Topics in computer architecture

Size: px
Start display at page:

Download "Topics in computer architecture"

Transcription

1 Topics in computer architecture Sun Microsystems SPARC P.J. Drongowski SandSoftwareSound.net Copyright Paul J. Drongowski

2 Sun Microsystems SPARC Scalable Processor Architecture Computer family sharing same ISA Adaptable (scalable) to different technologies SPARC Application Binary Interface (ABI) General characteristics Integer, floating and coprocessor registers Processor state and status registers 69 basic instructions Linear, 32-bit virtual address space What SPARC does not include I/O registers Cache memories Memory management units (MMU) Design goals High and low-density circuit technologies Outperform CISC competitors on: Performance Cost Time to market High performance floating point Architectural queue Register scoreboarding in FP unit Concurrent execution of integer and floating ops HLL programming with simple compilers Extended Berkeley RISC ISA Multiprocessing Special instructions for multiprocessor systems Fewer data references! suitable for tight

3 Integer unit registers Register windows Number of windows can vary across implementations IU may contain 40 to 520 general registers 8 global registers (always accessible) 8 ins (procedure actual parameters) 8 locals (procedure working storage) 8 outs (which are the 8 ins of the adjacent window) Global register 0 always returns the constant value 0 Window behavior Current Window Pointer CWP is a 5-bit field in Processor Status Word (PSW) save instruction decrements CWP (call) restore instruction increments CWP (return) Overflow trap before save Underflow trap before restore SunOS saves (16) registers on memory stack Observations Windows act like a intraprocedural data cache Reduce number of load and store instructions Decreases chip/cache and cache/memory bandwidth Interprocedural register allocation (IRA) is possible Avoid allocating another window save/restore separated from call/return Management (by OS) Window Invalid Mask (WIM) register Mark window causing under/overflow trap Context switch Save only valid (used) registers Fast trap handling by decrementing CWP Context switch timing (16.67 MHz model 200) Three windows saved (average) 15 microseconds

4 IU state registers Processor Status Register (PSR) User/supervisor bit compatible condition codes 4-bit Processor Interrupt Level (PIL) FPU and CP disable bits Current Window Pointer (CWP) 8-bit version number Window Invalid Mask (WIM) register Trap Base Register (TBR) Base address for trap table 8-bit field identifying type of current trap Data types Byte (8 bits, signed and unsigned) Halfword (16 bits, signed and unsigned) Words (32 bits, signed and unsigned) Single floating (32 bits) Doublewords (64 bits, double floating) Memory Byte addressable (4-gigabytes) Byte 0 is the MSB; Byte 3 is the LSB Words, halfwords, doublewords must align

5 SPARC instructions All instructions are 32 bits long 55 basic integer instructions 14 floating point instructions 2 coprocessor formats Format 1 call instruction 30-bit word displacement Format 2 sethi loads high order 22-bits of register 22-bit branch displacement (PC ± 8Mbytes) Format 3 i = 0! second register specifier i = 1! 13-bit, sign-extended immediate Format 1 op displacement Format 2 (sethi) op op op rd op immediate Format 2 (branch instructions) a cc op displacement Format 3 (Remaining instructions, i = 0) rd op rs1 i rs2 asi Format 3 (Remaining instructions, i = 1) op rd op rs1 i immediate

6 SPARC instructions Load and store Two general addressing modes reg1 + reg2 reg + signed_13-bit_constant Register-indirect and absolute via global register 0 Load and store to alternate address space Limited to operating system use 8-bit Address Space Indentifier (ASI) Integer computational instructions Two source operands and one destination register Second register can be replaced by a 13-bit constant Corresponding instructions (do not) set condition codes Shift over arbitrary number of places Multiply step (mulscc) sethi to construct 32-bit constant values Tagged instructions Tag bits are the two LSB's of the operand Tagged add (taddcc) and subtract (tsubcc) Use overflow bit to decode tag type Control transfer instructions Register indirect jump (jmpl) Software trap on condition code (tlcc) "Annul bit" to cancel instruction execution in delay slot Multiprocessor instructions Atomic load and store unsigned byte (ldstub) Reads a byte from memory Writes back all one's to the location swap instruction exchanges register and memory

