (MIBCA) Andre Santos Ribeiro, Luis Miguel Lacerda, Hugo Ferreira April 23, 2015 Abstract In recent years, connectivity studies using neuroimaging data have

More information

Introduction to MRI data processing with FSL. Anna Blazejewska

Introduction to MRI data processing with FSL. Anna Blazejewska Introduction to MRI data processing with FSL Anna Blazejewska FSL = FMRIB Software Library FMRIB = Functional Magnetic Resonance Imaging of the Brain @ Oxford since 2000, last stable FSL 5.0, free! for

More information

BDP: BrainSuite Diffusion Pipeline. Chitresh Bhushan

BDP: BrainSuite Diffusion Pipeline. Chitresh Bhushan BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan Why diffusion MRI? T 2 weighted MPRAGE FA map Fiber track Quantify microstructural tissue characteristics Structural connectivity Connectome Clinical

More information

Analysis of fmri data within Brainvisa Example with the Saccades database

Analysis of fmri data within Brainvisa Example with the Saccades database Analysis of fmri data within Brainvisa Example with the Saccades database 18/11/2009 Note : All the sentences in italic correspond to informations relative to the specific dataset under study TP participants

More information

Structural MRI of Amygdala Tutorial: Observation, Segmentation, Quantification

Structural MRI of Amygdala Tutorial: Observation, Segmentation, Quantification Structural MRI of Amygdala Tutorial: Observation, Segmentation, Quantification The FMRIB Software Library (FSL) is a powerful tool that allows users to observe the human brain in various planes and dimensions,

More information

BDP: BrainSuite Diffusion Pipeline. Chitresh Bhushan

BDP: BrainSuite Diffusion Pipeline. Chitresh Bhushan BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan Why diffusion MRI? T 2 weighted MPRAGE FA map Fiber track Quantify microstructural tissue characteristics Structural connectivity Connectome Clinical

More information

BrainSpace V2.1: Geometric mapping and diffusion-based software for cross-subject multimodality brain imaging informatics

BrainSpace V2.1: Geometric mapping and diffusion-based software for cross-subject multimodality brain imaging informatics Brief Introduction to BrainSpace V2.1 BrainSpace V2.1: Geometric mapping and diffusion-based software for cross-subject multimodality brain imaging informatics Graphics and Imaging Laboratory Wayne State

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

NEURO M203 & BIOMED M263 WINTER 2014

NEURO M203 & BIOMED M263 WINTER 2014 NEURO M203 & BIOMED M263 WINTER 2014 MRI Lab 2: Neuroimaging Connectivity Lab In today s lab we will work with sample diffusion imaging data and the group averaged fmri data collected during your scanning

More information

Diffusion MRI. Introduction and Modern Methods. John Plass. Department Of Psychology

Diffusion MRI. Introduction and Modern Methods. John Plass. Department Of Psychology Diffusion MRI Introduction and Modern Methods John Plass Department Of Psychology Diffusion MRI Introduction and Modern Methods John Plass Department Of Psychology Overview I. Why use diffusion MRI? II.

More information

DIFFUSION TENSOR IMAGING ANALYSIS. Using Analyze

DIFFUSION TENSOR IMAGING ANALYSIS. Using Analyze DIFFUSION TENSOR IMAGING ANALYSIS Using Analyze 2 Table of Contents 1. Introduction page 3 2. Loading DTI Data page 4 3. Computing DTI Maps page 5 4. Defining ROIs for Fiber Tracking page 6 5. Visualizing

More information

Quality Checking an fmri Group Result (art_groupcheck)

Quality Checking an fmri Group Result (art_groupcheck) Quality Checking an fmri Group Result (art_groupcheck) Paul Mazaika, Feb. 24, 2009 A statistical parameter map of fmri group analyses relies on the assumptions of the General Linear Model (GLM). The assumptions

More information

Input tab. Insert the path to the DTI Image that you want to tract.

Input tab. Insert the path to the DTI Image that you want to tract. Tutorial: AutoTract Input tab Insert the path to the DTI Image that you want to tract. Input tab (optional)if you already have a WM/CSF mask you want to use to process the tracts, insert the path here.

