Radiation hard design in CMOS image sensors. Bart Dierickx, Caeleste CPIX Workshop sept 2014, Bonn

Size: px
Start display at page:

Download "Radiation hard design in CMOS image sensors. Bart Dierickx, Caeleste CPIX Workshop sept 2014, Bonn"

Transcription

1 Radiation hard design in CMOS image sensors Bart Dierickx, Caeleste CPIX Workshop sept 2014, Bonn

2 Outline Introduction Total dose Total ionizon dose TID Displacement damage DD Single events SEU single event upset SEL single event latch-up Take home message 16 September 2014 radhard design in CMOS image sensors 2

3 Introduction TID total ionizing dose DD displacement damage SEU single event [upset...] SEL single event latch-up Take home message Introduction About us Background in Radhard CMOS design 16 September 2014 radhard design in CMOS image sensors 3

4 About us Founded 2006 Mechelen, Belgium 17p Mission and business model Supplier of Custom designed Beyond State of the Art Image sensors space X-ray scientific TOF specialties 16 September 2014 radhard design in CMOS image sensors 4

5 Caeleste radhard background Where we come from Historical contribution to radhard and cryo design for space (ISOPHOT..., OISL, STAR250, HAS...) Background in design for particle physics and X-ray integrating and photon counting detectors Close relationships with foundry technologists Expertise in circuit & device physics & technology Present Routine radhard design (TID, TnID, SE, SEL) Proton & SE hard pixels ROICs and image sensors 16 September 2014 radhard design in CMOS image sensors 5

6 Heritage OISL 2000 first >10Mrad QX 2010 Analog domain 2- energy color X- ray photon counting ISOPHOT FIR ROIC 1989 SEU hard wo TR 1989 XYW event detector 1992 RD-19 SOI-CMOS STAR250/ September 2014 radhard design in CMOS image sensors 6

7 Disclaimer This paper focuses on design countermeasures, while understanding the damage mechanism itself This is not a design course. Details of actual designs are not shown Technology countermeasures, temperature effects, annealing not treated No guarantee on effectiveness of techniques, nor of IP freedom 16 September 2014 radhard design in CMOS image sensors 7

8 Introduction TID total ionizing dose DD displacement damage SEU single event [upset...] SEL single event latch-up Take home message TID total ionizing dose also referred to as IEL ionizing energy loss 16 September 2014 radhard design in CMOS image sensors 8

9 TID Radiation: Primarily X, γ, but essentially all particles Dominant effect : Creation of positive space charge in the SiO2 (SiN) dielectric layers Also: increase of interface states at Si-SiO2 interface Effect on CMOS circuits: Moderate shift of Vth, μ degradation and 1/f noise increase Parasitic S-D leakage via STI/field in nmosfets resulting in large dissipation and malfunction 16 September 2014 radhard design in CMOS image sensors 9

10 TID Effect on CMOS pixels: Moderate offset shift and 1/f noise increase Lateral shunting between pixels Lower gain and increased PRNU Increased average I dark and DNSU Most publications are describing this last effect 16 September 2014 radhard design in CMOS image sensors 10

11 Design countermeasures Buried diodes as the general way to reduce dark current Avoiding the parasitic source-drain leakage in nmosfets Several case-by-case other measures 16 September 2014 radhard design in CMOS image sensors 11

12 TID-hard CMOS Regular transistor Leaks when STI/field inverts Annular transistor: No path over STI/field H-gate transistor: Leakage path over STI/field is blocked by P-implant 16 September 2014 radhard design in CMOS image sensors 12

13 The CES ASIC Fully radhard & cryo 77K UMC018 Digital: DARE library Analog: CaelesteRH >>1Mrad, not tested yet ESA consortium Caeleste+Easics+Selex September 2014 radhard design in CMOS image sensors 13

14 4 SAR ADCs, detail 16 September 2014 radhard design in CMOS image sensors 14

15 Digital logic, detail 16 September 2014 radhard design in CMOS image sensors 15

16 Caeleste RH library CaelesteRH as compared to SotA Available in 3 technologies, porting is standardized Full analog & mixed mode Very high TID & TnID hardness Very high SEL hardness Very high SEU hardness wo TR <20% increased Cin and power <50% area increase Normal Caeleste mixed mode Caeleste RH 16 September 2014 radhard design in CMOS image sensors 16

17 Idark [e-/s] TID Gamma Radhard pixels LAP2010 device Tower TSL Gamma TID TID of gamma 60 Co Compared to published SotA TID [kgy] innocent1 2009innocent2 2009innocent (HAS) 2000bogaert/dierickx 2002dierickx (STAR250) LAP default LAP DS LAP DX 10 LAP XS September 2014 radhard design in CMOS image sensors 17

18 e-/h+/α range or photon absorption [µm] factor increase Idark [] TID Gamma Electrons 100 LAP2010 device Tower TSL devices; many pixels per device 1E E+07 1E+06 1E+05 1E+04 1E+03 1E+02 1E E+00 1E-01 Silicon electrons protons e- PPD photons [krad 70 Si] 80 alpha 1E-02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10 initial energy [ev] TID of 300keV electrons 1.2/1.3 MeV gamma 60 Co Effect on Buried PPD Surface FD 16 September 2014 radhard design in CMOS image sensors 18 e- FD γ PPD γ FD

19 DD Introduction TID total ionizing dose DD displacement damage SEU single event [upset...] SEL single event latch-up Take home message displacement damage also referred to as NIEL non-ionizing energy loss 16 September 2014 radhard design in CMOS image sensors 19

20 DD Radiation: HE particles: protons and heavier Dominant effect : Non-elastic displacement of Si atoms Often creating an initial vacancy+interstitial Effect on CMOS pixels: Point-wise heavily leaking diodes, hot pixels Often blinking RTS dark current pixels 16 September 2014 radhard design in CMOS image sensors 20

