BM1680 Datasheet V1.0. Copyright 2017 BITMIAN TECHNOLOGIES LIMITED. All rights reserved.

Size: px
Start display at page:

Download "BM1680 Datasheet V1.0. Copyright 2017 BITMIAN TECHNOLOGIES LIMITED. All rights reserved."

Transcription

1 BM1680 Datasheet V1.0 Copyright 2017 BITMIAN TECHNOLOGIES LIMITED. All rights reserved.

2 Version Update Content Release Date V /10/25

3 CONTENT 1. Overview Key Features Typical System BM1680 Power Specs Power domains Power on sequence requirement Package & Ball Assignments Chip Package Ball Map BM1680 Signal Descriptions DDR Memory Interface Signals SerDes Interface Signals UART Interface Signals IIC Interface Signals SPI Flash Interface Signals JTAG Interface Signals Miscellaneous(MISC)Interface Signals Clock Interface Signals Power & Ground Signals Copyright 2017 BITMIAN TECHNOLOGIES LIMITED. All rights reserved.

4 1 Overview BM1680 is the accelerated ASIC solution for Deep Learning. All the popular CNN / RNN / DNN network topologies can be greatly accelerated when executing on BM1680 based acceleration platform. BM1680 is designed not only for network inference, but also optimized for network training. Equipped with total 64 NPUs in a single chip, BM1680 can provide 2TFLOPs peak performance for single precision floating point operation. The special designed NPU scheduling engine is the powerful heart which can supply extremely high bandwidth data flow efficiently to all the neuron processor cores. 32MB on chip memory resource enables best programing flexibility for performance optimization and data reuse. Through highly customized BMDNN Chip link technology, it provides stable, flexible, low latency link over the high speed SerDes which can make multiple BM1680 chips work together as a unified system that can provide greater processing capability. We also provide powerful software SDK to end-users. All the applications developed based on the mainstream deep learning frameworks (such as Caffe etc.) could be ported to BM1680 platform easily. For those users who are willing to get maximum optimization by deep customization, please contact us about FW level programing capability and guidance. The functional block diagram is shown below. Previous BM1680 or FPGA Next BM1680 NPU SUBSYSTEM MCU SUBSYSTEM CHIP_LINK SUBSYSTEM NPU0 NPU1 NPU2 NPU63 ARM CDMA HUB ITCM DTCM Data Hub MAC GLOBAL DMA NPU Schedule Engine VFP9 SERDES SYSTEM FABRIC DDR SUBSYSTEM DDR CH0 DDR CH1 DDR CH2 DDR CH3 BM1680 Peripheral SUBSYSTEM UART SPI IIC GPIO 72bit DDR 72bit DDR 72bit DDR 72bit DDR PC SPI Flash

5 2 Key Features Embedded Micro Controller 32b MCU 8KB L1 I Cache and D Cache With ITCM 512KB and DTCM 128KB JTAG debug support Co-processor: VPFv2 Boot method: Boot from SPI Flash and Boot from ITCM NP Subsystem 64 NPUs in a single chip 512KB local memory for each NPU Total computing power is 2TFLOPs for single precision. 64 NPUs in a single chip Memory Interface DDR3/DDR4 Highest data rate: DDR4(2667Mbps) / DDR3(1866Mbps) Memory data bus width: 64bit, 72bit (64bit + 8bit ECC) 4 independent DDR channels Rank number supported: Single CS# Maximum memory capacity up to 16GB SerDes SerDes max speed 12.5Gbps 40 SerDes lanes in total, grouped into 10 sets Reference clock: MHz or data rate/160 Special customized low latency MAC MCU in-cooperated for calibration purpose Chip Link Configurable link width. Support by channel disable Asymmetric downstream / upstream link width support Flow control back pressure Packet based data communication, max data payload size 8KB Typical system scenarios supported 1) Host enumerate chip and config chip ID 2) Host send FW and do MCU bootup 3) Host do register or memory access, all node chip 4) Host send task or do API call 5) FPGA Node DMA read from host to get image data and then distribute to all chip node. 6) BN layer data communication 7) Backward param gradient update Hardware mailbox for message exchange between host and chip. SPI Flash Controller

6 Synchronous, serial, full duplex transfer SPI mode 0,1,2,3 supported Configurable frame length 2 ~ 16 bits LSB or MSB First Tx/Rx Dual/Quad I/O read/write Flash supported Direct Memory Mapping Read supported Boot from SPI Flash support DMA transfer supported UART FIFO mode and register mode Fractional Baud rate generator; supports a wide range of target baud rates from 2400 to 230.4K Independent RX and TX DMA requests IIC Two-wire I2C serial interface Three speeds: 1) Standard mode (0 to 100 Kb/s) 2) Fast mode ( 400 Kb/s) 3) High-speed mode ( 3.4 Mb/s) Master or slave I2C operation 7- or 10-bit addressing Bulk transmit mode supported Handles Bit and Byte waiting at all bus speeds Electrical TSMC 28nm HPC+ Digital core voltage: 0.90V +/- 5% targeted Analog core voltage: 1.8V +/-5% I/O voltage: 1.8V +/-5% TDP: 41W when fully operated Operating temperature: 0~125 C

7 3 Typical System BM1680 provides great flexibility and scalability to build different scale of computing clusters to support end-user needs. Following functional block diagram illustrates the PCIE acceleration card typical structure based on BM1680: PCIE GEN3 Chiplink PCIE HOST Control Node0 Node1 DDR DDR The demonstrated system consists of 2 nodes. Each node is one BM1680 ASIC. Host control unit can be implemented with FPGA, it provides PCIE GEN3 link between host sever and the accelerator system. The host control unit and nodes are all connected through Chiplink. The data to be processed can be sent from host server to the acceleration card through the host interface downstream link. The processing result will be returned to the server through the upstream link. By this topology, more than two node chips could be linked together to form a bigger system if necessary. If more nodes need to be implemented on a single board, following factors needs to be taken into consideration: The form factor of the card. Power consumption and thermal dissipation the board can sustain. PCIE link bandwidth. Based on current computing power of BM1680 chip, use 4GB/s per node as PCIE bandwidth requirement for system design. For example, 2 node chip requires 8GB/s PCIE bandwidth. Each Node chip has DDR4 memory attached. The main purpose is to store network parameter and neuron data. The maximum memory capacity of each node is 16GB. ECC feature is provided which ensures server level data integrity for the system. The DDR4 memory is organized as 4 independent channels which can operate at 2667Mbps peak rate. Together with the high performance X86 or ARM server, the Sophon SC1 is suitable to be used to build Deep Learning Server like below.

8 Sophon SC1 High Performance X86 / ARM Server PCIE Sophon SC1 Sophon SC1 Sophon SC1 Deep Learning Server Most of the popular AI applications can be accelerated with this system, such as public security, transportation, intelligent retail, intelligence finance, intelligent video advertising and promoting, video content examination, radio and television video analysis, medical images, etc. The end application itself can be run on the high performance server, all the CNN/RNN/DNN workloads can be dispatched to the Sophon SC1 array. A complete host software stack should be run on the Server Machine. The host software stack provide interface between end-user s application and the acceleration hardware. The application API call will be served by the BM core and transferred to the acceleration hardware as requests through the PCIE Card Device driver reside on the host side. The Host Control Unit then convert these requests into Chiplink packets and send to corresponding node. The Sophon SC1 SDK is the powerful tools and libraries for designing, training, fine-tuning, and deploying deep learning algorithms and applications based on BM1680. It includes BMDNN, BMBLAS, BMCAFFE, and BMDEPLOY. For more detail, please refer to the Software SDK spec of BM1680.

9 4 BM1680 Power Specs 4.1 Power domains BM1680 power domains have been listed in the table below. The estimated current capability is also provided. Power/Ground Ref Ground Descriptions Current (ma) VAA_S VSS_S 1.5V power supply for analog 2500 VSS_S Ground VDD_P_T VSS_P_T 0.9V supply for PLL on the TOP 50 VSS_P_T Ground for PLL on the TOP VDD_P_B VSS_P_B 0.9V supply for PLL on the Bottom 50 VSS_P_B Ground for PLL on the Bottom VQPS_E VSS_IO_T High voltage (1.8V) for fuse programming 83 VDD_IO_T VSS_IO_T 1.8V supply for IO post-drive on the TOP 100 VSS_IO_T 0V supply for IO post-drive on the TOP VDD_IO_B VSS_IO_B 1.8V supply for IO post-drive on the Bottom 100 VSS_IO_B 0V supply for IO post-drive on the Bottom VREF_M Reference voltage of DDR 8 VDDP_M VSSP_M DDR postdrive power (1.2V for DDR4) 3000 VSSP_M DDR postdrive ground AVDD_M AVSS_M DDR analog power 1.8V 80 AVSS_M DDR analog ground VDD_C VSS_C 0.9v core power 40,000 VSS_C Core ground

10 4.2 Power on sequence requirement IO and Core: It is suggested to power up VDD_C before VDDIO SerDes: Core power VDD_C needs to be up earlier than VAA_S. Efuse: VQPS_E ramp-up slew rate MUST be slower than 1.8V/30us to avoid unintentional program. DDR:

11 5 Package & Ball Assignments 5.1 Chip Package The BM1680 use the FCBGA for the chip package design, figure 2-1 shows the package information. Figure 5-1 Package Information

12 5.2 Ball Map This chapter provides the signal/ball assignments (pinout) for the BM1680 of the deep learning processors. Figure 5-2 shows the BM1680 signal map. Figure 5-2 BGA Signal Map (Top View) The BM1680 signal map with the associated names is shown in six parts: Figure 5-3 shows the upper left sextant. Figure 5-4 shows the upper middle sextant.