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

2019 FSL Course. Course Handbook February 2019 Dunedin, New Zealand

2019 FSL Course. Course Handbook February 2019 Dunedin, New Zealand 2019 FSL Course Course Handbook 18-22 February 2019 Dunedin, New Zealand Organised by: Wellcome Centre for Integrative Neuroimaging University of Oxford Welcome! We are pleased to welcome you to the

More information

ARTICLE IN PRESS YNIMG-03489; No. of pages: 8; 4C:

ARTICLE IN PRESS YNIMG-03489; No. of pages: 8; 4C: YNIMG-03489; No. of pages: 8; 4C: DTD 5 www.elsevier.com/locate/ynimg NeuroImage xx (2005) xxx xxx A consistent relationship between local white matter architecture and functional specialisation in medial

More information

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization

User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization User s Guide Neuroimage Processing ToolKit (NPTK) Version.1.7 (beta) fmri Registration Software Pipeline for Functional Localization Software Written by Ali Gholipour SIP Lab, UTD, 2005-2007 Revision 1.7

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

Brain Extraction, Registration & EPI Distortion Correction

Brain Extraction, Registration & EPI Distortion Correction Brain Extraction, Registration & EPI Distortion Correction What use is Registration? Some common uses of registration: Combining across individuals in group studies: including fmri & diffusion Quantifying

More information

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH HBM 2016 As a work of a US Government official, this presentation is not copyrighted

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

TRACULA: Troubleshooting, visualization, and group analysis

TRACULA: Troubleshooting, visualization, and group analysis TRACULA: Troubleshooting, visualization, and group analysis Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 18/11/13 TRACULA: troubleshooting, visualization, group analysis

More information

Structural MRI of Amygdala Tutorial: Observation, Segmentation, Quantification

Structural MRI of Amygdala Tutorial: Observation, Segmentation, Quantification Structural MRI of Amygdala Tutorial: Observation, Segmentation, Quantification The FMRIB Software Library (FSL) is a powerful tool that allows users to observe the human brain in various planes and dimensions,

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

A Workflow Optimized Software Platform for Multimodal Neurosurgical Planning and Monitoring

A Workflow Optimized Software Platform for Multimodal Neurosurgical Planning and Monitoring A Workflow Optimized Software Platform for Multimodal Neurosurgical Planning and Monitoring Eine Workflow Optimierte Software Umgebung für Multimodale Neurochirurgische Planung und Verlaufskontrolle A

More information

NeuroQLab A Software Assistant for Neurosurgical Planning and Quantitative Image Analysis

NeuroQLab A Software Assistant for Neurosurgical Planning and Quantitative Image Analysis NeuroQLab A Software Assistant for Neurosurgical Planning and Quantitative Image Analysis Florian Weiler 1, Jan Rexilius 2, Jan Klein 1, Horst K. Hahn 1 1 Fraunhofer MEVIS, Universitätsallee 29, 28359

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Sun H, Lui S, Yao L, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

Diffusion Tensor Imaging and Reading Development

Diffusion Tensor Imaging and Reading Development Diffusion Tensor Imaging and Reading Development Bob Dougherty Stanford Institute for Reading and Learning Reading and Anatomy Every brain is different... Not all brains optimized for highly proficient

More information

DISI - University of Trento

DISI - University of Trento PhD Dissertation International Doctoral School in Information and Communication Technology DISI - University of Trento MACHINE LEARNING FOR TRACT SEGMENTATION IN DMRI DATA Advisor: Prof. Paolo Avesani

More information

Appendix E1. Supplementary Methods. MR Image Acquisition. MR Image Analysis

Appendix E1. Supplementary Methods. MR Image Acquisition. MR Image Analysis RSNA, 2015 10.1148/radiol.2015150532 Appendix E1 Supplementary Methods MR Image Acquisition By using a 1.5-T system (Avanto, Siemens Medical, Erlangen, Germany) under a program of regular maintenance (no

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

Group (Level 2) fmri Data Analysis - Lab 4

Group (Level 2) fmri Data Analysis - Lab 4 Group (Level 2) fmri Data Analysis - Lab 4 Index Goals of this Lab Before Getting Started The Chosen Ten Checking Data Quality Create a Mean Anatomical of the Group Group Analysis: One-Sample T-Test Examine

More information

This exercise uses one anatomical data set (ANAT1) and two functional data sets (FUNC1 and FUNC2).