21 Photodiode redundancy? Proton/Neutron/other_particle displacement damage in the photodiode creates hot or RTS pixel SE creates flash No way to remove or calibrate this? Suppose we split the pixel in parts. The defect will reside in only one Redundancy? Readout all, remove the defect part s signal and average. Take a weighted maximum voltage by winner take all circuit or sourcefollower 16 September 2014 confidential 21

22 RESET Photodiode redundancy RESET RESET SELECT SELECT PPD/2 PPD/2 FD FD/2 PPD TG TG FD/2 Column PPD/2 Column US patent US

23 SEU Introduction TID total ionizing dose DD displacement damage SEU single event [upset...] SEL single event latch-up Take home message single event [upset] Also SEE, SEFI, SET, SEGR, SEB... () SEL is separately treated 16 September 2014 radhard design in CMOS image sensors 23

24 SEU Radiation Sometimes X, γ, e-, but rather much heavier particles Dominant effect : Creation of instantanous + or charge packet sufficient to toggle a latch Effect on CMOS and CMOS pixels: register or memory loosing information flash seen by the photodiode 16 September 2014 radhard design in CMOS image sensors 24

25 SEU The loss of bits in SRAM cells or Flip-flops electrons September 2014 radhard design in CMOS image sensors 25

26 SEU Mechanism Particle deposited charge packet charges one node of a latch to the oppisite logic value 16 September 2014 radhard design in CMOS image sensors 26

27 Flipping the 0 VDD 3.3V VSS 3.3V 0V

28 Flipping the ns VDD 3.3V 2V VSS V Hole drift/diffusion Electrons drift/diffusion + + +

29 SEU countermeasures Shield against particles Make vulnerable volume small Make vulnerable node capacitance large Triple (and other froms of) redundancy Detectability, read-back, re-upload 16 September 2014 radhard design in CMOS image sensors 29

30 SEL Introduction TID total ionizing dose DD displacement damage SEU single event [upset...] SEL single event latch-up Take home message single event latch-up SEL

31 SEL Radiation Protons and rather even heavier particles Dominant effect : Creation of instantanous + or charge packet sufficient to initiate a PNPN latch-up Effect on CMOS: Circuit collapsing and potential destruction due to excessive supply current 16 September 2014 radhard design in CMOS image sensors 31

32 Bulk CMOS has an annoying thyristor VDD VSS PNP NPN

33 Bulk CMOS has an annoying thyristor VDD VSS PNP NPN

34 Attention: these two resistors are physically partly the same This external element model is imperfect! Thyristor = 2 * BJT VSS NPN VDD Q PNP Threshold for ignition: Q, C Conditions for sustaining:, R 16 September 2014 radhard design in CMOS image sensors 34

35 Modeling SEL Quantitative compact (=SPICE) model? Much better: a 3D device simulator. What lacks: value for series resistances Series resistances in E, B, C. Can estimate it from techology data. Pay attention that resistance applies to majority carriers. Base resistance is thus over/underestimated and partly uncorrelated Emitter and Base resistances partly overlap: Emitter current increases IR drop of Base. What lacks: models of the parasitic BJTs : must eventually measure that. Start with default value ( ) for qualitative estimate. 16 September 2014 radhard design in CMOS image sensors 35

36 Design countermeasures Avoid ignition minimize sensitive volume maximize C/Q: increase node capacitances Avoid sustaining Maximally reduce the series resistance in the thyristor Between the nwell and pwell: guard rings metallically tied to VDD/VSS Avoid proliferation nwells (actually the well not being the substrate) should be fragmented. So that the latchup remains confined: when one section latches, the general supply voltage does not collapse. 16 September 2014 radhard design in CMOS image sensors 36

37 Design style Classic CMOS design style Metal guardring around wells Rails in the middle VDD=nWELL VDD=nWELL VSS=substrate VDD=nWELL VSS=substrate VSS=substrate 16 September 2014 radhard design in CMOS image sensors 37

38 VSS=substrate VDD=nWELL VDD=nWELL VSS=substrate Mirrored rails VDD=nWELL VSS=substrate VSS=substrate VDD=nWELL 16 September 2014 radhard design in CMOS image sensors 38

39 Technology measures Avoid the thyristor SOI, FinFET Reduce the bipolar feedback Poor BJTs Trenches Low sheet resistances Epi wafers (p- on p++ or n- on n++): reduces 1 Base resistor Increased recombination reduces minority current and increases I dark Reduce the pick-up Small charge collecting volume in the Bases 16 September 2014 radhard design in CMOS image sensors 39

40 Triple well... The number of possible thryristors increases 16 September 2014 radhard design in CMOS image sensors 40

41 Good to know nmos-only or pmos-only circuit parts cannot latchup. A standalone BJT does not latchup 16 September 2014 radhard design in CMOS image sensors 41

42 SEL and vulnerable nodes How much charge is deposited on a vulnerable node 16 September 2014 radhard design in CMOS image sensors 42

43 Vulnerable 0 VDD VSS

44 Vulnerable 0 +10ps VDD VSS + -

45 Vulnerable ns VDD VSS recombination

46 electrons Net node charge as function of time the nwell case Substrate electrons diffuse into depletion layer then drift into nwell Electrons diffuse to nwell VDD tie Holes in nwell diffuse into depletion layer then drift into substrate Event Holes drift out of depletion layer to substrate Electrons drift into nwell ~10ps ~1ns time

47 How to estimate Q? LET linear energy transfer Heavy ions are commonly described by amount of energy lost per unit track length = Linear Energy Transfer Linear Energy Transfer Energy loss per unit path length de/dx= MeV/cm Divide by material density = MeV.cm 2 /mg LET of 100 MeV.cm 2 /mg corresponds to charge deposition of 1pC/μm = 6E6 e-/h+ How does LET spectrum relate to the real space environment? A measure for the heaviest ions/events that can be expected Says nothing about number of particles or probability 16 September 2014 radhard design in CMOS image sensors 47