13 Figure 5-5 shows the upper right sextant. Figure 5-6 shows the lower left sextant. Figure 5-7 shows the lower middle sextant. Figure 5-8 shows the lower right sextant A DDR3_DQS_N[1] DDR3_DQ[11] DDR3_DQ[13] DDR3_DQ[26] DDR3_DQ[28] VDDP_M DDR2_DQ[42] DDR2_DQS[5] DDR2_DQS_N[5] DDR2_DQS[7] B VSS_C DDR3_DQS[1] DDR3_DQ[9] VSS_C DDR3_DQ[27] DDR3_DQ[24] DDR2_DQ[44] DDR2_DQ[40] AVDD_M3 DDR2_DQS[6] DDR2_DQS_N[7] C DDR3_DQS[2] DDR3_DQS_N[2] DDR3_DQ[15] DDR3_DQS[3] DDR3_DQ[30] VSS_C DDR3_DM[3] DDR2_DQS_N[4] DDR2_DQS[4] DDR2_DQS_N[6] VDDP_M D DDR3_DQ[8] DDR3_DQ[10] VDD_C DDR3_DQS_N[3] DDR3_DQ[16] DDR3_DQ[31] DDR3_DQ[25] AVSS_M3 DDR2_DQ[47] DDR2_DQ[41] DDR2_DQ[45] E DDR3_DQ[19] DDR3_DM[2] DDR3_DQ[12] DDR3_DQ[14] VSS_C DDR3_DQ[20] DDR3_DQ[29] DDR2_DM[5] DDR2_DQ[46] VSS_C DDR2_DQ[43] F DDR3_DM[0] VSS_C DDR3_DQ[17] DDR3_DM[1] DDR3_DQ[18] DDR3_DQ[22] VREF_M3 VSS_C VDD_C DDR2_DM[4] DDR2_DM[6] G DDR3_DQS_N[0] DDR3_DQS[0] DDR3_DQ[3] VDD_C DDR3_DQ[21] DDR3_DQ[23] DDR2_DQ[38] DDR2_DQ[34] VSS_C DDR2_DQ[33] DDR2_DQ[49] H DDR3_DQ[4] VDDP_M DDR3_DQ[2] DDR3_DQ[1] DDR3_DQ[5] VSS_C DDR2_DQ[32] DDR2_DQ[36] DDR2_DQ[35] DDR2_DQ[37] VSS_C J DDR3_DQ[48] DDR3_DQ[52] VSS_C DDR3_DQ[6] DDR3_DQ[0] DDR3_DQ[7] DDR3_DQS_N[8] DDR3_DQS[8] DDR2_DQ[39] DDR3_DQ[68] DDR2_DQ[53] K DDR3_DQS[6] DDR3_DQS_N[6] DDR3_DQ[54] DDR3_DQ[56] VSS_C DDR3_DM[7] VDDP_M VSS_C DDR3_DQ[66] DDR3_DQ[70] DDR3_DQ[64] L DDR3_DQ[51] VDD_C DDR3_DQ[49] DDR3_DQ[53] DDR3_DQ[59] DDR3_DQ[58] VDD_C DDR3_DQ[60] DDR3_DM[8] DDR3_DQ[65] DDR3_DQ[69] M DDR3_DM[6] DDR3_DQ[50] DDR3_DQS[7] VSS_C DDR3_DQ[62] DDR3_DQ[63] DDR3_DQ[61] VSS_C DDR3_DQ[67] DDR3_DQ[71] VDD_C N VSS_C DDR3_DQ[55] DDR3_DQS_N[7] DDR3_DQ[57] DDR3_DQ[47] VSS_C DDR3_DQ[35] DDR3_DQ[37] DDR3_DQ[39] VDD_C VDD_C P DDR3_DQS[5] DDR3_DQS_N[5] VDDP_M DDR3_DQ[43] DDR3_DQ[45] DDR3_DM[4] DDR3_DQ[33] DDR3_ZQ1 VDD_C VSS_C VDD_C R DDR3_DQ[40] DDR3_DQ[42] DDR3_DQ[46] DDR3_DQ[41] VSS_C DDR3_DQ[34] DDR3_DQ[38] DDR3_ZQ0 VSS_C VDD_C VSS_C T DDR3_CKE VSS_C DDR3_DQS[4] DDR3_DQS_N[4] DDR3_DQ[44] DDR3_DM[5] DDR3_ADDR[14] VSS_C VDD_C VSS_C VDD_C U DDR3_WE_N DDR3_ODT DDR3_BANK[2] VDD_C DDR3_BANK[1] DDR3_CS_N DDR3_DQ[32] VDD_C DDR3_ADDR[6] DDR3_RESET_N VSS_C V DDR3_CLK_P DDR3_CLK_N DDR3_BANK[0] DDR3_ADDR[12] DDR3_ADDR[0] DDR3_DQ[36] DDR3_ADDR[8] DDR3_ADDR[7] VDD_C DDR3_ADDR[15] VSS_C W DDR3_ADDR[10] DDR3_CAS_N VSS_C DDR3_ADDR[3] DDR3_ADDR[1] DDR3_ADDR[9] VSS_C DDR3_ADDR[13] DDR3_ALERT_N VDD_C VSS_C Y DDR3_RAS_N DDR3_ADDR[4] DDR3_TEN DDR3_ADDR[2] VSS_C VDDP_M DDR3_PAR DDR3_ADDR[11] DDR3_ADDR[5] VSS_C VDD_C Figure 5-3 BM1680 Signal Map, Upper Left Sextant (Top View) A DDR2_DQ[58] DDR2_DQ[62] DDR2_DQ[4] DDR2_DQ[3] DDR2_DQS_N[0] DDR2_DQ[70] DDR2_DQ[68] DDR2_DQ[64] DDR2_DQS[2] DDR2_CLK_N DDR2_CLK_P DDR2_DQS_N[3] B DDR2_DQ[59] DDR2_DQ[56] VDDP_M DDR2_DQ[21] DDR2_DQS[0] DDR2_DQS[1] DDR2_DM[8] VSS_C DDR2_DQS_N[2] VREF_M2 VSS_C DDR2_DQS[3] C DDR2_DQ[63] DDR2_DM[7] DDR2_DQ[6] DDR2_DQ[67] AVSS_M2 DDR2_DQS_N[1] DDR2_DQS[8] DDR2_DQS_N[8] DDR2_DQ[22] DDR2_ADDR[4] DDR2_WE_N DDR2_CS_N D DDR2_DQ[60] VSS_C DDR2_DQ[0] DDR2_DQ[2] DDR2_DM[0] DDR2_DQ[1] VSS_C DDR2_DM[2] DDR2_DQ[16] DDR2_TEN DDR2_ODT VDDP_M E DDR2_DQ[57] DDR2_DQ[61] DDR2_DQ[52] VSS_C DDR2_DQ[8] DDR2_DQ[17] DDR2_DQ[19] DDR2_DQ[18] VDDP_M DDR2_ADDR[2] VSS_C DDR2_BANK[0] F VSS_C DDR2_DQ[54] DDR2_DQ[48] VDD_C DDR2_DQ[14] VSS_C DDR2_DQ[29] DDR2_DQ[25] DDR2_DQ[31] DDR2_PAR DDR2_ADDR[14] DDR2_ADDR[6] G DDR2_DQ[50] VSS_C DDR2_DQ[71] DDR2_DQ[5] DDR2_DQ[10] DDR2_DQ[23] DDR2_DQ[27] DDR2_DQ[20] DDR2_ADDR[11] VSS_C DDR2_ADDR[15] DDR2_DQ[24] H DDR2_DQ[51] VDD_C DDR2_DQ[12] DDR2_DQ[7] DDR2_DQ[65] DDR2_DQ[9] DDR2_DQ[26] DDR2_RAS_N DDR2_ADDR[5] DDR2_ALERT_N DDR2_DQ[30] DDR2_ZQ1 J DDR2_DQ[55] VSS_C VDD_C DDR2_DM[1] DDR2_DQ[11] AVDD_M2 VDD_C DDR2_DQ[66] DDR2_DQ[69] DDR2_CKE DDR2_DQ[28] DDR2_RESET_N K VSS_C VDD_C VSS_C VDD_C DDR2_DQ[15] DDR2_DQ[13] VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C L VDD_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VSS_C M VSS_C VSS_C VSS_C VSS_C VDD_C VSS_C VSS_C VSS_C VDD_C VSS_C VSS_C VSS_C N VSS_C VDD_C VDD_C VDD_C VSS_C VDD_C VDD_C VDD_C VSS_C VDD_C VDD_C VQPS_E P VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VMON_N VDD_C R VDD_C VSS_C VSS_C VSS_C VDD_C VSS_C VSS_C VSS_C VDD_C VSS_C VMON_P VSS_C T VSS_C VDD_C VDD_C VDD_C VSS_C VSS_C VDD_C VSS_C VSS_C VSS_C VSS_C VSS_C U VSS_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VDD_C VDD_C VDD_C VDD_C VSS_C V VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VSS_C VDD_C VSS_C VDD_C VDD_C VSS_C W VDD_C VSS_C VSS_C VDD_C VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VSS_C VSS_C Y VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VSS_C VSS_C Figure 5-4 BM1680 Signal Map, Upper Middle Sextant (Top View)