This exercise uses one anatomical data set (ANAT1) and two functional data sets (FUNC1 and FUNC2). Exploring Brain Anatomy This week s exercises will let you explore the anatomical organization of the brain to learn some of its basic properties, as well as the location of different structures. The human

More information

Robust Realignment of fmri Time Series Data

Robust Realignment of fmri Time Series Data Robust Realignment of fmri Time Series Data Ben Dodson bjdodson@stanford.edu Olafur Gudmundsson olafurg@stanford.edu December 12, 2008 Abstract FMRI data has become an increasingly popular source for exploring

More information

Diffusion-MRI processing for group analysis

Diffusion-MRI processing for group analysis Diffusion-MRI processing for group analysis Felix Renard IRMaGe: Inserm US 17 / CNRS UMS 3552 University Hospital of Grenoble - France 25/09/2015 felixrenard@gmail.com 1 Diffusion-MRI processing for group

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis

Advanced Visual Medicine: Techniques for Visual Exploration & Analysis Advanced Visual Medicine: Techniques for Visual Exploration & Analysis Interactive Visualization of Multimodal Volume Data for Neurosurgical Planning Felix Ritter, MeVis Research Bremen Multimodal Neurosurgical

More information

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan SPM Introduction Scott Peltier FMRI Laboratory University of Michigan! Slides adapted from T. Nichols SPM! SPM : Overview Library of MATLAB and C functions Graphical user interface Four main components:

More information

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking D. Merhof 1, M. Buchfelder 2, C. Nimsky 3 1 Visual Computing, University of Konstanz, Konstanz 2 Department of Neurosurgery,

More information

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data SPM Introduction Scott Peltier FMRI Laboratory University of Michigan Slides adapted from T. Nichols SPM! Software to perform computation, manipulation and display of imaging data 1 1 SPM : Overview Library

More information

Human Connectom Project : The minimal processing Pipeline

Human Connectom Project : The minimal processing Pipeline Human Connectom Project : The minimal processing Pipeline Human Connectom Project : The minimal processing Pipeline Van Essen DC, The WU-Minn Human Connectome Project: an overview. Neuroimage. 2013 Marcus

More information

Structural connectivity of the brain measured by diffusion tensor imaging [DTI]

Structural connectivity of the brain measured by diffusion tensor imaging [DTI] Structural connectivity of the brain measured by diffusion tensor imaging [DTI] Lars T. Westlye CSHC / Centre for Advanced Study PSY4320 06.05.2012 l.t.westlye@psykologi.uio.no ~ 40 % of the brain is white

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

Function-Structure Integration in FreeSurfer

Function-Structure Integration in FreeSurfer Function-Structure Integration in FreeSurfer Outline Function-Structure Integration Function-Structure Registration in FreeSurfer fmri Analysis Preprocessing First-Level Analysis Higher-Level (Group) Analysis

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

Fiber Selection from Diffusion Tensor Data based on Boolean Operators

Fiber Selection from Diffusion Tensor Data based on Boolean Operators Fiber Selection from Diffusion Tensor Data based on Boolean Operators D. Merhof 1, G. Greiner 2, M. Buchfelder 3, C. Nimsky 4 1 Visual Computing, University of Konstanz, Konstanz, Germany 2 Computer Graphics

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

What is a network? Network Analysis

What is a network? Network Analysis What is a network? Network Analysis Valerie Cardenas Nicolson Associate Adjunct Professor Department of Radiology and Biomedical Imaging Complex weblike structures Cell is network of chemicals connected

More information

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

Saturn User Manual. Rubén Cárdenes. 29th January 2010 Image Processing Laboratory, University of Valladolid. Abstract

Saturn User Manual. Rubén Cárdenes. 29th January 2010 Image Processing Laboratory, University of Valladolid. Abstract Saturn User Manual Rubén Cárdenes 29th January 2010 Image Processing Laboratory, University of Valladolid Abstract Saturn is a software package for DTI processing and visualization, provided with a graphic