48 [e-h+/µm] e-h+ pairs per µm 100 MeV.cm 2 /mg = 1pC/µm = 6Me-h+/µm This is a linear function, thus 50 MeV.cm 2 /mg is still 3 million charges/µm. For reference /µm α: 4E6 eh, H+: eh, β (and γ): <5000 e-h+ 1,E+06 1,E+05 1,E+04 deposited e-h+/µm in Silicon e: e-/µm h+: e-/µm alfa: e-/µm More energy: less charges! 1,E+03 1,E+02 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09 1,E+10 actual energy [ev] 16 September 2014 radhard design in CMOS image sensors 48

49 Voltage drop assuming instantanous charge deposition Minimal junction size and capacitance 1fF & 1µm: 6000 e- = 1V Electrons (hence gamma) cannot create V forward Protons can (marginally) ignite LU Proton SEL hard junction? 5fF & 1µm: e- = 1V. Yet, shallow angle? 16 September 2014 radhard design in CMOS image sensors 49

50 electrons Net node charge as function of time Maximum effect alfa LET 100 MeV.cm 2 /mg Maximum effect proton Worst case threshold for SEL ~10ps Maximum effect electron / gamma <1GeV ~1ns time

51 Introduction TID total ionizing dose DD displacement damage SEU single event [upset...] SEL single event latch-up Take home message Take home message conclusions 16 September 2014 radhard design in CMOS image sensors 51

52 Take home CMOS imagers can be made hard against TID, SEL, SEU etc by design TID: avoid field leakage SEL: reduce bipolar feedback SEU: vulnerable volume & circuit redundancy Photodiode hardening for SE and displacement damage remains a question Photodiode redundancy? 16 September 2014 radhard design in CMOS image sensors 52

53 Thank you 16 September 2014 radhard design in CMOS image sensors 53

VORAGO TECHNOLOGIES. 6 th Interplanetary CubeSat Workshop Cambridge, May, 2017

VORAGO TECHNOLOGIES. 6 th Interplanetary CubeSat Workshop Cambridge, May, 2017 VORAGO TECHNOLOGIES Radiation-hardened ARM Cortex -M0 Microcontroller for CubeSats / SmallSats Ross Bannatyne, VORAGO Technologies rbannatyne@voragotech.com VORAGO Technologies Privately held fabless semiconductor

More information

ATMEL ATF280E Rad Hard SRAM Based FPGA. Bernard BANCELIN ATMEL Nantes SAS, Aerospace Business Unit

ATMEL ATF280E Rad Hard SRAM Based FPGA. Bernard BANCELIN ATMEL Nantes SAS, Aerospace Business Unit ATMEL ATF280E Rad Hard SRAM Based FPGA Bernard BANCELIN ATMEL Nantes SAS, Aerospace Business Unit Overview Atmel FPGA Key Points and Architecture ATF280E Radiation Test Results 2 Overview Atmel FPGA Key

More information

Latch-Up. Parasitic Bipolar Transistors

Latch-Up. Parasitic Bipolar Transistors Latch-Up LATCH-UP CIRCUIT Latch-up is caused by an SCR (Silicon Controlled Rectifier) circuit. Fabrication of CMOS integrated circuits with bulk silicon processing creates a parasitic SCR structure. The

More information

16th Microelectronics Workshop Oct 22-24, 2003 (MEWS-16) Tsukuba Space Center JAXA

16th Microelectronics Workshop Oct 22-24, 2003 (MEWS-16) Tsukuba Space Center JAXA 16th Microelectronics Workshop Oct 22-24, 2003 (MEWS-16) Tsukuba Space Center JAXA 1 The proposed presentation explores the use of commercial processes, including deep-sub micron process technology, package

More information

150nm SOI 77K Mixed-Signal Technology ATMEL

150nm SOI 77K Mixed-Signal Technology ATMEL 150nm SOI 77K Mixed-Signal Technology ATMEL 27-Aug-12 1 2012 Copyright Atmel Corporation 9-Aug-12 INTRODUCTION - 150NM SOI ATMEL TECHNOLOGY For over 25years, ATMEL has been a leading supplier providing

More information

ALMA Memo No Effects of Radiation on the ALMA Correlator

ALMA Memo No Effects of Radiation on the ALMA Correlator ALMA Memo No. 462 Effects of Radiation on the ALMA Correlator Joseph Greenberg National Radio Astronomy Observatory Charlottesville, VA July 8, 2003 Abstract This memo looks specifically at the effects

More information

Power IC 용 ESD 보호기술. 구용서 ( Yong-Seo Koo ) Electronic Engineering Dankook University, Korea

Power IC 용 ESD 보호기술. 구용서 ( Yong-Seo Koo ) Electronic Engineering Dankook University, Korea Power IC 용 ESD 보호기술 구용서 ( Yong-Seo Koo ) Electronic Engineering Dankook University, Korea yskoo@dankook.ac.kr 031-8005-3625 Outline Introduction Basic Concept of ESD Protection Circuit ESD Technology Issue

More information

ESD Protection Circuits: Basics to nano-metric ASICs

ESD Protection Circuits: Basics to nano-metric ASICs ESD Protection Circuits: Basics to nano-metric ASICs Manoj Sachdev University of Waterloo msachdev@ece.uwaterloo.ca September 2007 1 Outline Group Introduction ESD Basics Basic ESD Protection Circuits

More information

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions 04/15/14 1 Introduction: Low Power Technology Process Hardware Architecture Software Multi VTH Low-power circuits Parallelism

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 23/05/2014-1 ATLCE - F2-2014 DDC 2014 DDC

More information

RADIATION TEST OF TFSMART2 TECHNOLOGY USING EXTENDED COMMON MODE LVDS AND DC-DC CONVERTER COMPONENTS

RADIATION TEST OF TFSMART2 TECHNOLOGY USING EXTENDED COMMON MODE LVDS AND DC-DC CONVERTER COMPONENTS RADIATION TEST OF TFSMART2 TECHNOLOGY USING EXTENDED COMMON MODE LVDS AND DC-DC CONVERTER COMPONENTS ABSTRACT Volodymyr Burkhay (1), Gürkan Ilicali (2), André Rocke (3) (1) TELEFUNKEN Semiconductors GmbH