14 A DDR2_ADDR[3] DDR2_ADDR[12] VDD_C IP_1[0] VDD_C IP_2[0] VAA_S IP_3[0] VDD_C IP_4[0] VDD_C IP_1[1] VAA_S IP_2[1] VDD_C VAA_S VSS_C B VDD_C DDR2_CAS_N VSS_C IN_1[0] VSS_C IN_2[0] VSS_C IN_3[0] VSS_C IN_4[0] VSS_C IN_1[1] VSS_C IN_2[1] VSS_C IN_3[1] IP_3[1] C DDR2_BANK[2] DDR2_BANK[1] VDD_C VAA_S VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VAA_S D DDR2_ADDR[10] VDD_C VSS_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VSS_C IN_4[1] IP_4[1] E DDR2_ADDR[0] DDR2_ADDR[1] VDD_C OP_1[0] VDD_C OP_2[0] VDD_C OP_3[0] VDD_C OP_4[0] VDD_C VSS_C VDD_C ON_1[1] OP_1[1] VSS_C VDD_C F DDR2_ADDR[9] DDR2_ADDR[8] VSS_C ON_1[0] VSS_C ON_2[0] VSS_C ON_3[0] VSS_C ON_4[0] VSS_C ON_1[2] OP_1[2] VDD_C VSS_C IN_1[2] IP_1[2] G DDR2_DM[3] DDR2_ADDR[7] VDD_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VDD_C ON_2[1] OP_2[1] VSS_C VAA_S H DDR2_ZQ0 DDR2_ADDR[13] VSS_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C ON_2[2] OP_2[2] VDD_C VSS_C IN_2[2] IP_2[2] J VDD_C VSS_C VDD_C CKIN[0] VDD_C CKIP[1] VDD_C VSS_C VDD_C GPIO27 VDD_C VSS_C VDD_C ON_3[1] OP_3[1] VSS_C VAA_S K VSS_C VDD_C VSS_C CKIP[0] VSS_C CKIN[1] VSS_C GPIO31 GPIO29 GPIO28 VSS_C ON_3[2] OP_3[2] VDD_C VSS_C IN_3[2] IP_3[2] L VDD_C VSS_C JTAGTMS VSS_C GPIO11 VSS_C SF_SCK GPIO9 UART_TX UART_RX VDD_C VSS_C VDD_C ON_4[1] OP_4[1] VSS_C VDD_C M VSS_C VSS_C JTAGTRST_X JTAGTDO GPIO10 VDD_C SF_SDO GPIO7 GPIO30 VDD_C VSS_C ON_4[2] OP_4[2] VDD_C VAA_S IN_4[2] IP_4[2] N TEMP_P VDD_C VDD_C JTAGTCK GPIO8 SF_CS_X SF_SDI VSS_C VDD_C ON_1[3] OP_1[3] VSS_C VDD_C IN_1[3] IP_1[3] VSS_C VAA_S P TEMP_N VDD_C MPLL_LOCKO JTAGTDI VSS_C SF_WP_X VSS_C CKIN[2] CKIP[2] VDD_C VSS_C ON_1[4] OP_1[4] VDD_C VSS_C IN_1[4] IP_1[4] R VDD_C VSS_C MPLL_BYP VSS_C VDD_C SF_HOLD_X SPI_CK_SEL0 VSS_C VDD_C ON_2[3] OP_2[3] VSS_C VDD_C IN_2[3] IP_2[3] VSS_C VDD_C T VDD_C VSS_C MPLL_CK_IN VSS_C DPLL1_LOCKO VDD_C VSS_C CKIN[3] CKIP[3] VDD_C VSS_C ON_2[4] OP_2[4] VDD_C VSS_C IN_2[4] IP_2[4] U VDD_C VDD_C VDD_C SPLL_LOCKO DPLL1_BYP EXT_RCVD_CLK GPIO0 VSS_C VDD_C ON_3[3] OP_3[3] VSS_C VDD_C IN_3[3] IP_3[3] VSS_C VDD_C V VDD_C VSS_C MODE_SEL1 SPLL_BYP DPLL1_CK_IN MODE_SEL2 VSS_C CKIN[4] CKIP[4] VDD_C VSS_C ON_3[4] OP_3[4] VDD_C VSS_C IN_3[4] IP_3[4] W VDD_C VSS_C IICS_SDA1 SPLL_CK_IN VDD_C GPIO17 SPI_CK_SEL1 VSS_C VDD_C ON_4[3] OP_4[3] VSS_C VDD_C IN_4[3] IP_4[3] VSS_C VAA_S Y VDD_C VSS_C IICS_SCL1 VSS_C VSS_C VDD_C VSS_C CKIN[5] CKIP[5] VDD_C VSS_C ON_4[4] OP_4[4] VDD_C VSS_C IN_4[4] IP_4[4] Figure 5-5 BM1680 Signal Map, Upper Right Sextant (Top View) AA DDR1_ADDR[12] VSS_C DDR1_ADDR[0] DDR1_ADDR[9] DDR1_ADDR[8] VSS_C VSS_C DDR1_RESET_N DDR1_ADDR[15] VSS_C VDD_C AB DDR1_BANK[2] DDR1_ADDR[3] DDR1_BANK[1] VSS_C DDR1_PAR DDR1_ADDR[7] DDR1_ADDR[13] DDR1_ADDR[2] DDR1_ADDR[5] VSS_C VDD_C AC VDDP_M DDR1_ADDR[4] DDR1_TEN DDR1_BANK[0] DDR1_ADDR[1] VDD_C DDR1_ADDR[6] DDR1_CAS_N DDR1_ALERT_N VDD_C VSS_C AD DDR1_CLK_P DDR1_CLK_N VDD_C DDR1_CS_N DDR1_ADDR[10] DDR1_WE_N VSS_C DDR1_ADDR[11] VDD_C VSS_C VDD_C AE DDR1_DM[5] DDR1_DQ[44] DDR1_DQ[47] DDR1_DQ[45] VSS_C DDR1_ODT DDR1_CKE DDR1_ADDR[14] VSS_C VDD_C VSS_C AF DDR1_DQ[46] VSS_C DDR1_DQ[40] DDR1_DQ[41] DDR1_DQ[32] DDR1_DQ[36] VSS_C DDR1_RAS_N VDD_C DDR1_ZQ1 VDD_C AG DDR1_DQS[4] DDR1_DQS_N[4] DDR1_DQ[42] VSS_C DDR1_DQ[34] DDR1_DQ[33] DDR1_DQ[38] VDD_C DDR1_ZQ0 VDD_C VSS_C AH DDR1_DQ[43] DDR1_DQS[5] DDR1_DQS_N[5] DDR1_DM[4] DDR1_DQ[35] VDD_C DDR1_DQ[39] DDR1_DQ[70] DDR1_DQ[68] VSS_C VSS_C AJ DDR1_DM[6] DDR1_DQ[54] VDDP_M DDR1_DQ[63] DDR1_DQ[61] DDR1_DQ[59] DDR1_DQ[37] VSS_C VDD_C VDD_C VDD_C AK DDR1_DQ[49] DDR1_DQ[51] DDR1_DQ[53] DDR1_DQ[55] VSS_C DDR1_DQ[57] DDR1_DQ[64] DDR1_DQ[67] DDR1_DQ[69] VSS_C VDD_C AL DDR1_DQ[50] VSS_C DDR1_DQS_N[7] DDR1_DQ[62] DDR1_DQ[58] DDR1_DQ[60] DDR1_DQS_N[8] DDR1_DQ[66] DDR1_DQ[71] VSS_C VDD_C AM DDR1_DQ[52] DDR1_DQ[48] DDR1_DQS[7] AVSS_M1 DDR1_DQ[56] DDR1_DM[7] DDR1_DQS[8] VSS_C DDR1_DQ[65] DDR0_DQ[46] DDR0_DM[5] AN VDDP_M DDR1_DQS_N[6] DDR1_DQS[6] DDR1_DQ[7] DDR1_DQ[6] VREF_M1 DDR1_DM[3] DDR1_DM[8] DDR0_DQ[40] DDR0_DQ[45] VSS_C AP DDR1_DQ[3] DDR1_DQ[1] AVDD_M1 DDR1_DQ[5] DDR1_DQ[0] DDR1_DQ[21] DDR1_DQ[28] VSS_C DDR0_DQ[44] DDR0_DQ[43] DDR0_DQ[47] AR DDR1_DQ[20] DDR1_DM[0] DDR1_DQ[2] DDR1_DQ[16] VSS_C DDR1_DQ[23] DDR1_DQ[24] VDD_C VSS_C VDDP_M DDR0_DQ[41] AT DDR1_DQ[22] VSS_C DDR1_DQ[4] DDR1_DQ[18] DDR1_DM[2] DDR1_DQ[30] VSS_C DDR0_DQ[36] DDR0_DQ[39] DDR0_DQ[37] DDR0_DQ[42] AU DDR1_DQS[0] DDR1_DQS_N[0] DDR1_DQ[13] VDD_C DDR1_DQ[19] DDR1_DQ[26] DDR1_DQ[27] DDR0_DQ[34] VSS_C DDR0_DQ[55] DDR0_DQ[49] AV DDR1_DQS[2] DDR1_DQS_N[2] DDR1_DQ[11] DDR1_DQ[15] DDR1_DQ[8] VSS_C DDR1_DQS[3] DDR0_DQ[32] DDR0_DM[4] DDR0_DQ[53] VDD_C AW DDR1_DQS_N[1] DDR1_DQ[9] VSS_C DDR1_DQ[12] DDR1_DQ[17] DDR1_DQ[31] DDR1_DQS_N[3] VSS_C DDR0_DQS_N[4] DDR0_DQ[33] DDR0_DQS[6] AY DDR1_DQS[1] DDR1_DQ[14] DDR1_DQ[10] DDR1_DM[1] VDDP_M DDR1_DQ[29] DDR1_DQ[25] DDR0_DQ[38] DDR0_DQS[4] DDR0_DQ[35] DDR0_DQS_N[6] Figure 5-6 BM1680 Signal Map, Lower Left Sextant (Top View)