7 SPARC implementations SF9010IU Fujitsu 1.5 micron CMOS gate-array technology 20,000 gates per chip! 3 layers of metalization! Full scan design (97% coverage) 1.2 nanosecond gate delay 156 input/output signals 256-pin pin grid array (PGA) package Cycle time of 60 nanoseconds (16.6 MHz clock) 10 MIPS (with cache) Floating point units! Floating point controller chip! Weitek W1164 multiplier! Weitek W1165 adder Cycles per instruction: 1.47 CYC 601 Cypress Semiconductor Inc. Custom 0.8 micron CMOS technology 30 to 40 nanosecond cycle time MHz clock bit registers (eight windows) Cycles per instruction: 1.54

8 Processor pipeline Fetch stage Address of instruction is sent out Instruction enters pipe at completion of this stage Decode stage Decode and read source operands from register file Send both to Execution Unit and Instruction Fetch Unit Generate next instruction address Decode I n, compute adress of instruction I n+1 Execute stage Perform arithmetic and logical operation Save result in temporary registers Write stage Decide to write result into register file, or Prohibit change to processor state Abort if exeception was raised Fetch Decode Execute Write Fetch Decode Execute Write Fetch Decode Execute Write Fetch Decode Execute Write

9 Main memory Address low I/O Tag Data Cache Address high Compare 32-bit data bus (D) CPU FPC W1164 W1165

10 Processor chip!register file unit bit registers Eight registers are global Seven overlapped frames of 24 registers each Number of windows is implementation dependent Current Window Pointer (CWP) in PSR Execution unit 32-bit carry look-ahead ALU!32-bit barrel shifter Condition code generation logic Load and store alignment logic Pipeline registers for operands and intermediate results Single clock cycle execution ALU bypass for operand forwarding Instruction fetch unit Four program counters " One for each stage " Take exceptions as late as last stage Special registers " Trap Base Register (TBR) " Trap Type Register (TT) " Multiply step register (Y) " Window Invalid Mask (WIM) Control unit Main state machine Instruction pipeline Instruction decoder Processor Status Register (PSR) Exception and trap handling Interface to cache and floating point unit

11 Register file ALU Shift Result

12 Data bus Instruction registers Control From register file Address Generation Address low Address high Program Counters ALU result Special registers To floating point unit

Chapter 13 Reduced Instruction Set Computers

Chapter 13 Reduced Instruction Set Computers Chapter 13 Reduced Instruction Set Computers Contents Instruction execution characteristics Use of a large register file Compiler-based register optimization Reduced instruction set architecture RISC pipelining

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10032011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Chapter 3 Number Systems Fixed Point

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 RISC: The SPARC 09282011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Finish Motorola MC68000 The SPARC Architecture

More information

EKT 303 WEEK Pearson Education, Inc., Hoboken, NJ. All rights reserved.

EKT 303 WEEK Pearson Education, Inc., Hoboken, NJ. All rights reserved. + EKT 303 WEEK 13 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. + Chapter 15 Reduced Instruction Set Computers (RISC) Table 15.1 Characteristics of Some CISCs, RISCs, and Superscalar

More information

Instruction Set Architecture of MIPS Processor

Instruction Set Architecture of MIPS Processor CSE 3421/5421: Introduction to Computer Architecture Instruction Set Architecture of MIPS Processor Presentation B Study: 2.1 2.3, 2.4 2.7, 2.10 and Handout MIPS Instructions: 32-bit Core Subset Read:

More information

SPARC Architecture. SPARC Registers

SPARC Architecture. SPARC Registers SPRC rchitecture 8-bit cell (byte) is smallest addressable unit 32-bit addresses, i.e., 32-bit virtual address space Larger sizes: at address 7 0 byte 15 +1 halfword 31 +1 +2 +3 word +1 +2 +3 +4 +5 +6