More information

Latches SEU en techno IBM 130nm pour SLHC/ATLAS. CPPM, Université de la méditerranée, CNRS/IN2P3, Marseille, France

Latches SEU en techno IBM 130nm pour SLHC/ATLAS. CPPM, Université de la méditerranée, CNRS/IN2P3, Marseille, France Latches SEU en techno IBM 130nm pour SLHC/ATLAS CPPM, Université de la méditerranée, CNRS/IN2P3, Marseille, France Outline Introduction Description of the DICE latch Different implemented layouts for the

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis AY 2015-16 26/04/2016-1

More information

Single Channel Protector in a SOT-23 Package and a MSOP Package ADG465

Single Channel Protector in a SOT-23 Package and a MSOP Package ADG465 Data Sheet Single Channel Protector in a SOT-23 Package and a MSOP Package FEATURES Fault and overvoltage protection up to ±40 V Signal paths open circuit with power off Signal path resistance of RON with

More information

Results of Radiation Test of the Cathode Front-end Board for CMS Endcap Muon Chambers

Results of Radiation Test of the Cathode Front-end Board for CMS Endcap Muon Chambers Results of Radiation Test of the Cathode Front-end Board for CMS Endcap Muon Chambers B. Bylsma 1, L.S. Durkin 1, J. Gu 1, T.Y. Ling 1, M. Tripathi 2 1 Department of Physics, Ohio State University, Columbus,

More information

Low Voltage Bandgap References and High PSRR Mechanism

Low Voltage Bandgap References and High PSRR Mechanism Low Voltage Bandgap References and High PSRR Mechanism Vahe Arakelyan 2nd year Master Student Synopsys Armenia Educational Department, State Engineering University of Armenia Moscow March 21-24, 2011 Outline

More information

VORAGO TECHNOLOGIES. Radiation-Hardened Solutions for CubeSats Ross Bannatyne, VORAGO Technologies

VORAGO TECHNOLOGIES. Radiation-Hardened Solutions for CubeSats Ross Bannatyne, VORAGO Technologies VORAGO TECHNOLOGIES Radiation-Hardened Solutions for CubeSats Ross Bannatyne, VORAGO Technologies rbannatyne@voragotech.com VORAGO Technologies Privately held fabless semiconductor company headquartered

More information

Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA

Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA Investigation of Proton Induced Radiation Effects in 0.15 µm Antifuse FPGA Vlad-Mihai PLACINTA 1,2, Lucian Nicolae COJOCARIU 1, Florin MACIUC 1 1. Horia Hulubei National Institute for R&D in Physics and

More information

Latch-up Verification / Rule Checking Throughout Circuit Design Flow

Latch-up Verification / Rule Checking Throughout Circuit Design Flow Latch-up Verification / Rule Checking Throughout Circuit Design Flow Michael Khazhinsky ESD and Latch-up Design Silicon Labs April 2016 Motivation The verification of latch-up protection networks in modern

More information

Flash memory cells data loss caused by total ionizing dose and heavy ions

Flash memory cells data loss caused by total ionizing dose and heavy ions Cent. Eur. J. Phys. 12(10) 2014 725-729 DOI: 10.2478/s11534-014-0503-6 Central European Journal of Physics Flash memory cells data loss caused by total ionizing dose and heavy ions Research Article Andrey

More information

Digital Fundamentals. Integrated Circuit Technologies

Digital Fundamentals. Integrated Circuit Technologies Digital Fundamentals Integrated Circuit Technologies 1 Objectives Determine the noise margin of a device from data sheet parameters Calculate the power dissipation of a device Explain how propagation delay

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

Electromagnetic Compatibility ( EMC )

Electromagnetic Compatibility ( EMC ) Electromagnetic Compatibility ( EMC ) ESD Strategies in IC and System Design 8-1 Agenda ESD Design in IC Level ( ) Design Guide Lines CMOS Design Process Level Method Circuit Level Method Whole Chip Design

More information

VORAGO TECHNOLOGIES. Solutions for Selective Radiation-Hardened Components in CubeSats Ross Bannatyne, VORAGO Technologies

VORAGO TECHNOLOGIES. Solutions for Selective Radiation-Hardened Components in CubeSats Ross Bannatyne, VORAGO Technologies VORAGO TECHNOLOGIES Solutions for Selective Radiation-Hardened Components in CubeSats Ross Bannatyne, VORAGO Technologies rbannatyne@voragotech.com VORAGO Technologies VORAGO Technologies, Austin, Texas.

More information

ESD Protection Design With Low-Capacitance Consideration for High-Speed/High- Frequency I/O Interfaces in Integrated Circuits

ESD Protection Design With Low-Capacitance Consideration for High-Speed/High- Frequency I/O Interfaces in Integrated Circuits Recent Patents on Engineering 2007, 1, 000-000 1 ESD Protection Design With Low-Capacitance Consideration for High-Speed/High- Frequency I/O Interfaces in Integrated Circuits Ming-Dou Ker* and Yuan-Wen

More information

Chapter 2 On-Chip Protection Solution for Radio Frequency Integrated Circuits in Standard CMOS Process

Chapter 2 On-Chip Protection Solution for Radio Frequency Integrated Circuits in Standard CMOS Process Chapter 2 On-Chip Protection Solution for Radio Frequency Integrated Circuits in Standard CMOS Process 2.1 Introduction Standard CMOS technologies have been increasingly used in RF IC applications mainly

More information

VORAGO TECHNOLOGIES. Rad-hard CMOS Based Technology for Space Ross Bannatyne (512)

VORAGO TECHNOLOGIES. Rad-hard CMOS Based Technology for Space Ross Bannatyne (512) VORAGO TECHNOLOGIES Rad-hard CMOS Based Technology for Space Ross Bannatyne rbannatyne@voragotech.com (512) 550-2954 Space Parts Working Group Torrance, CA April 4-5th, 2017 VORAGO Technologies Privately

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 26 March 2017 Disclaimer: This course