15 AA VSS_C VSS_C VDD_C VSS_C VDD_C VSS_C VSS_C VDD_C VSS_C VDD_C VDD_C VSS_C AB VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VDD_C VSS_C AC VDD_C VSS_C VSS_C VDD_C VSS_C VDD_C VSS_C VSS_C VDD_C VSS_C VSS_C VSS_C AD VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VDD_C VSS_C AE VSS_C VSS_C VDD_C VSS_C VDD_C VSS_C VSS_C VDD_C VSS_C VDD_C VDD_C VSS_P AF VSS_C VDD_C VDD_C VSS_C VSS_C VDD_C VDD_C VSS_C VSS_C VSS_C VDD_C VDD_P AG VDD_C VSS_C VSS_C VDD_C VSS_C VDD_C VDD_C VSS_C VDD_C VSS_C VSS_C VSS_C AH VSS_C VDD_C VDD_C VSS_C VSS_C VSS_C VDD_C VSS_C VDD_C VDD_C VSS_C VDD_P AJ VSS_C VSS_C VDD_C VSS_C VDD_C VDD_C VDD_C VSS_C VDD_C VDD_C VSS_C VSS_P AK VSS_C VDD_C VSS_C VDD_C VSS_C VSS_C VDD_C VSS_C DDR0_DQ[0] VDD_C VDD_C VSS_C AL VSS_C VDD_C DDR0_DQ[5] VDD_C VDD_C VSS_C DDR0_DQ[4] VSS_C DDR0_DQ[28] DDR0_DQ[24] DDR0_ADDR[6] VSS_C AM VSS_C DDR0_DQ[61] VDD_C DDR0_DM[0] DDR0_ZQ0 DDR0_DQ[6] DDR0_DQ[21] VSS_C DDR0_DM[3] DDR0_DQ[26] DDR0_ADDR[13] VDD_C AN DDR0_DQ[59] VSS_C DDR0_DQ[7] DDR0_DQ[1] DDR0_DQ[2] DDR0_DQS[0] DDR0_DQS_N[0] VSS_C DDR0_ZQ1 DDR0_RESET_N VSS_C DDR0_ALERT_N AP DDR0_DQS_N[7] VDD_C DDR0_DQ[57] DDR0_DQ[3] DDR0_DM[1] DDR0_DQ[20] VDD_C DDR0_DQ[17] DDR0_DQ[23] DDR0_ADDR[7] DDR0_ADDR[8] DDR0_DQ[30] AR DDR0_DQS[7] DDR0_DQ[63] DDR0_DQ[62] VSS_C DDR0_DQ[12] DDR0_DQ[16] DDR0_DM[2] DDR0_DQ[19] DDR0_ADDR[15] DDR0_ADDR[9] DDR0_ADDR[1] DDR0_TEN AT VSS_C DDR0_DQ[58] DDR0_DQ[60] DDR0_DQ[22] DDR0_DQ[8] VSS_C DDR0_DQ[18] DDR0_DQ[68] DDR0_DQ[69] DDR0_WE_N DDR0_BANK[1] DDR0_ADDR[4] AU DDR0_DM[6] DDR0_DQ[51] VSS_C DDR0_DQ[14] DDR0_DQ[10] DDR0_DQS_N[2] DDR0_DQ[71] AVSS_M0 DDR0_DQ[66] DDR0_CS_N DDR0_BANK[2] DDR0_ADDR[3] AV DDR0_DQS[5] DDR0_DQ[56] DDR0_DM[7] DDR0_DQ[11] VDD_C DDR0_DQS[2] DDR0_DQ[64] DDR0_DQ[70] DDR0_DM[8] VSS_C DDR0_ADDR[14] DDR0_DQ[27] AW DDR0_DQS_N[5] VDDP_M DDR0_DQ[52] DDR0_DQ[9] DDR0_DQ[15] DDR0_DQS[1] AVDD_M0 DDR0_DQS[8] DDR0_DQ[65] DDR0_ODT DDR0_CLK_P VSS_C AY DDR0_DQ[50] DDR0_DQ[48] DDR0_DQ[54] VSS_C DDR0_DQ[13] DDR0_DQS_N[1] DDR0_DQ[67] DDR0_DQS_N[8] VREF_M0 DDR0_CKE DDR0_CLK_N DDR0_DQS[3] Figure 5-7 BM1680 Signal Map, Lower Middle Sextant (Top View) AA VDD_C VDD_C VDD_C GPIO2 GPIO3 GPIO4 VDD_C VSS_C VDD_C ON_1[6] OP_1[6] VSS_C VDD_C IN_1[6] IP_1[6] VSS_C VAA_S AB VDD_C VDD_C GPIO19 MODE_SEL0 IICM_SCL IICM_SDA VSS_C CKIN[6] CKIP[6] VDD_C VSS_C ON_1[5] OP_1[5] VDD_C VSS_C IN_1[5] IP_1[5] AC VDD_C VSS_C TEST_EN GPIO1 GPIO15 GPIO16 GPIO24 VSS_C VDD_C ON_2[6] OP_2[6] VSS_C VDD_C IN_2[6] IP_2[6] VSS_C VDD_C AD VDD_C VSS_C GPIO20 VSS_C BOOT_SEL VDD_C VSS_C CKIN[7] CKIP[7] VDD_C VSS_C ON_2[5] OP_2[5] VDD_C VSS_C IN_2[5] IP_2[5] AE VDD_C VSS_C VDD_C SYS_RST_X VDD_C GPIO23 MDC VSS_C VDD_C ON_3[6] OP_3[6] VSS_C VDD_C IN_3[6] IP_3[6] VSS_C VDD_C AF VSS_C VSS_IO GPIO26 GPIO21 GPIO22 MDIO VSS_C CKIN[8] CKIP[8] VDD_C VSS_C ON_3[5] OP_3[5] VDD_C VSS_C IN_3[5] IP_3[5] AG VDD_C VDD_IO GPIO6 GPIO18 GPIO12 GPIO13 GPIO25 VSS_C VDD_C ON_4[6] OP_4[6] VSS_C VDD_C IN_4[6] IP_4[6] VSS_C VAA_S AH VSS_C VDD_IO GPIO5 VDD_C GPIO14 VDD_C VSS_C CKIN[9] CKIP[9] VDD_C VSS_C ON_4[5] OP_4[5] VDD_C VSS_C IN_4[5] IP_4[5] AJ VSS_C VSS_IO VSS_C VSS_C VSS_C DPLL2_LOCKO DPLL2_BYP VSS_C VDD_C TSTOUT VDD_C VSS_C VDD_C VDD_C VSS_C VSS_C VAA_S AK VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C DPLL2_CK_IN VDD_C VSS_C VDD_C VSS_C ON_1[8] OP_1[8] VDD_C VSS_C IN_1[7] IP_1[7] AL VDD_C VDD_C VDD_C VDD_C DPLL3_LOCKO DPLL3_BYP VDD_C VDD_C VDD_C VSS_C VDD_C VSS_C VDD_C ON_1[7] OP_1[7] VSS_C VDD_C AM DDR0_DQ[29] VSS_C VSS_C VSS_C VSS_C DPLL3_CK_IN VSS_C VSS_C VSS_C VDD_C VSS_C ON_2[8] OP_2[8] VDD_C VSS_C IN_2[7] IP_2[7] AN DDR0_ADDR[5] DDR0_ADDR[11] VDD_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VDD_C ON_2[7] OP_2[7] VSS_C VDD_C AP DDR0_DQ[31] DDR0_PAR VSS_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C ON_3[8] OP_3[8] VDD_C VAA_S IN_3[7] IP_3[7] AR DDR0_DQ[25] DDR0_ADDR[2] VDD_C ON_4[9] VDD_C ON_3[9] VDD_C ON_2[9] VDD_C ON_1[9] VDD_C VSS_C VDD_C ON_3[7] OP_3[7] VSS_C VDD_C AT DDR0_BANK[0] DDR0_ADDR[0] VSS_C OP_4[9] VSS_C OP_3[9] VSS_C OP_2[9] VSS_C OP_1[9] VSS_C ON_4[8] OP_4[8] VDD_C VSS_C IN_4[7] IP_4[7] AU VDDP_M VSS_C VDD_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VSS_C VDD_C ON_4[7] OP_4[7] VSS_C VAA_S AV DDR0_ADDR[12] DDR0_ADDR[10] VSS_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VSS_C VDD_C VSS_C IN_1[8] IP_1[8] AW VDD_C DDR0_CAS_N VDD_C IN_4[9] VSS_C IN_3[9] VDD_C IN_2[9] VDD_C IN_1[9] VSS_C IN_4[8] VDD_C IN_3[8] VDD_C VSS_C VAA_S AY DDR0_DQS_N[3] DDR0_RAS_N VSS_C IP_4[9] VAA_S IP_3[9] VSS_C IP_2[9] VSS_C IP_1[9] VAA_S IP_4[8] VSS_C IP_3[8] VSS_C IN_2[8] IP_2[8] Figure 5-8 BM1680 Signal Map, Lower Right Sextant (Top View)