More information

55:132/22C:160, HPCA Spring 2011

55:132/22C:160, HPCA Spring 2011 55:132/22C:160, HPCA Spring 2011 Second Lecture Slide Set Instruction Set Architecture Instruction Set Architecture ISA, the boundary between software and hardware Specifies the logical machine that is

More information

Computer Organization CS 206 T Lec# 2: Instruction Sets

Computer Organization CS 206 T Lec# 2: Instruction Sets Computer Organization CS 206 T Lec# 2: Instruction Sets Topics What is an instruction set Elements of instruction Instruction Format Instruction types Types of operations Types of operand Addressing mode

More information

Lecture 4: RISC Computers

Lecture 4: RISC Computers Lecture 4: RISC Computers Introduction Program execution features RISC characteristics RISC vs. CICS Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) represents an important

More information

Instruction Set Design

Instruction Set Design Instruction Set Design software instruction set hardware CPE442 Lec 3 ISA.1 Instruction Set Architecture Programmer's View ADD SUBTRACT AND OR COMPARE... 01010 01110 10011 10001 11010... CPU Memory I/O

More information

Typical Processor Execution Cycle

Typical Processor Execution Cycle Typical Processor Execution Cycle Instruction Fetch Obtain instruction from program storage Instruction Decode Determine required actions and instruction size Operand Fetch Locate and obtain operand data

More information

ECE 486/586. Computer Architecture. Lecture # 7

ECE 486/586. Computer Architecture. Lecture # 7 ECE 486/586 Computer Architecture Lecture # 7 Spring 2015 Portland State University Lecture Topics Instruction Set Principles Instruction Encoding Role of Compilers The MIPS Architecture Reference: Appendix

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

6x86 PROCESSOR Superscalar, Superpipelined, Sixth-generation, x86 Compatible CPU

6x86 PROCESSOR Superscalar, Superpipelined, Sixth-generation, x86 Compatible CPU 1-6x86 PROCESSOR Superscalar, Superpipelined, Sixth-generation, x86 Compatible CPU Product Overview Introduction 1. ARCHITECTURE OVERVIEW The Cyrix 6x86 CPU is a leader in the sixth generation of high

More information

COS 140: Foundations of Computer Science

COS 140: Foundations of Computer Science COS 140: Foundations of Computer Science CPU Organization and Assembly Language Fall 2018 CPU 3 Components of the CPU..................................................... 4 Registers................................................................

More information

Lecture 4: RISC Computers

Lecture 4: RISC Computers Lecture 4: RISC Computers Introduction Program execution features RISC characteristics RISC vs. CICS Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation

More information

Chapter 12. CPU Structure and Function. Yonsei University

Chapter 12. CPU Structure and Function. Yonsei University Chapter 12 CPU Structure and Function Contents Processor organization Register organization Instruction cycle Instruction pipelining The Pentium processor The PowerPC processor 12-2 CPU Structures Processor

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

Lecture 4: Instruction Set Design/Pipelining

Lecture 4: Instruction Set Design/Pipelining Lecture 4: Instruction Set Design/Pipelining Instruction set design (Sections 2.9-2.12) control instructions instruction encoding Basic pipelining implementation (Section A.1) 1 Control Transfer Instructions

More information

Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation

Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation Computer Organization CS 231-01 Data Representation Dr. William H. Robinson November 12, 2004 Topics Power tends to corrupt; absolute power corrupts absolutely. Lord Acton British historian, late 19 th

More information

ARSITEKTUR SISTEM KOMPUTER. Wayan Suparta, PhD 17 April 2018

ARSITEKTUR SISTEM KOMPUTER. Wayan Suparta, PhD   17 April 2018 ARSITEKTUR SISTEM KOMPUTER Wayan Suparta, PhD https://wayansuparta.wordpress.com/ 17 April 2018 Reduced Instruction Set Computers (RISC) CISC Complex Instruction Set Computer RISC Reduced Instruction Set