More information

79C Megabit (512k x 8-bit) EEPROM MCM FEATURES DESCRIPTION: 79C0408. Logic Diagram

79C Megabit (512k x 8-bit) EEPROM MCM FEATURES DESCRIPTION: 79C0408. Logic Diagram 79C48 4 Megabit (512k x 8-bit) EEPROM MCM CE 1 CE 2 CE 3 CE 4 RES R/B WE OE 79C48 A -16 128K x 8 128K x 8 128K x 8 128K x 8 I/O -7 Logic Diagram FEATURES Four 128k x 8-bit EEPROMs MCM RAD-PAK radiation-hardened

More information

Using COTS at the LHC: Building on Space Experience

Using COTS at the LHC: Building on Space Experience Using COTS at the LHC: Building on Space Experience James D. Kinnison David R. Roth The Johns Hopkins University Applied Physics Laboratory Presentation Outline Introductory Remarks Environment Comparison

More information

ESD Protection Device Simulation and Design

ESD Protection Device Simulation and Design ESD Protection Device Simulation and Design Introduction Electrostatic Discharge (ESD) is one of the major reliability issues in Integrated Circuits today ESD is a high current (1A) short duration (1ns

More information

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE60: CMOS Analog Circuits L: Fabrication and Layout - (8.8.0) B. Mazhari Dept. of EE, IIT Kanpur Suppose we have a Silicon wafer which is P-type and we wish to create a region within it which is N-type

More information

TABLE OF CONTENTS 1.0 PURPOSE INTRODUCTION ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2

TABLE OF CONTENTS 1.0 PURPOSE INTRODUCTION ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2 TABLE OF CONTENTS 1.0 PURPOSE... 1 2.0 INTRODUCTION... 1 3.0 ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2 3.1 PRODUCT DEFINITION PHASE... 3 3.2 CHIP ARCHITECTURE PHASE... 4 3.3 MODULE AND FULL IC DESIGN PHASE...

More information

Space Radiation and Plasma Environment Monitoring Workshop 13 and 14 May ESTEC. Efacec Space Radiation Monitors MFS & BERM

Space Radiation and Plasma Environment Monitoring Workshop 13 and 14 May ESTEC. Efacec Space Radiation Monitors MFS & BERM Space Radiation and Plasma Environment Monitoring Workshop 13 and 14 May 2014 - ESTEC Efacec Space Radiation Monitors MFS & BERM Contents MFS & BERM Architecture Detectors Stack Reconstruction Algorithm

More information

HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR

HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR P. Boulenc 1, J. Robbelein 1, L. Wu 1, L. Haspeslagh 1, P. De Moor 1, J. Borremans 1, M. Rosmeulen 1 1 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Email: pierre.boulenc@imec.be,

More information

Photon-to-Photon CMOS Imager: Opto-Electronic 3D Integration

Photon-to-Photon CMOS Imager: Opto-Electronic 3D Integration Photon-to-Photon CMOS Imager: Opto-Electronic 3D Integration Outline Key technologies for future CMOS imagers Bottlenecks for high speed imaging Our proposal Take home message Oct 12, 2017 Photon-to-Photon

More information

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE.

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE. Memory Design I Professor Chris H. Kim University of Minnesota Dept. of ECE chriskim@ece.umn.edu Array-Structured Memory Architecture 2 1 Semiconductor Memory Classification Read-Write Wi Memory Non-Volatile

More information

Current status of SOI / MPU and ASIC development for space

Current status of SOI / MPU and ASIC development for space The 23rd Microelectronics Workshop Current status of SOI / MPU and ASIC development for space Nov. 11 th 2010 Electronic Devices and Materials Group Aerospace Research and Development Directorate, JAXA

More information

ESA-CNES Deep Sub-Micron program ST 65nm. Laurent Dugoujon Remy Chevallier STMicroelectronics Grenoble, France.

ESA-CNES Deep Sub-Micron program ST 65nm. Laurent Dugoujon Remy Chevallier STMicroelectronics Grenoble, France. ESA-CNES Deep Sub-Micron program ST 65nm Laurent Dugoujon Remy Chevallier STMicroelectronics Grenoble, France. Agenda 2 Presentation DSM 65nm challenges DSM 65nm Supply-chain actors ESA-CNES 65nm Program

More information

Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology

Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 16, NO. 2, MAY 2003 319 Methodology on Extracting Compact Layout Rules for Latchup Prevention in Deep-Submicron Bulk CMOS Technology Ming-Dou Ker,

More information

Space: The Final Frontier FPGAs for Space and Harsh Environments

Space: The Final Frontier FPGAs for Space and Harsh Environments Space: The Final Frontier FPGAs for Space and Harsh Environments Introduction FPGAs offer several benefits to the system designer Flexibility of Design performance, upgrades Reduction in NRE and Cost.

More information

CMOS Process Flow. Layout CAD Tools

CMOS Process Flow. Layout CAD Tools CMOS Process Flow See supplementary power point file for animated CMOS process flow (see class ece410 website and/or* http://www.multimedia.vt.edu/ee5545/): This file should be viewed as a slide show It

More information

Modeling of High Voltage Devices for ESD Event Simulation in SPICE

Modeling of High Voltage Devices for ESD Event Simulation in SPICE The World Leader in High Performance Signal Processing Solutions Modeling of High Voltage Devices for ESD Event Simulation in SPICE Yuanzhong (Paul) Zhou, Javier A. Salcedo Jean-Jacques Hajjar Analog Devices

More information

ESD Protection Design for Mixed-Voltage I/O Interfaces -- Overview

ESD Protection Design for Mixed-Voltage I/O Interfaces -- Overview ESD Protection Design for Mixed-Voltage Interfaces -- Overview Ming-Dou Ker and Kun-Hsien Lin Abstract Electrostatic discharge (ESD) protection design for mixed-voltage interfaces has been one of the key

More information

DSM ASIC Technology & HSSL (KIPSAT)

DSM ASIC Technology & HSSL (KIPSAT) DSM ASIC Technology & HSSL (KIPSAT) Presented by L.Dugoujon ST/APM/MSH Microelectronics Presentation Days ESA/ESTEC 30March-01April 2010. 2 OUTLINE Need for DSM 65nm Key IPs KIPSAT project phases/status

More information

Performance of the ATLAS Inner Detector at the LHC

Performance of the ATLAS Inner Detector at the LHC Performance of the ALAS Inner Detector at the LHC hijs Cornelissen for the ALAS Collaboration Bergische Universität Wuppertal, Gaußstraße 2, 4297 Wuppertal, Germany E-mail: thijs.cornelissen@cern.ch Abstract.