16 6 BM1680 Signal Descriptions This chapter provides functional descriptions of the BM1680 I/O signals. The signals are grouped according to the I/O interfaces. 6.1 DDR Memory Interface Signals Each of the four BM1680 DRAM interfaces communicates with up to four ranks across a 72-bit data bus (64 bits for data and 8 bits for ECC). Table 6-1 DDR Channel [0/1/2/3] interface signals Interface Name Signal Name I/O Description DDR Channel? DDR?_ADDR[13:0] O Memory Address Bus DDR?_BG[1] / DDR?_ADDR[15] O Memory Bank Group select bit 1 / pin share with DDR_ADDR[15] DDR?_BG[0] / DDR?_BANK[2] O Memory Bank Group select bit 0 / pin share with DDR_BANK[2] DDR?_BANK[1:0] O Memory Bank Address DDR?_DM[8:0] O Data Mask for byte and Data Bus Invertion pin share, active-low DDR?_CKE[1:0] O Memory Clock Enables DDR?_CLK_P[1:0] O Memory Clocks (+) DDR?_CLK_N[1:0] O Memory Clocks (-) DDR?_CS_N O Memory Chip Selects, active-low DDR?_ACT_N / DDR?_ADDR[14] O Memory Activation Command, active-low / pin share with DDR_ADDR[14] DDR?_DQ[71:0] IO External Memory Data Bus DDR?_DQS_P[8:0] IO Memory Data Strobe for byte DDR?_DQS_N[8:0] IO Memory Data Strobe for byte DDR?_ZQ[1:0] IO ZQ calibration reference input DDR?_RESET_N O Memory reset signal, active low DDR?_PAR O Parity for command and address DDR?_ALERT_N IO Alert status signal DDR?_TEN O Connectivity test mode DDR?_ODT O On-Die Termination DDR?_RAS_N O DDR Row Address RAS, active-low DDR?_CAS_N O DDR Column Address CAS, active-low DDR?_WE_N O DDR Write Enable, active-low

17 6.2 SerDes Interface Signals The BM1680 contains ten SerDes quad-lane modules that are as shown in the below table. Table 6-2 SerDes interface signals Interface Name Signal Name I/O Description SerDes OP_0[9:0] O TX differentioal signal pair, data plus 0 for SerDes 9-0 ON_09:0] O TX differentioal signal pair, data minus 0 for SerDes 9-0 IP_0[9:0] I RX differentioal signal pair, data plus 0 for SerDes 9-0 IN_0[9:0] I RX differentioal signal pair, data minus 0 for SerDes 9-0 OP_1[9:0] O TX differentioal signal pair, data plus 1 for SerDes 9-0 ON_1[9:0] O TX differentioal signal pair, data minus 1 for SerDes 9-0 IP_1[9:0] I RX differentioal signal pair, data plus 1 for SerDes 9-0 IN_1[9:0] I RX differentioal signal pair, data minus 1 for SerDes 9-0 OP_2[9:0] O TX differentioal signal pair, data plus 2 for SerDes 9-0 ON_2[9:0] O TX differentioal signal pair, data minus 2 for SerDes 9-0 IP_2[9:0] I RX differentioal signal pair, data plus 2 for SerDes 9-0 IN_2[9:0] I RX differentioal signal pair, data minus 2 for SerDes 9-0 OP_3[9:0] O TX differentioal signal pair, data plus 3 for SerDes 9-0 ON_3[9:0] O TX differentioal signal pair, data minus 3 for SerDes 9-0 IP_3[9:0] I RX differentioal signal pair, data plus 3 for SerDes 9-0 IN_3[9:0] I RX differentioal signal pair, data minus 3 for SerDes 9-0 CKIP[9:0] I Reference clock plus for SerDes 9-0 CKIN[9:0] I Reference clock minus for SerDes 9-0 TSTOUT O Anolog testpoint output ranging from 0V to VAA Ext_Rcvd_Clk I Backup ref clock from external MDC I MDIO clock input MDIO I/O MDIO serial data signal 6.3 UART Interface Signals Table 6-3 UART interface signals Interface Name Signal Name I/O Description UART UART_TX O UART Transmit Data UART_RX I UART Receive Data 6.4 IIC Interface Signals

18 Table 6-4 IIC interface signals Interface Name Signal Name I/O Description IIC IICM_SDA/IICS_SDA0 I/O IIC master data wire / IIC slave0 data wire IICM_SCL/IICS_SCL0 O IIC master clock output / IIC slave0 clock input IICS_SDA1 I/O IIC slave1 data wire (for DDR PHY config) IICS_SCL1 O IIC slave1 clock input (for DDR PHY config) 6.5 SPI Flash Interface Signals Table 6-5 SPI Flash interface signals Interface Name Signal Name I/O Description SPI Flash SF_CS_X O SPI Flash Chip Selects, active-low SF_HOLD_X O QSPI Data Hold, active-low SF_WP_X O QSPI write protect signal, active-low SF_SDI I SPI Flash Serial Data Input SF_SDO O SPI Flash Serial Data Output SF_SCK O SPI Flash Clock 6.6 JTAG Interface Signals Table 6-6 JTAG interface signals Interface Name Signal Name I/O Description JTAG JTAGTDO O JTAG Test Data Output JTAGTCK I JTAG Clock JTAGTDI I JTAG Test Data Input JTAGTMS I JTAG Test Mode Select JTAGTRST# I JTAG Test Reset, active-low 6.7 Miscellaneous(MISC)Interface Signals Table 6-7 MISC interface signals Interface Name Signal Name I/O Description MISC GPIO[31:0] I/O General Purpose Input/Output [31:0]. BOOT_SEL I Boot method select, low boot from flash, high boot from ITCM SYS_RST# I System Reset, active-low

19 TEST_EN I TEST Mode Enable MODE_SEL[2:0] I Mode Select VMON_P A Voltage monitor signal anode VMON_N A Voltage monitor signal cathode TEMP_P A Thermal diode anode TEMP_N A Thermal diode cathode SPI_CK_SEL[1:0] I SPI flash default clock selection bit 6.8 Clock Interface Signals Table 6-8 clock interface signals Interface Name Signal Name I/O Description Clocks MPLL_CK_IN I Main PLL base clock source input MPLL_BYP I Bypass Main PLL and use the clock from MPLL_CK_IN directly. MPLL_LOCKO O Main PLL Lock output for testing purpose SPLL_CK_IN I Secondary PLL base clock source input (for DDR channel 0) SPLL_BYP I Bypass Secondary PLL and use the clock from SPLL_CK_IN directly. SPLL_LOCKO O Secondary PLL Lock output for testing purpose DPLL0_CK_IN I DDR PLL0 base clock source input (for DDR channel 1) DPLL0_BYP I Bypass DDR PLL0 and use the clock from DPLL0_CK_IN directly. DPLL0_LOCKO O DDR PLL0 Lock output for testing purpose DPLL1_CK_IN I DDR PLL1 base clock source input (for DDR channel 2) DPLL1_BYP I Bypass DDR PLL1 and use the clock from DPLL1_CK_IN directly. DPLL1_LOCKO O DDR PLL1 Lock output for testing purpose DPLL2_CK_IN I DDR PLL2 base clock source input (for DDR channel 3) DPLL2_BYP I Bypass DDR PLL2 and use the clock from DPLL2_CK_IN directly. DPLL2_LOCKO O DDR PLL2 Lock output for testing purpose 6.9 Power & Ground Signals Table 6-9 power & ground interface signals

20 Interface Name Signal Name I/O Description VAA_S P 1.5V power supply for analog & CTLE Power & Ground VAA_AGC_S P 1.5V power supply for CTLE VDD_P_T[4:1] P 0.9V supply for PLL reference rate circuits VDD_P_B P 0.9V supply for PLL reference rate circuits VSS_P_T[4:1] G 0V supply and substrate connection VSS_P_B G 0V supply and substrate connection VDD_IO_T[4:1] P 1.8V supply for IO post-drive VDD_IO_B[2:1] P 1.8V supply for IO post-drive VSS_IO_T[4:1] G 0V supply for IO post-drive VSS_IO_B[2:1] G 0V supply for IO post-drive VREF_M[3:0] P Reference voltage of DDR (0.5*VDDP_M) VDDP_M P DDR postdrive power (1.2V for DDR4) AVDD_M[3:0] P DDR analog power for PLL, 1.8V AVSS_M[3:0] G DDR analog ground VDD_C P 0.9v core power VDD_S P 0.9V power supply for core VDD_M P DDR core power, 0.9V VSS_C G Core ground VSS_S G Ground VSS_M G DDR core ground VSSP_M G DDR postdrive ground VQPS_E P High voltage (1.8V) for fuse programming

Sophon SC1 White Paper

Sophon SC1 White Paper Sophon SC1 White Paper V10 Copyright 2017 BITMAIN TECHNOLOGIES LIMITED All rights reserved Version Update Content Release Date V10-2017/10/25 Copyright 2017 BITMAIN TECHNOLOGIES LIMITED All rights reserved

More information

ADM-XRC-5LX. PCI Mezzanine Card. User Guide. Version 2.0

ADM-XRC-5LX. PCI Mezzanine Card. User Guide. Version 2.0 ADM-XRC-5LX PCI Mezzanine Card User Guide Copyright 2006, 2007, 2008 Alpha Data Parallel Systems Ltd. All rights reserved. This publication is protected by Copyright Law, with all rights reserved. No part

More information

Rambutan (-I) Data sheet. Rambutan is a dual-band (2.4 or 5 GHz) module with a fast 720 MHz CPU and 128 MB of RAM and Flash

Rambutan (-I) Data sheet. Rambutan is a dual-band (2.4 or 5 GHz) module with a fast 720 MHz CPU and 128 MB of RAM and Flash (-I) is a dual-band (2.4 or 5 GHz) module with a fast 720 MHz CPU and 128 MB of RAM and Flash is based on QCA 9557 or 9550 SoC and comes in two temperature ranges: commercial* () and industrial** (-I).