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

COSC 6385 Computer Architecture. Instruction Set Architectures

COSC 6385 Computer Architecture. Instruction Set Architectures COSC 6385 Computer Architecture Instruction Set Architectures Spring 2012 Instruction Set Architecture (ISA) Definition on Wikipedia: Part of the Computer Architecture related to programming Defines set

More information

COMPUTER ORGANIZATION & ARCHITECTURE

COMPUTER ORGANIZATION & ARCHITECTURE COMPUTER ORGANIZATION & ARCHITECTURE Instructions Sets Architecture Lesson 5a 1 What are Instruction Sets The complete collection of instructions that are understood by a CPU Can be considered as a functional

More information

The Study of Register s Window Exception and Vulnerability Analysis Based on SPARC V8

The Study of Register s Window Exception and Vulnerability Analysis Based on SPARC V8 2016 2 nd International Conference on Mechanical, Electronic and Information Technology Engineering (ICMITE 2016) ISBN: 978-1-60595-340-3 The Study of Register s Window Exception and Vulnerability Analysis

More information

The Nios II Family of Configurable Soft-core Processors

The Nios II Family of Configurable Soft-core Processors The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005 2005 Altera Corporation Agenda Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L09.1 Smith Spring 2008 MIPS

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

Chapter 2A Instructions: Language of the Computer

Chapter 2A Instructions: Language of the Computer Chapter 2A Instructions: Language of the Computer Copyright 2009 Elsevier, Inc. All rights reserved. Instruction Set The repertoire of instructions of a computer Different computers have different instruction

More information

Computer Architecture. MIPS Instruction Set Architecture

Computer Architecture. MIPS Instruction Set Architecture Computer Architecture MIPS Instruction Set Architecture Instruction Set Architecture An Abstract Data Type Objects Registers & Memory Operations Instructions Goal of Instruction Set Architecture Design

More information

MIPS R5000 Microprocessor. Technical Backgrounder. 32 kb I-cache and 32 kb D-cache, each 2-way set associative

MIPS R5000 Microprocessor. Technical Backgrounder. 32 kb I-cache and 32 kb D-cache, each 2-way set associative MIPS R5000 Microprocessor Technical Backgrounder Performance: SPECint95 5.5 SPECfp95 5.5 Instruction Set ISA Compatibility Pipeline Clock System Interface clock Caches TLB Power dissipation: Supply voltage

More information

Preliminary, February Full 64-bit Alpha architecture: - Advanced RISC architecture - Optimized for high performance

Preliminary, February Full 64-bit Alpha architecture: - Advanced RISC architecture - Optimized for high performance Digital 21064-AA Microprocessor DC273 InEC Product Brief Integrated Ethernet Controller Preliminary, February 1992 Features 27 24 PJ,D20 (TRIRA) 29 20 31 Full 64-bit Alpha architecture: - Advanced RISC

More information

CSCE 5610: Computer Architecture

CSCE 5610: Computer Architecture HW #1 1.3, 1.5, 1.9, 1.12 Due: Sept 12, 2018 Review: Execution time of a program Arithmetic Average, Weighted Arithmetic Average Geometric Mean Benchmarks, kernels and synthetic benchmarks Computing CPI

More information

General Purpose Processors

General Purpose Processors Calcolatori Elettronici e Sistemi Operativi Specifications Device that executes a program General Purpose Processors Program list of instructions Instructions are stored in an external memory Stored program

More information

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1

CSIS1120A. 10. Instruction Set & Addressing Mode. CSIS1120A 10. Instruction Set & Addressing Mode 1 CSIS1120A 10. Instruction Set & Addressing Mode CSIS1120A 10. Instruction Set & Addressing Mode 1 Elements of a Machine Instruction Operation Code specifies the operation to be performed, e.g. ADD, SUB

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 15 April 1, 2009 martha@cs.columbia.edu and the rest of the semester Source code (e.g., *.java, *.c) (software) Compiler MIPS instruction set architecture