More information

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP was developed as part of the COST Action "Arterial Spin Labelling Initiative in Dementia (AID)" by: Department of Neuroimaging, Institute

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

UCLA Advanced Neuroimaging Summer Program David W. Shattuck, PhD

UCLA Advanced Neuroimaging Summer Program David W. Shattuck, PhD BrainSuite UCLA Advanced Neuroimaging Summer Program Presented 18 July 2013 David W. Shattuck, PhD Associate Professor Department of Neurology David Geffen School of Medicine at UCLA http://www.loni.ucla.edu/~shattuck/

More information

ECE1778 Final Report MRI Visualizer

ECE1778 Final Report MRI Visualizer ECE1778 Final Report MRI Visualizer David Qixiang Chen Alex Rodionov Word Count: 2408 Introduction We aim to develop a mobile phone/tablet based neurosurgical MRI visualization application with the goal

More information

Surface-Based Structural Group Analysis of fmri Data

Surface-Based Structural Group Analysis of fmri Data Surface-Based Structural Group Analysis of fmri Data Grégory Operto 1,Cédric Clouchoux 1,Rémy Bulot 1,Jean-LucAnton 2, and Olivier Coulon 1 1 Laboratoire LSIS, UMR CNRS 6168, Marseille, France gregory.operto@univmed.fr

More information

Structural MRI analysis

Structural MRI analysis Structural MRI analysis volumetry and voxel-based morphometry cortical thickness measurements structural covariance network mapping Boris Bernhardt, PhD Department of Social Neuroscience, MPI-CBS bernhardt@cbs.mpg.de

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

EMSegment Tutorial. How to Define and Fine-Tune Automatic Brain Compartment Segmentation and the Detection of White Matter Hyperintensities

EMSegment Tutorial. How to Define and Fine-Tune Automatic Brain Compartment Segmentation and the Detection of White Matter Hyperintensities EMSegment Tutorial How to Define and Fine-Tune Automatic Brain Compartment Segmentation and the Detection of White Matter Hyperintensities This documentation serves as a tutorial to learn to customize

More information

A Ray-based Approach for Boundary Estimation of Fiber Bundles Derived from Diffusion Tensor Imaging

A Ray-based Approach for Boundary Estimation of Fiber Bundles Derived from Diffusion Tensor Imaging A Ray-based Approach for Boundary Estimation of Fiber Bundles Derived from Diffusion Tensor Imaging M. H. A. Bauer 1,3, S. Barbieri 2, J. Klein 2, J. Egger 1,3, D. Kuhnt 1, B. Freisleben 3, H.-K. Hahn

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

IS MRI Based Structure a Mediator for Lead s Effect on Cognitive Function?

IS MRI Based Structure a Mediator for Lead s Effect on Cognitive Function? IS MRI Based Structure a Mediator for Lead s Effect on Cognitive Function? Brian Caffo, Sining Chen, Brian Schwartz Department of Biostatistics and Environmental Health Sciences Johns Hopkins University

More information

Resting State fmri Data Processing. Resting State fmri Data Processing 2018/8/21. Data Processing of Resting-State fmri: DPARSF DPARSF DPARSF DPABI

Resting State fmri Data Processing. Resting State fmri Data Processing 2018/8/21. Data Processing of Resting-State fmri: DPARSF DPARSF DPARSF DPABI DPARSF Data of Resting-State fmri: DPARSF Chao-Gan YAN, Ph.D. 严超赣 ycg.yan@gmail.com http://rfmri.org Institute of Psychology, Chinese Academy of Sciences 1 (Yan and Zang, 2010) 2 DPARSF Data Assistant

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

0.1. Setting up the system path to allow use of BIAC XML headers (BXH). Depending on the computer(s), you may only have to do this once.