More information

Intel C102/C104 Scalable Memory Buffer

Intel C102/C104 Scalable Memory Buffer Intel C102/C104 Scalable Memory Buffer Datasheet February 2014 Reference Number:330032-001 Legal Lines and Disclaimers INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

More information

Komodo Fiber Reference Guide

Komodo Fiber Reference Guide Komodo Fiber Reference Guide (Part-No. KY-FGF) June 2015 Contact Sky Blue Microsystems GmbH Geisenhausenerstr. 18 81379 Munich, Germany +49 89 780 2970, info@skyblue.de www.skyblue.de In Great Britain:

More information

Product Technical Brief S3C2416 May 2008

Product Technical Brief S3C2416 May 2008 Product Technical Brief S3C2416 May 2008 Overview SAMSUNG's S3C2416 is a 32/16-bit RISC cost-effective, low power, high performance micro-processor solution for general applications including the GPS Navigation

More information

ZigBee Compliant Platform 2.4G RF Low Power Transceiver Module for IEEE Standard. DATA SHEET Version B

ZigBee Compliant Platform 2.4G RF Low Power Transceiver Module for IEEE Standard. DATA SHEET Version B ZMD400-A01 ZigBee Compliant Platform 2.4G RF Low Power Transceiver Module for IEEE 802.15.4 Standard DATA SHEET Version B Quan International Co., Ltd., ZMD400 Features Fully compliant 802.15.4 Standard

More information

Centipede. Datasheet. Centipede is QCA AR9331 SoC based DIP platform with an integrated 2.4 GHz N (1x1) radio

Centipede. Datasheet. Centipede is QCA AR9331 SoC based DIP platform with an integrated 2.4 GHz N (1x1) radio is QCA AR9331 SoC based DIP platform with an integrated 2.4 GHz (1x1) radio Its tiny form factor (22 x 60 mm), integrated RJ-45, an on-board omni-directional chip antenna and "breadboardable" layout allows

More information

Zynq-7000 All Programmable SoC Product Overview

Zynq-7000 All Programmable SoC Product Overview Zynq-7000 All Programmable SoC Product Overview The SW, HW and IO Programmable Platform August 2012 Copyright 2012 2009 Xilinx Introducing the Zynq -7000 All Programmable SoC Breakthrough Processing Platform

More information

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003

Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 Product Technical Brief S3C2440X Series Rev 2.0, Oct. 2003 S3C2440X is a derivative product of Samsung s S3C24XXX family of microprocessors for mobile communication market. The S3C2440X s main enhancement

More information

Product Technical Brief S3C2412 Rev 2.2, Apr. 2006

Product Technical Brief S3C2412 Rev 2.2, Apr. 2006 Product Technical Brief S3C2412 Rev 2.2, Apr. 2006 Overview SAMSUNG's S3C2412 is a Derivative product of S3C2410A. S3C2412 is designed to provide hand-held devices and general applications with cost-effective,

More information

UltraZed-EV Carrier Card Designer s Guide Version 1.1

UltraZed-EV Carrier Card Designer s Guide Version 1.1 UltraZed-EV Carrier Card Designer s Guide Version 1.1 Page 1 Copyright 2018 Avnet, Inc. AVNET, Reach Further, and the AV logo are registered trademarks of Avnet, Inc. All other brands are the property

More information

S2C K7 Prodigy Logic Module Series

S2C K7 Prodigy Logic Module Series S2C K7 Prodigy Logic Module Series Low-Cost Fifth Generation Rapid FPGA-based Prototyping Hardware The S2C K7 Prodigy Logic Module is equipped with one Xilinx Kintex-7 XC7K410T or XC7K325T FPGA device

More information

Copyright 2016 Xilinx

Copyright 2016 Xilinx Zynq Architecture Zynq Vivado 2015.4 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Identify the basic building

More information

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006 Product Technical Brief Rev 2.2, Apr. 2006 Overview SAMSUNG's is a Derivative product of S3C2410A. is designed to provide hand-held devices and general applications with cost-effective, low-power, and

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

Intel C112/C114 Scalable Memory Buffer

Intel C112/C114 Scalable Memory Buffer Intel C112/C114 Scalable Memory Buffer Datasheet May 2015 Reference Number: 332444-001 Legal Lines and Disclaimers Intel technologies features and benefits depend on system configuration and may require

More information

Closed-loop Delfino Control Systems: Multiple Industrial Protocol Support using the AMIC110 Sitara Processor

Closed-loop Delfino Control Systems: Multiple Industrial Protocol Support using the AMIC110 Sitara Processor Closed-loop Delfino Control Systems: Multiple Industrial Protocol Support using the AMIC110 Sitara Processor Part 2: Implementation of multiprotocol industrial communications solutions Training series

More information

NVIDIA'S DEEP LEARNING ACCELERATOR MEETS SIFIVE'S FREEDOM PLATFORM. Frans Sijstermans (NVIDIA) & Yunsup Lee (SiFive)

NVIDIA'S DEEP LEARNING ACCELERATOR MEETS SIFIVE'S FREEDOM PLATFORM. Frans Sijstermans (NVIDIA) & Yunsup Lee (SiFive) NVIDIA'S DEEP LEARNING ACCELERATOR MEETS SIFIVE'S FREEDOM PLATFORM Frans Sijstermans (NVIDIA) & Yunsup Lee (SiFive) NVDLA NVIDIA DEEP LEARNING ACCELERATOR IP Core for deep learning part of NVIDIA s Xavier

More information

IGLOO2 Evaluation Kit Webinar

IGLOO2 Evaluation Kit Webinar Power Matters. IGLOO2 Evaluation Kit Webinar Jamie Freed jamie.freed@microsemi.com August 29, 2013 Overview M2GL010T- FG484 $99* LPDDR 10/100/1G Ethernet SERDES SMAs USB UART Available Demos Small Form

More information

ELET114A Bluetooth Module DATASHEET. Website:http://www.elinketone.com / 7

ELET114A Bluetooth Module DATASHEET. Website:http://www.elinketone.com / 7 Bluetooth Module DATASHEET Website:http://www.elinketone.com 2013 06 09 1 / 7 A. Overview Bluetooth Module is designed by ShenZhen ElinkEtone Technology Company for intelligent wireless transmission, with

More information

BittWare s XUPP3R is a 3/4-length PCIe x16 card based on the

BittWare s XUPP3R is a 3/4-length PCIe x16 card based on the FPGA PLATFORMS Board Platforms Custom Solutions Technology Partners Integrated Platforms XUPP3R Xilinx UltraScale+ 3/4-Length PCIe Board with Quad QSFP and 512 GBytes DDR4 Xilinx Virtex UltraScale+ VU7P/VU9P/VU11P

More information

cxt200 1 Datasheet, Revision 1.0

cxt200 1 Datasheet, Revision 1.0 cxt200 SoC OVERVIEW The Creator cxt200 is a system-on-chip device targeted for use in wireless connected products. It includes: 550 MHz dual core, dual thread MIPS interaptiv CPU Base band functions required

More information

The RM9150 and the Fast Device Bus High Speed Interconnect

The RM9150 and the Fast Device Bus High Speed Interconnect The RM9150 and the Fast Device High Speed Interconnect John R. Kinsel Principal Engineer www.pmc -sierra.com 1 August 2004 Agenda CPU-based SOC Design Challenges Fast Device (FDB) Overview Generic Device

More information

AT-501 Cortex-A5 System On Module Product Brief

AT-501 Cortex-A5 System On Module Product Brief AT-501 Cortex-A5 System On Module Product Brief 1. Scope The following document provides a brief description of the AT-501 System on Module (SOM) its features and ordering options. For more details please

More information

Contents. Version 1.01

Contents. Version 1.01 Datasheet DB4CGX15 Cyclone IV GX Development Board www.devboards.de Contents Contents... 2 Revisions... 3 Package contents... 4 DB4CGX15... 4 Introduction... 5 Installation... 6 Getting started... 7 Documentation...

More information

4GB Unbuffered VLP DDR3 SDRAM DIMM with SPD

4GB Unbuffered VLP DDR3 SDRAM DIMM with SPD 4GB Unbuffered VLP DDR3 SDRAM DIMM with SPD Ordering Information Part Number Bandwidth Speed Grade Max Frequency CAS Latency Density Organization Component Composition 78.B1GE3.AFF0C 12.8GB/sec 1600Mbps

More information

Serial Peripheral Interface Bus SPI

Serial Peripheral Interface Bus SPI Serial Peripheral Interface Bus SPI SPI Bus Developed by Motorola in the mid 1980 s Full-duplex, master-slave serial bus suited to data streaming applications for embedded systems Existing peripheral busses

More information

KeyStone C665x Multicore SoC

KeyStone C665x Multicore SoC KeyStone Multicore SoC Architecture KeyStone C6655/57: Device Features C66x C6655: One C66x DSP Core at 1.0 or 1.25 GHz C6657: Two C66x DSP Cores at 0.85, 1.0, or 1.25 GHz Fixed and Floating Point Operations

More information

2GB DDR3 SDRAM SODIMM with SPD

2GB DDR3 SDRAM SODIMM with SPD 2GB DDR3 SDRAM SODIMM with SPD Ordering Information Part Number Bandwidth Speed Grade Max Frequency CAS Latency Density Organization Component Composition Number of Rank 78.A2GC6.AF1 10.6GB/sec 1333Mbps

More information

Tile Processor (TILEPro64)

Tile Processor (TILEPro64) Tile Processor Case Study of Contemporary Multicore Fall 2010 Agarwal 6.173 1 Tile Processor (TILEPro64) Performance # of cores On-chip cache (MB) Cache coherency Operations (16/32-bit BOPS) On chip bandwidth

More information

Agile Hardware Design: Building Chips with Small Teams

Agile Hardware Design: Building Chips with Small Teams 2017 SiFive. All Rights Reserved. Agile Hardware Design: Building Chips with Small Teams Yunsup Lee ASPIRE Graduate 2016 Co-Founder and CTO 2 2017 SiFive. All Rights Reserved. World s First Single-Chip