More information

Computer Architecture

Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.2: MIPS ISA -- Instruction Representation Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

Instruction Set Principles and Examples. Appendix B

Instruction Set Principles and Examples. Appendix B Instruction Set Principles and Examples Appendix B Outline What is Instruction Set Architecture? Classifying ISA Elements of ISA Programming Registers Type and Size of Operands Addressing Modes Types of

More information

ARM ARCHITECTURE. Contents at a glance:

ARM ARCHITECTURE. Contents at a glance: UNIT-III ARM ARCHITECTURE Contents at a glance: RISC Design Philosophy ARM Design Philosophy Registers Current Program Status Register(CPSR) Instruction Pipeline Interrupts and Vector Table Architecture

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

Lecture 4: Instruction Set Architecture

Lecture 4: Instruction Set Architecture Lecture 4: Instruction Set Architecture ISA types, register usage, memory addressing, endian and alignment, quantitative evaluation Reading: Textbook (5 th edition) Appendix A Appendix B (4 th edition)

More information

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago CMSC 22200 Computer Architecture Lecture 2: ISA Prof. Yanjing Li Department of Computer Science University of Chicago Administrative Stuff! Lab1 is out! " Due next Thursday (10/6)! Lab2 " Out next Thursday

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA)... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

CENG3420 Lecture 03 Review

CENG3420 Lecture 03 Review CENG3420 Lecture 03 Review Bei Yu byu@cse.cuhk.edu.hk 2017 Spring 1 / 38 CISC vs. RISC Complex Instruction Set Computer (CISC) Lots of instructions of variable size, very memory optimal, typically less

More information

Computer Organization and Technology Processor and System Structures

Computer Organization and Technology Processor and System Structures Computer Organization and Technology Processor and System Structures Assoc. Prof. Dr. Wattanapong Kurdthongmee Division of Computer Engineering, School of Engineering and Resources, Walailak University

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 12 Processor Structure and Function

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 12 Processor Structure and Function William Stallings Computer Organization and Architecture 8 th Edition Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data

More information

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls

Announcements HW1 is due on this Friday (Sept 12th) Appendix A is very helpful to HW1. Check out system calls Announcements HW1 is due on this Friday (Sept 12 th ) Appendix A is very helpful to HW1. Check out system calls on Page A-48. Ask TA (Liquan chen: liquan@ece.rutgers.edu) about homework related questions.

More information

Instruction Set Architecture. "Speaking with the computer"

Instruction Set Architecture. Speaking with the computer Instruction Set Architecture "Speaking with the computer" The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

Instruction Set Principles. (Appendix B)

Instruction Set Principles. (Appendix B) Instruction Set Principles (Appendix B) Outline Introduction Classification of Instruction Set Architectures Addressing Modes Instruction Set Operations Type & Size of Operands Instruction Set Encoding

More information

CISC / RISC. Complex / Reduced Instruction Set Computers

CISC / RISC. Complex / Reduced Instruction Set Computers Systems Architecture CISC / RISC Complex / Reduced Instruction Set Computers CISC / RISC p. 1/12 Instruction Usage Instruction Group Average Usage 1 Data Movement 45.28% 2 Flow Control 28.73% 3 Arithmetic

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

Instruction Sets Ch 9-10

Instruction Sets Ch 9-10 Instruction Sets Ch 9-10 Characteristics Operands Operations Addressing Instruction Formats 1 Instruction Set (käskykanta) Collection of instructions that CPU understands Only interface to CPU from outside

More information

Instruction Sets Ch 9-10

Instruction Sets Ch 9-10 Instruction Sets Ch 9-10 Characteristics Operands Operations Addressing Instruction Formats 1 Instruction Set (käskykanta) Collection of instructions that CPU understands Only interface to CPU from outside

More information

Advanced issues in pipelining

Advanced issues in pipelining Advanced issues in pipelining 1 Outline Handling exceptions Supporting multi-cycle operations Pipeline evolution Examples of real pipelines 2 Handling exceptions 3 Exceptions In pipelined execution, one