More information

Process Technologies for SOCs

Process Technologies for SOCs UDC 621.3.049.771.14.006.1 Process Technologies for SOCs VTaiji Ema (Manuscript received November 30, 1999) This paper introduces a family of process technologies for fabriating high-performance SOCs.

More information

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS)

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) Objective Part A: To become acquainted with Spectre (or HSpice) by simulating an inverter,

More information

SkyFlash FP7 Project

SkyFlash FP7 Project SkyFlash 262890 FP7 Project Development of Rad-Hard non volatile Flash memories for space applications (http://www.skyflash.eu/) Cristiano Calligaro, RedCat Devices, c.calligaro@redcatdevices.it ASI Agenzia

More information

SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking

SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking E. Petri 1,2, T. Bacchillone 1,2, N. E. L Insalata 1,2, T. Cecchini 1, I. Del Corona 1,S. Saponara 1, L. Fanucci 1 (1) Dept. of Information

More information

Single Event Latchup Power Switch Cell Characterisation

Single Event Latchup Power Switch Cell Characterisation Single Event Latchup Power Switch Cell Characterisation Vladimir Petrovic, Marko Ilic, Gunter Schoof Abstract - In this paper are described simulation and measurement processes of a power switch cell used

More information

LEON3-Fault Tolerant Design Against Radiation Effects ASIC

LEON3-Fault Tolerant Design Against Radiation Effects ASIC LEON3-Fault Tolerant Design Against Radiation Effects ASIC Microelectronic Presentation Days 3 rd Edition 7 March 2007 Table of Contents Page 2 Project Overview Context Industrial Organization LEON3-FT

More information

Embedded System Application

Embedded System Application Laboratory Embedded System Application 4190.303C 2010 Spring Semester ROMs, Non-volatile and Flash Memories ELPL Naehyuck Chang Dept. of EECS/CSE Seoul National University naehyuck@snu.ac.kr Revisit Previous

More information

Enabling Testability of Fault-Tolerant Circuits by Means of IDDQ-Checkable Voters

Enabling Testability of Fault-Tolerant Circuits by Means of IDDQ-Checkable Voters Enabling Testability of Fault-Tolerant Circuits by Means of IDDQ-Checkable Voters ECE 7502 Class Discussion Ningxi Liu 14 th Apr 2015 ECE 7502 S2015 Customer Validate Requirements Verify Specification

More information

NEPP Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data

NEPP Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data NEPP Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data Melanie Berg, AS&D in support of NASA/GSFC Melanie.D.Berg@NASA.gov Kenneth LaBel, NASA/GSFC Jonathan Pellish, NASA/GSFC

More information

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point.

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point. Announcements (Crude) notes for switching speed example from lecture last week posted. Schedule Final Project demo with TAs. Written project report to include written evaluation section. Send me suggestions

More information

Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial

Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial Cadence Virtuoso Schematic Design and Circuit Simulation Tutorial Introduction This tutorial is an introduction to schematic capture and circuit simulation for ENGN1600 using Cadence Virtuoso. These courses

More information

OTP & MTP/FRP Non-Volatile Memory IP for Standard Logic CMOS

OTP & MTP/FRP Non-Volatile Memory IP for Standard Logic CMOS OTP & MTP/FRP Non-Volatile Memory IP for Standard Logic CMOS NSCore, Inc. http://www.nscore.com/ Outlines 1. Corporate Overview 2. Program, Read & Erase Mechanism 3. OTP IP Lineups 4. New MTP Technologies

More information

+1 (479)

+1 (479) Memory Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Memory Arrays Memory Arrays Random Access Memory Serial

More information

Initial Single-Event Effects Testing and Mitigation in the Xilinx Virtex II-Pro FPGA

Initial Single-Event Effects Testing and Mitigation in the Xilinx Virtex II-Pro FPGA Initial Single-Event Effects Testing and Mitigation in the Xilinx Virtex II-Pro FPGA J. George 1, S. Rezgui 2, G. Swift 3, C. Carmichael 2 For the North American Xilinx Test Consortium 1 The Aerospace

More information

3D Detector Simulation with Synopsys TCAD

3D Detector Simulation with Synopsys TCAD Journée de la simulation 17/6/2013 3D Detector Simulation with Synopsys TCAD V. Gkougkousis1,2, A. Lounis 1,2, N. Dinu 1, A. Bassalat 1,3 1. Laboratoire de L'accélérateur Linéaire 2. Université Paris-SUD

More information

QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM

QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM R DS126 (v1.0) December 18, 2003 0 8 Product Specification 0 QPro XQR17V16 Radiation Hardened 16Mbit QML Configuration PROM Features Latch-Up Immune to LET >120 MeV/cm 2 /mg Guaranteed TID of 50 krad(si)

More information

HCC40xxx, HCC45xxx. Rad-hard, high voltage, CMOS logic series. Description. Features

HCC40xxx, HCC45xxx. Rad-hard, high voltage, CMOS logic series. Description. Features HCC40xxx, HCC45xxx Rad-hard, high voltage, CMOS logic series Description Datasheet - production data The HCC40xxx and HCC45xxx series are composed of 70 types of high voltage CMOS functions, offering a

More information

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium

Obtainment of Prototypical images and Detector performance simulations. Guillaume Potdevin for the XFEL-HPAD-Consortium Obtainment of Prototypical images and Detector performance simulations Overview of the analysis Outlook Prototypical images: Single object imaging & XPCS short presentation (reminder ) Presentation of

More information

Integrated Simulation Solution for Advanced Power Devices

Integrated Simulation Solution for Advanced Power Devices Integrated Simulation Solution for Advanced Power Devices Objectives of this Presenation Presentation of simulation results for non-silicon power device types SiC Based Power Devices GaN Based Power Devices

More information

Development Status for JAXA Critical Parts, 2008

Development Status for JAXA Critical Parts, 2008 The 21st Microelectronics Workshop Development Status for JAXA Critical Parts, 2008 Oct. 7th 2008 Electronic Components and Devices Group Aerospace Research and Development Directorate, JAXA Hiroyuki SHINDOU

More information

DATASHEET HCS109MS. Features. Pinouts. Description. Ordering Information. Radiation Hardened Dual JK Flip Flop. FN2466 Rev 2.