More information

1. Overview for the Arria V Device Family

1. Overview for the Arria V Device Family 1. Overview for the Arria V Device Family December 2011 AV51001-1.2 AV51001-1.2 Built on the 28-nm low-power process technology, Arria V devices offer the lowest power and lowest system cost for mainstream

More information

48-Lane 12-Port PCI Express System Interconnect Switch

48-Lane 12-Port PCI Express System Interconnect Switch 48-Lane 12-Port PCI Express System Interconnect Switch 89HPES48H12 Data Sheet Device Overview The 89HPES48H12 is a member of the IDT PRECISE family of PCI Express switching solutions. The PES48H12 is a

More information

PEX8764, PCI Express Gen3 Switch, 64 Lanes, 16 Ports

PEX8764, PCI Express Gen3 Switch, 64 Lanes, 16 Ports Highlights PEX8764 General Features o 64-lane, 16-port PCIe Gen3 switch Integrated 8.0 GT/s SerDes o 35 x 35mm 2, 1156-ball FCBGA package o Typical Power: 1. Watts PEX8764 Key Features o Standards Compliant

More information

Introduction to Sitara AM437x Processors

Introduction to Sitara AM437x Processors Introduction to Sitara AM437x Processors AM437x: Highly integrated, scalable platform with enhanced industrial communications and security AM4376 AM4378 Software Key Features AM4372 AM4377 High-performance

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Universität Dortmund. IO and Peripheral Interfaces

Universität Dortmund. IO and Peripheral Interfaces IO and Peripheral Interfaces Microcontroller System Architecture Each MCU (micro-controller unit) is characterized by: Microprocessor 8,16,32 bit architecture Usually simple in-order microarchitecture,

More information

Total IP Solution for Mobile Storage UFS & NAND Controllers

Total IP Solution for Mobile Storage UFS & NAND Controllers Total IP Solution for Mobile Storage UFS & NAND Controllers Yuping Chung Arasan Chip Systems San Jose, CA Mobile Forum Taiwan & Korea 2012 Fast Growing NAND Storage Markets GB(M) 15 10 5 Mobile SSD Tablet

More information

Bandwidth, Area Efficient and Target Device Independent DDR SDRAM Controller

Bandwidth, Area Efficient and Target Device Independent DDR SDRAM Controller Bandwidth, Area Efficient and Target Device Independent DDR SDRAM T. Mladenov, F. Mujahid, E. Jung, and D. Har Abstract The application of the synchronous dynamic random access memory (SDRAM) has gone

More information

DDR3 Memory Buffer: Buffer at the Heart of the LRDIMM Architecture. Paul Washkewicz Vice President Marketing, Inphi

DDR3 Memory Buffer: Buffer at the Heart of the LRDIMM Architecture. Paul Washkewicz Vice President Marketing, Inphi DDR3 Memory Buffer: Buffer at the Heart of the LRDIMM Architecture Paul Washkewicz Vice President Marketing, Inphi Theme Challenges with Memory Bandwidth Scaling How LRDIMM Addresses this Challenge Under

More information

Organization Row Address Column Address Bank Address Auto Precharge 128Mx8 (1GB) based module A0-A13 A0-A9 BA0-BA2 A10

Organization Row Address Column Address Bank Address Auto Precharge 128Mx8 (1GB) based module A0-A13 A0-A9 BA0-BA2 A10 GENERAL DESCRIPTION The Gigaram is ECC Registered Dual-Die DIMM with 1.25inch (30.00mm) height based on DDR2 technology. DIMMs are available as ECC modules in 256Mx72 (2GByte) organization and density,

More information

IMM64M72D1SCS8AG (Die Revision D) 512MByte (64M x 72 Bit)

IMM64M72D1SCS8AG (Die Revision D) 512MByte (64M x 72 Bit) Product Specification Rev. 1.0 2015 IMM64M72D1SCS8AG (Die Revision D) 512MByte (64M x 72 Bit) RoHS Compliant Product Product Specification 1.0 1 IMM64M72D1SCS8AG Version: Rev. 1.0, MAY 2015 1.0 - Initial

More information

NS9210/NS9215. Overview. Block Diagram. NS µ CMOS, 265-pin BGA. Features/Benefits. Platforms and Services.

NS9210/NS9215. Overview. Block Diagram. NS µ CMOS, 265-pin BGA. Features/Benefits. Platforms and Services. NS9210/NS9215 32-bit NET+ARM Processor Family Cost-efficient, small footprint ARM926EJ-S processor with integrated encryption and unique interface flexibility. Overview The NS9210/NS9215 processor family

More information

Hugo Cunha. Senior Firmware Developer Globaltronics

Hugo Cunha. Senior Firmware Developer Globaltronics Hugo Cunha Senior Firmware Developer Globaltronics NB-IoT Product Acceleration Platforms 2018 Speaker Hugo Cunha Project Developper Agenda About us NB IoT Platforms The WIIPIIDO The Gateway FE 1 About

More information

27 March 2018 Mikael Arguedas and Morgan Quigley

27 March 2018 Mikael Arguedas and Morgan Quigley 27 March 2018 Mikael Arguedas and Morgan Quigley Separate devices: (prototypes 0-3) Unified camera: (prototypes 4-5) Unified system: (prototypes 6+) USB3 USB Host USB3 USB2 USB3 USB Host PCIe root

More information

A 1.5GHz Third Generation Itanium Processor

A 1.5GHz Third Generation Itanium Processor A 1.5GHz Third Generation Itanium Processor Jason Stinson, Stefan Rusu Intel Corporation, Santa Clara, CA 1 Outline Processor highlights Process technology details Itanium processor evolution Block diagram

More information

Military Grade SmartFusion Customizable System-on-Chip (csoc)

Military Grade SmartFusion Customizable System-on-Chip (csoc) Military Grade SmartFusion Customizable System-on-Chip (csoc) Product Benefits 100% Military Temperature Tested and Qualified from 55 C to 125 C Not Susceptible to Neutron-Induced Configuration Loss Microcontroller

More information

SiFive FE310-G000 Manual c SiFive, Inc.

SiFive FE310-G000 Manual c SiFive, Inc. SiFive FE310-G000 Manual 1.0.3 c SiFive, Inc. 2 SiFive FE310-G000 Manual 1.0.3 SiFive FE310-G000 Manual Proprietary Notice Copyright c 2016-2017, SiFive Inc. All rights reserved. Information in this document

More information

PAN502x Capacitive Touch Controller Datasheet

PAN502x Capacitive Touch Controller Datasheet PAN502x Capacitive Touch Controller sheet PAN502x-A-A, Rev 1.0 Panchip Microelectronics www.panchip.com Copyright@2014, Panchip Microelectronics, CO., LTD. All right reserved. 1 / 16 Table of Contents

More information

Zynq AP SoC Family

Zynq AP SoC Family Programmable Logic (PL) Processing System (PS) Zynq -7000 AP SoC Family Cost-Optimized Devices Mid-Range Devices Device Name Z-7007S Z-7012S Z-7014S Z-7010 Z-7015 Z-7020 Z-7030 Z-7035 Z-7045 Z-7100 Part

More information

19. VITA 57.1 FMC HPC Connector

19. VITA 57.1 FMC HPC Connector Table 1-27: Switch S2 Configuration Details Switch Configuration Mode/Method Switch Net Name JTAG System ACE CF Slave SelectMAP Platform Flash XL Master BPI P30 Linear Flash S2.1 CCLK_EXTERNAL Off On Off

More information

Raggedstone5 User Manual. Issue 1.1. Enterpoint Ltd. Raggedstone5 Manual Issue

Raggedstone5 User Manual. Issue 1.1. Enterpoint Ltd. Raggedstone5 Manual Issue 1 Raggedstone5 User Manual Issue 1.1 2 Kit Contents You should receive the following items with your Raggedstone 5 development kit: 1 - Raggedstone5 Board 2-4 Digit, 7 Segment LED display (fitted) 3 PCI

More information

Hello, and welcome to this presentation of the STM32L4 System Configuration Controller.

Hello, and welcome to this presentation of the STM32L4 System Configuration Controller. Hello, and welcome to this presentation of the STM32L4 System Configuration Controller. 1 Please note that this presentation has been written for STM32L47x/48x devices. The key differences with other devices

More information

89HPES4T4[3T3]QFN Hardware Design Guide

89HPES4T4[3T3]QFN Hardware Design Guide 89HPES4T4[3T3]QFN Hardware Design Guide Notes Introduction This document provides general guidelines to help design IDT s 89 PCI Express 4-port switch () and also applies to the PES3T3QFN. This document

More information

Datasheet. Zetta 4Gbit DDR3L SDRAM. Features VDD=VDDQ=1.35V / V. Fully differential clock inputs (CK, CK ) operation

Datasheet. Zetta 4Gbit DDR3L SDRAM. Features VDD=VDDQ=1.35V / V. Fully differential clock inputs (CK, CK ) operation Zetta Datasheet Features VDD=VDDQ=1.35V + 0.100 / - 0.067V Fully differential clock inputs (CK, CK ) operation Differential Data Strobe (DQS, DQS ) On chip DLL align DQ, DQS and DQS transition with CK

More information

Organization Row Address Column Address Bank Address Auto Precharge 256Mx4 (1GB) based module A0-A13 A0-A9 BA0-BA2 A10

Organization Row Address Column Address Bank Address Auto Precharge 256Mx4 (1GB) based module A0-A13 A0-A9 BA0-BA2 A10 GENERAL DESCRIPTION The Gigaram GR2DR4BD-E4GBXXXVLP is a 512M bit x 72 DDDR2 SDRAM high density ECC REGISTERED DIMM. The GR2DR4BD-E4GBXXXVLP consists of eighteen CMOS 512M x 4 STACKED DDR2 SDRAMs for 4GB