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

Instruction Sets: Characteristics and Functions Addressing Modes

Instruction Sets: Characteristics and Functions Addressing Modes Instruction Sets: Characteristics and Functions Addressing Modes Chapters 10 and 11, William Stallings Computer Organization and Architecture 7 th Edition What is an Instruction Set? The complete collection

More information

Advanced Computer Architecture

Advanced Computer Architecture Advanced Computer Architecture Chapter 1 Introduction into the Sequential and Pipeline Instruction Execution Martin Milata What is a Processors Architecture Instruction Set Architecture (ISA) Describes

More information

Chapter 2. Instruction Set Design. Computer Architectures. software. hardware. Which is easier to change/design??? Tien-Fu Chen

Chapter 2. Instruction Set Design. Computer Architectures. software. hardware. Which is easier to change/design??? Tien-Fu Chen Computer Architectures Chapter 2 Tien-Fu Chen National Chung Cheng Univ. chap2-0 Instruction Set Design software instruction set hardware Which is easier to change/design??? chap2-1 Instruction Set Architecture:

More information

This section covers the MIPS instruction set.

This section covers the MIPS instruction set. This section covers the MIPS instruction set. 1 + I am going to break down the instructions into two types. + a machine instruction which is directly defined in the MIPS architecture and has a one to one

More information

CS/COE1541: Introduction to Computer Architecture

CS/COE1541: Introduction to Computer Architecture CS/COE1541: Introduction to Computer Architecture Dept. of Computer Science University of Pittsburgh http://www.cs.pitt.edu/~melhem/courses/1541p/index.html 1 Computer Architecture? Application pull Operating

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

CISC Attributes. E.g. Pentium is considered a modern CISC processor

CISC Attributes. E.g. Pentium is considered a modern CISC processor What is CISC? CISC means Complex Instruction Set Computer chips that are easy to program and which make efficient use of memory. Since the earliest machines were programmed in assembly language and memory

More information

CPU Structure and Function

CPU Structure and Function CPU Structure and Function Chapter 12 Lesson 17 Slide 1/36 Processor Organization CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Lesson 17 Slide 2/36 CPU With Systems

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 8 General Purpose Processors - I Version 2 EE IIT, Kharagpur 2 In this lesson the student will learn the following Architecture

More information

UNIT-II. Part-2: CENTRAL PROCESSING UNIT

UNIT-II. Part-2: CENTRAL PROCESSING UNIT Page1 UNIT-II Part-2: CENTRAL PROCESSING UNIT Stack Organization Instruction Formats Addressing Modes Data Transfer And Manipulation Program Control Reduced Instruction Set Computer (RISC) Introduction:

More information

Xuan Guo. Lecture XIX: Subroutines (2) CSC 3210 Computer Organization and Programming Georgia State University. March 31, 2015.

Xuan Guo. Lecture XIX: Subroutines (2) CSC 3210 Computer Organization and Programming Georgia State University. March 31, 2015. CSC 3210 Computer Organization and Programming Georgia State University March 31, 2015 This lecture Plan for the lecture: Recap: Register Saving Subroutine Linkage call instruction jmpl instruction ret

More information

The Single Cycle Processor

The Single Cycle Processor EECS 322 Computer Architecture The Single Cycle Processor Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please viewshow CWRU

More information

Chapter Introduction

Chapter Introduction Chapter 1 1. Introduction High-performance computer systems depend on good hardware design coupled with powerful compilers and operating systems. Although announced in 1991, the PowerPC architecture represents

More information

The CPU Pipeline. MIPS R4000 Microprocessor User's Manual 43

The CPU Pipeline. MIPS R4000 Microprocessor User's Manual 43 The CPU Pipeline 3 This chapter describes the basic operation of the CPU pipeline, which includes descriptions of the delay instructions (instructions that follow a branch or load instruction in the pipeline),

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 11 CPU Structure and Function Rev. 3.2.1 (2005-06) by Enrico Nardelli 11-1 CPU Functions CPU must: Fetch instructions Decode instructions

More information

Multiple Choice Type Questions

Multiple Choice Type Questions Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Computer Architecture Subject Code: CS 403 Multiple Choice Type Questions 1. SIMD represents an organization that.