DATASHEET HCS109MS. Features. Pinouts. Description. Ordering Information. Radiation Hardened Dual JK Flip Flop. FN2466 Rev 2. DATASHEET HCS109MS Radiation Hardened Dual JK Flip Flop FN2466 Rev 2.00 Features 3 Micron Radiation Hardened SOS CMOS Total Dose 200K RAD (Si) SEP Effective LET No Upsets: >100 MEV-cm 2 /mg Single Event

More information

FPGA Programming Technology

FPGA Programming Technology FPGA Programming Technology Static RAM: This Xilinx SRAM configuration cell is constructed from two cross-coupled inverters and uses a standard CMOS process. The configuration cell drives the gates of

More information

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction VLSI Lab Tutorial 3 Virtuoso Layout Editing Introduction 1.0 Introduction The purpose of this lab tutorial is to guide you through the design process in creating a custom IC layout for your CMOS inverter

More information

Aeroflex Colorado Springs RadHard Eclipse FPGA Frequently Asked Questions

Aeroflex Colorado Springs RadHard Eclipse FPGA Frequently Asked Questions Aeroflex Colorado Springs RadHard Eclipse FPGA Frequently Asked Questions (NOTE - FAQs WILL BE UPDATED ON A REGULAR BASIS) Introduction: QuickLogic has licensed their metal-to-metal Vialink TM technology

More information

Datasheet ADVAPIX TPX3. Version Datasheet. Model No.: APXMD3-Xxx170704

Datasheet ADVAPIX TPX3. Version Datasheet. Model No.: APXMD3-Xxx170704 Datasheet ADVAPIX TPX3 Version 1.0 - Datasheet Model No.: APXMD3-Xxx170704 Datasheet Device Parameters The ADVAPIX TPX3 modules were designed with special emphasis to performance and versatility which

More information

6. Latches and Memories

6. Latches and Memories 6 Latches and Memories This chapter . RS Latch The RS Latch, also called Set-Reset Flip Flop (SR FF), transforms a pulse into a continuous state. The RS latch can be made up of two interconnected

More information

Design Techniques for 45nm SOI Technology. Christophe Frey Engineering manager SOI design center

Design Techniques for 45nm SOI Technology. Christophe Frey Engineering manager SOI design center Design Techniques for 45nm SOI Technology Christophe Frey Engineering manager SOI design center Agenda SOI introduction SOI design Challenges Standard cell design IO design History effect characterization

More information

Lecture 20: Package, Power, and I/O

Lecture 20: Package, Power, and I/O Introduction to CMOS VLSI Design Lecture 20: Package, Power, and I/O David Harris Harvey Mudd College Spring 2004 1 Outline Packaging Power Distribution I/O Synchronization Slide 2 2 Packages Package functions

More information

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend Array-Structured Memory Architecture Memory Design I Professor hris H. Kim University of Minnesota Dept. of EE chriskim@ece.umn.edu 2 Semiconductor Memory lassification Read-Write Memory Non-Volatile Read-Write

More information

Title Laser testing and analysis of SEE in DDR3 memory components

Title Laser testing and analysis of SEE in DDR3 memory components Title Laser testing and analysis of SEE in DDR3 memory components Name P. Kohler, V. Pouget, F. Wrobel, F. Saigné, P.-X. Wang, M.-C. Vassal pkohler@3d-plus.com 1 Context & Motivation Dynamic memories (DRAMs)

More information

RTG4 PLL SEE Test Results July 10, 2017 Revised March 29, 2018 Revised July 31, 2018

RTG4 PLL SEE Test Results July 10, 2017 Revised March 29, 2018 Revised July 31, 2018 RTG4 PLL SEE Test Results July 10, 2017 Revised March 29, 2018 Revised July 31, 2018 Radiation Group 1 I. Introduction This document disseminates recently acquired single-event-effects (SEE) data on the

More information

Detector R&D at the LCFI Collaboration

Detector R&D at the LCFI Collaboration LCFI Overview Detector R&D at the LCFI Collaboration (Bristol U, Oxford U, Lancaster U, Liverpool U, RAL) Konstantin Stefanov on behalf of the LCFI collaboration LCWS2005, Stanford, 18-22 March 2005 Introduction

More information

10. Interconnects in CMOS Technology

10. Interconnects in CMOS Technology 10. Interconnects in CMOS Technology 1 10. Interconnects in CMOS Technology Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October

More information

3. Implementing Logic in CMOS

3. Implementing Logic in CMOS 3. Implementing Logic in CMOS 3. Implementing Logic in CMOS Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 27 September, 27 ECE Department,

More information

Towards Gfps CMOS image sensors. Renato Turchetta Barcelona, Spain

Towards Gfps CMOS image sensors. Renato Turchetta Barcelona, Spain Towards Gfps CMOS image sensors Renato Turchetta renato.turchetta@imasenic.com Barcelona, Spain Outline Introduction High speed CMOS Towards Gfps Outline Introduction High speed CMOS Towards Gfps Specifications

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I QUESTION BANK 2017 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Basic Electronic Devices (16EC401) Year