0.1. Setting up the system path to allow use of BIAC XML headers (BXH). Depending on the computer(s), you may only have to do this once. Week 3 Exercises Last week you began working with MR data, both in the form of anatomical images and functional time series. This week we will discuss some concepts related to the idea of fmri data as

More information

CIVET 2.0 (marching cubes), An Automated Pipeline For Structural Human MRI

CIVET 2.0 (marching cubes), An Automated Pipeline For Structural Human MRI CIVET 2.0 (marching cubes), An Automated Pipeline For Structural Human MRI Lindsay B. Lewis, Ph.D. OMM March 17, 2014 SurfStat Outline Who is behind CIVET? What is CIVET? What s new in CIVET 2.0? Preparing

More information

Brain Explorer for Connectomic Analysis (BECA) Software Manual

Brain Explorer for Connectomic Analysis (BECA) Software Manual Brain Explorer for Connectomic Analysis (BECA) Software Manual Table of Contents 1. Launch the application... 2 2. Tractography Visualization... 3 3. Gray Matter Visualization... 5 4. Fiber classification

More information

Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity

Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity Test-Retest Reliability of Graph Theory Measures of Structural Brain Connectivity Emily L. Dennis 1, Neda Jahanshad 1, Arthur W. Toga 2, Katie L. McMahon 3, Greig I. de Zubicaray 5, Nicholas G. Martin

More information

ACCURATE NONLINEAR MAPPING BETWEEN MNI152/COLIN27 VOLUMETRIC AND FREESURFER SURFACE COORDINATE SYSTEMS

ACCURATE NONLINEAR MAPPING BETWEEN MNI152/COLIN27 VOLUMETRIC AND FREESURFER SURFACE COORDINATE SYSTEMS ACCURATE NONLINEAR MAPPING BETWEEN MNI152/COLIN27 VOLUMETRIC AND FREESURFER SURFACE COORDINATE SYSTEMS WU JIANXIAO (B.Eng. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT

More information

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series Jingyuan Chen //Department of Electrical Engineering, cjy2010@stanford.edu//

More information

GLM for fmri data analysis Lab Exercise 1

GLM for fmri data analysis Lab Exercise 1 GLM for fmri data analysis Lab Exercise 1 March 15, 2013 Medical Image Processing Lab Medical Image Processing Lab GLM for fmri data analysis Outline 1 Getting Started 2 AUDIO 1 st level Preprocessing

More information

Supplementary Information. Task-induced brain state manipulation improves prediction of individual traits. Greene et al.

Supplementary Information. Task-induced brain state manipulation improves prediction of individual traits. Greene et al. Supplementary Information Task-induced brain state manipulation improves prediction of individual traits Greene et al. Supplementary Note 1 Analyses of effects of gf measurement technique PNC CPM results

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Opleiding Informatica

Opleiding Informatica Opleiding Informatica Analyzing and classifying Borderline Personality Disorder using Datamining paradigms Ewout Zwanenburg and Ashwini Gopal Supervisors: Prof. Dr. Ir. Fons J. Verbeek Drs. C. de Vries

More information

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011

Linear Models in Medical Imaging. John Kornak MI square February 22, 2011 Linear Models in Medical Imaging John Kornak MI square February 22, 2011 Acknowledgement / Disclaimer Many of the slides in this lecture have been adapted from slides available in talks available on the

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

How to create a head model

How to create a head model How to create a head model This document describes the command line tools: mri2mesh: Central tool to reconstruct a head model from T1w and T2w data dwi2cond: Reconstruct conductivity tensors for brain

More information

Mapping Tractography Across Subjects

Mapping Tractography Across Subjects Mapping Tractography Across Subjects Thien Bao Nguyen, Emanuele Olivetti, and Paolo Avesani arxiv:1601.08165v1 [stat.ml] 29 Jan 2016 NeuroInformatics Laboratory (NILab), Bruno Kessler Foundation, Trento,

More information

Reconstruction of Fiber Trajectories via Population-Based Estimation of Local Orientations

Reconstruction of Fiber Trajectories via Population-Based Estimation of Local Orientations IDEA Reconstruction of Fiber Trajectories via Population-Based Estimation of Local Orientations Pew-Thian Yap, John H. Gilmore, Weili Lin, Dinggang Shen Email: ptyap@med.unc.edu 2011-09-21 Poster: P2-46-

More information