More information

UNIT 2 PROCESSORS ORGANIZATION CONT.

UNIT 2 PROCESSORS ORGANIZATION CONT. UNIT 2 PROCESSORS ORGANIZATION CONT. Types of Operand Addresses Numbers Integer/floating point Characters ASCII etc. Logical Data Bits or flags x86 Data Types Operands in 8 bit -Byte 16 bit- word 32 bit-

More information

Embedded Systems Ch 15 ARM Organization and Implementation

Embedded Systems Ch 15 ARM Organization and Implementation Embedded Systems Ch 15 ARM Organization and Implementation Byung Kook Kim Dept of EECS Korea Advanced Institute of Science and Technology Summary ARM architecture Very little change From the first 3-micron

More information

CS 252 Graduate Computer Architecture. Lecture 4: Instruction-Level Parallelism

CS 252 Graduate Computer Architecture. Lecture 4: Instruction-Level Parallelism CS 252 Graduate Computer Architecture Lecture 4: Instruction-Level Parallelism Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://wwweecsberkeleyedu/~krste

More information

MIPS History. ISA MIPS Registers

MIPS History. ISA MIPS Registers MIPS History MIPS is a computer family R2000/R3000 (32-bit) R4000/4400 (64-bit) R10000 (64-bit) and others MIPS originated as a Stanford research project under the direction of John Hennessy Microprocessor

More information

Instruction Sets: Characteristics and Functions

Instruction Sets: Characteristics and Functions Instruction Sets: Characteristics and Functions Chapter 10 Lesson 15 Slide 1/22 Machine instruction set Computer designer: The machine instruction set provides the functional requirements for the CPU.

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions

Page 1. Structure of von Nuemann machine. Instruction Set - the type of Instructions Structure of von Nuemann machine Arithmetic and Logic Unit Input Output Equipment Main Memory Program Control Unit 1 1 Instruction Set - the type of Instructions Arithmetic + Logical (ADD, SUB, MULT, DIV,

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

Lecture 8: RISC & Parallel Computers. Parallel computers

Lecture 8: RISC & Parallel Computers. Parallel computers Lecture 8: RISC & Parallel Computers RISC vs CISC computers Parallel computers Final remarks Zebo Peng, IDA, LiTH 1 Introduction Reduced Instruction Set Computer (RISC) is an important innovation in computer

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

ARM Processors for Embedded Applications

ARM Processors for Embedded Applications ARM Processors for Embedded Applications Roadmap for ARM Processors ARM Architecture Basics ARM Families AMBA Architecture 1 Current ARM Core Families ARM7: Hard cores and Soft cores Cache with MPU or

More information

CS3350B Computer Architecture MIPS Instruction Representation

CS3350B Computer Architecture MIPS Instruction Representation CS3350B Computer Architecture MIPS Instruction Representation Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Micro Architecture Nawin Somyat Department of Electrical and Computer Engineering Thammasat University 28 August 2018 Outline Course Contents 1 Introduction 2 Simple

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Universität Dortmund. ARM Architecture

Universität Dortmund. ARM Architecture ARM Architecture The RISC Philosophy Original RISC design (e.g. MIPS) aims for high performance through o reduced number of instruction classes o large general-purpose register set o load-store architecture

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

William Stallings Computer Organization and Architecture. Chapter 11 CPU Structure and Function

William Stallings Computer Organization and Architecture. Chapter 11 CPU Structure and Function William Stallings Computer Organization and Architecture Chapter 11 CPU Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data Registers

More information

UNIT II SYSTEM BUS STRUCTURE 1. Differentiate between minimum and maximum mode 2. Give any four pin definitions for the minimum mode. 3. What are the pins that are used to indicate the type of transfer

More information