More information

SEE Tolerant Self-Calibrating Simple Fractional-N PLL

SEE Tolerant Self-Calibrating Simple Fractional-N PLL SEE Tolerant Self-Calibrating Simple Fractional-N PLL Robert L. Shuler, Avionic Systems Division, NASA Johnson Space Center, Houston, TX 77058 Li Chen, Department of Electrical Engineering, University

More information

OUTSTANDING PROPERTIES OF THE ESPROS CMOS/CCD TECHNOLOGY AND CONSEQUENCES FOR IMAGE SENSORS

OUTSTANDING PROPERTIES OF THE ESPROS CMOS/CCD TECHNOLOGY AND CONSEQUENCES FOR IMAGE SENSORS OUTSTANDING PROPERTIES OF THE ESPROS CMOS/CCD TECHNOLOGY AND CONSEQUENCES FOR IMAGE SENSORS OECD CONFERENCE CENTER, PARIS, FRANCE / 8 10 FEBRUARY 2012 Martin Popp, Enrico Marchesi, Beat De Coi, Markus

More information

Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat

Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat Jano Gebelein Infrastructure and Computer Systems in Data Processing (IRI) Frankfurt University Germany January 31st, 2012 Mannheim, Germany 1 Outline

More information

11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996

11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996 United States Patent (19) I I USOO5519242A 11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996 54 ELECTROSTATIC DISCHARGE 5,357,126 10/1994 Jimenez... 257/173 PROTECTION CIRCUIT FOR A NMOS

More information

QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series (XQR)

QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series (XQR) 0 QPro Series Configuration PROMs (XQ) including Radiation-Hardened Series (XQR) DS062 (v3.1) November 5, 2001 0 2 Preliminary Product Specification Features XQ1701L/XQR1701L QML Certified Configuration

More information

Deep Sub-Micron Cache Design

Deep Sub-Micron Cache Design Cache Design Challenges in Deep Sub-Micron Process Technologies L2 COE Carl Dietz May 25, 2007 Deep Sub-Micron Cache Design Agenda Bitcell Design Array Design SOI Considerations Surviving in the corporate

More information

Single Event Effects Testing of the Intel Pentium III (P3) Microprocessor

Single Event Effects Testing of the Intel Pentium III (P3) Microprocessor Single Event Effects Testing of the Intel Pentium III (P3) Microprocessor James W. Howard Jr. Jackson and Tull Chartered Engineers Washington, D.C. Martin A. Carts Ronald Stattel Charles E. Rogers Raytheon/ITSS

More information

S-5840B Series TEMPERATURE SWITCH IC (THERMOSTAT IC) WITH LATCH. Features. Applications. Package.

S-5840B Series TEMPERATURE SWITCH IC (THERMOSTAT IC) WITH LATCH. Features. Applications. Package. www.sii-ic.com TEMPERATURE SWITCH IC (THERMOSTAT IC) WITH LATCH SII Semiconductor Corporation, 2007-2012 Rev.2.1_01 The is a temperature switch IC (thermostat IC) with a latch function which detects the

More information

Composite Layout CS/EE N-type from the top. N-type Transistor. Diffusion Mask. Polysilicon Mask

Composite Layout CS/EE N-type from the top. N-type Transistor. Diffusion Mask. Polysilicon Mask Composite Layout CS/EE 6710 Introduction to Layout Inverter Layout Example Layout Design Rules Drawing the mask layers that will be used by the fabrication folks to make the devices Very different from

More information

Memory. Outline. ECEN454 Digital Integrated Circuit Design. Memory Arrays. SRAM Architecture DRAM. Serial Access Memories ROM

Memory. Outline. ECEN454 Digital Integrated Circuit Design. Memory Arrays. SRAM Architecture DRAM. Serial Access Memories ROM ECEN454 Digital Integrated Circuit Design Memory ECEN 454 Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports DRAM Outline Serial Access Memories ROM ECEN 454 12.2 1 Memory

More information

ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates)

ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates) ΗΜΥ 408 ΨΗΦΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΜΕ FPGAs Χειμερινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates) (ack: Jurriaan Schmitz, Semiconductor Components) ΧΑΡΗΣ

More information

The Essential Telemetry (ETM) ASIC A mixed signal, rad-hard and low-power component for direct telemetry acquisition and miniaturized RTU

The Essential Telemetry (ETM) ASIC A mixed signal, rad-hard and low-power component for direct telemetry acquisition and miniaturized RTU DUTH/SRL SPACE-ASICS The Essential Telemetry (ETM) ASIC A mixed signal, rad-hard and low-power component for direct telemetry acquisition and miniaturized RTU G. Kottaras 1, E. Sarris 2, A. Psomoulis 2,

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 28: DRAM & Flash Memories Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Review of Last Lecture

More information

Unit 7: Memory. Dynamic shift register: Circuit diagram: Refer to unit 4(ch 6.5.4)

Unit 7: Memory. Dynamic shift register: Circuit diagram: Refer to unit 4(ch 6.5.4) Unit 7: Memory Objectives: At the end of this unit we will be able to understand System timing consideration Storage / Memory Elements dynamic shift register 1T and 3T dynamic memory 4T dynamic and 6T

More information

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers R. Bannatyne, D. Gifford, K. Klein, C. Merritt VORAGO Technologies 2028 E. Ben White Blvd., Suite #220, Austin, Texas, 78741,

More information

Design on Latchup-Free Power-Rail ESD Clamp Circuit in High-Voltage CMOS ICs

Design on Latchup-Free Power-Rail ESD Clamp Circuit in High-Voltage CMOS ICs Design on Latchup-Free Power-Rail ESD Clamp Circuit in High-Voltage CMOS ICs Kun-Hsien Lin and Ming-Dou Ker Nanoelectronics and Gigascale Systems Laboratory, Institute of Electronics, National Chiao-Tung

More information

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy.

Semiconductor Memory Classification. Today. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. CPU Memory Hierarchy. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 4, 7 Memory Overview, Memory Core Cells Today! Memory " Classification " ROM Memories " RAM Memory " Architecture " Memory core " SRAM

More information