More information

PEX 8696, PCI Express Gen 2 Switch, 96 Lanes, 24 Ports

PEX 8696, PCI Express Gen 2 Switch, 96 Lanes, 24 Ports , PCI Express Gen 2 Switch, 96 Lanes, 24 Ports Highlights General Features o 96-lane, 24-port PCIe Gen2 switch - Integrated 5.0 GT/s SerDes o 35 x 35mm 2, 1156-ball FCBGA package o Typical Power: 10.2

More information

SoC Platforms and CPU Cores

SoC Platforms and CPU Cores SoC Platforms and CPU Cores COE838: Systems on Chip Design http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University

More information

HLNAND: A New Standard for High Performance Flash Memory

HLNAND: A New Standard for High Performance Flash Memory HLNAND: A New Standard for High Performance Flash Memory Peter Gillingham MOSAID Technologies Inc. gillingham@mosaid.com August 2008 1 Objectives Address performance and density requirements of Solid State

More information

PEX 8680, PCI Express Gen 2 Switch, 80 Lanes, 20 Ports

PEX 8680, PCI Express Gen 2 Switch, 80 Lanes, 20 Ports , PCI Express Gen 2 Switch, 80 Lanes, 20 Ports Features General Features o 80-lane, 20-port PCIe Gen2 switch - Integrated 5.0 GT/s SerDes o 35 x 35mm 2, 1156-ball BGA package o Typical Power: 9.0 Watts

More information

Product Specification

Product Specification Product Specification 15mm x 27mm Description One of the most capable Bluetooth modules available, the BT-21 Bluetooth OEM Module is designed for maximum flexibility. The BT-21 module includes 14 general

More information

HSMC Ethernet Quad-PHY Daughter Board

HSMC Ethernet Quad-PHY Daughter Board Ethernet Quad-PHY Daughter Board 1 Table of Contents 1 INTRODUCTION... 4 2 FEATURES... 5 3 BOARD DESCRIPTION... 6 3.1 BLOCK DIAGRAM... 6 3.2 COMPONENTS... 7 3.2.1 LEDs... 8 3.2.2 MDIO Connector J2... 8

More information

M M WIFI Module

M M WIFI Module M1000 150M WIFI Module Stable and High Performance 32bit MIPS Processor Compliant with IEEE 802.11n standard, up to 150Mbps Data Rate Small and Castellated Mounting Holes Design 3.3VDC Input Power, Low

More information

eip-24/100 Embedded TCP/IP 10/100-BaseT Network Module Features Description Applications

eip-24/100 Embedded TCP/IP 10/100-BaseT Network Module Features Description Applications Embedded TCP/IP 10/100-BaseT Network Module Features 16-bit Microcontroller with Enhanced Flash program memory and static RAM data memory On board 10/100Mbps Ethernet controller, and RJ45 jack for network

More information

Product specification

Product specification MJIOT-AMB-03 Product specification 1 MJIOT-AMB-03module appearance 2 目录 1. Product overview...4 1.1 Characteristic... 5 1.2 main parameters...6 1.2 Interface definition... 7 2. appearance and size... 8

More information

JPEG2000 Video Compression Multi-Gigabit Serial I/O

JPEG2000 Video Compression Multi-Gigabit Serial I/O ADM-XRC-5T2-ADV PCI Mezzanine Card JPEG2000 Video Compression Multi-Gigabit Serial I/O User Guide Copyright 2008 Alpha Data Parallel Systems Ltd. All rights reserved. This publication is protected by Copyright

More information

KeyStone C66x Multicore SoC Overview. Dec, 2011

KeyStone C66x Multicore SoC Overview. Dec, 2011 KeyStone C66x Multicore SoC Overview Dec, 011 Outline Multicore Challenge KeyStone Architecture Reminder About KeyStone Solution Challenge Before KeyStone Multicore performance degradation Lack of efficient

More information

MYD-C437X-PRU Development Board

MYD-C437X-PRU Development Board MYD-C437X-PRU Development Board MYC-C437X CPU Module as Controller Board Two 0.8mm pitch 100-pin Connectors for Board-to-Board Connections Up to 1GHz TI AM437x Series ARM Cortex-A9 Processors 512MB DDR3

More information

BLE Bluetooth Low Energy Modules SBC2112-B. Preliminary Specification. Version 1.0

BLE Bluetooth Low Energy Modules SBC2112-B. Preliminary Specification. Version 1.0 BLE Bluetooth Low Energy Modules SBC2112-B Preliminary Specification Version 1.0 23-JUN.-2014 Content 1. Description...3 2. Features...3 3. Block Diagram...3 4. Radio Characteristics...4 5. Electrical

More information

2GB DDR3 SDRAM 72bit SO-DIMM

2GB DDR3 SDRAM 72bit SO-DIMM 2GB 72bit SO-DIMM Speed Max CAS Component Number of Part Number Bandwidth Density Organization Grade Frequency Latency Composition Rank 78.A2GCF.AF10C 10.6GB/sec 1333Mbps 666MHz CL9 2GB 256Mx72 256Mx8

More information

C900 PowerPC G4+ Rugged 3U CompactPCI SBC

C900 PowerPC G4+ Rugged 3U CompactPCI SBC C900 PowerPC G4+ Rugged 3U CompactPCI SBC Rugged 3U CompactPCI SBC PICMG 2.0, Rev. 3.0 Compliant G4+ PowerPC 7447A/7448 Processor @ 1.1 Ghz with AltiVec Technology Marvell MV64460 Discovery TM III System

More information

IMM128M72D1SOD8AG (Die Revision F) 1GByte (128M x 72 Bit)

IMM128M72D1SOD8AG (Die Revision F) 1GByte (128M x 72 Bit) Product Specification Rev. 1.0 2015 IMM128M72D1SOD8AG (Die Revision F) 1GByte (128M x 72 Bit) 1GB DDR Unbuffered SO-DIMM RoHS Compliant Product Product Specification 1.0 1 IMM128M72D1SOD8AG Version: Rev.

More information

Basics of UART Communication

Basics of UART Communication Basics of UART Communication From: Circuit Basics UART stands for Universal Asynchronous Receiver/Transmitter. It s not a communication protocol like SPI and I2C, but a physical circuit in a microcontroller,

More information

Memory Module Specifications KVR667D2Q8F5K2/8G. 8GB (4GB 512M x 72-Bit x 2 pcs.) PC CL5 ECC 240-Pin FBDIMM Kit DESCRIPTION SPECIFICATIONS

Memory Module Specifications KVR667D2Q8F5K2/8G. 8GB (4GB 512M x 72-Bit x 2 pcs.) PC CL5 ECC 240-Pin FBDIMM Kit DESCRIPTION SPECIFICATIONS Memory Module Specifications KVR667DQ8F5K/8G 8GB (4GB 5M x 7-Bit x pcs.) PC-5300 CL5 ECC 40- FBDIMM Kit DESCRIPTION s KVR667DQ8F5K/8G is a kit of two 4GB (5M x 7-bit) PC-5300 CL5 SDRAM (Synchronous DRAM)

More information

NanoMind Z7000. Datasheet On-board CPU and FPGA for space applications

NanoMind Z7000. Datasheet On-board CPU and FPGA for space applications NanoMind Z7000 Datasheet On-board CPU and FPGA for space applications 1 Table of Contents 1 TABLE OF CONTENTS... 2 2 OVERVIEW... 3 2.1 HIGHLIGHTED FEATURES... 3 2.2 BLOCK DIAGRAM... 4 2.3 FUNCTIONAL DESCRIPTION...

More information

HEAT (Hardware enabled Algorithmic tester) for 2.5D HBM Solution

HEAT (Hardware enabled Algorithmic tester) for 2.5D HBM Solution HEAT (Hardware enabled Algorithmic tester) for 2.5D HBM Solution Kunal Varshney, Open-Silicon Ganesh Venkatkrishnan, Open-Silicon Pankaj Prajapati, Open-Silicon May 9, 9, 2016 1 Agenda High Bandwidth Memory

More information

HSMC Ethernet 2-Port 1588 Precision Timing

HSMC Ethernet 2-Port 1588 Precision Timing Ethernet 2-Port 1588 Precision Timing PHY Daughter Board 1 Table of Contents 1 INTRODUCTION... 4 2 FEATURES... 5 3 BOARD DESCRIPTION... 6 3.1 BLOCK DIAGRAM... 6 3.2 BOARD COMPONENTS... 7 3.2.1 LEDs...

More information

Hardware Design Guidelines for POWERLINK SLAVE on FPGA

Hardware Design Guidelines for POWERLINK SLAVE on FPGA Hardware Design Guidelines for POWERLINK SLAVE on FPGA Date: Project Number: AT-xx-xxxxxx We reserve the right to change the content of this manual without prior notice. The information contained herein

More information

IMM128M64D1DVD8AG (Die Revision F) 1GByte (128M x 64 Bit)

IMM128M64D1DVD8AG (Die Revision F) 1GByte (128M x 64 Bit) Product Specification Rev. 1.0 2015 IMM128M64D1DVD8AG (Die Revision F) 1GByte (128M x 64 Bit) 1GB DDR VLP Unbuffered DIMM RoHS Compliant Product Product Specification 1.0 1 IMM128M64D1DVD8AG Version: Rev.

More information

Silicon Media Limited. C4 2.5 SATA Solid State Drive Specification (7mm & 9mm height compatible) SMSS325MxxxG-C4-x

Silicon Media Limited. C4 2.5 SATA Solid State Drive Specification (7mm & 9mm height compatible) SMSS325MxxxG-C4-x Silicon Media Limited C4 2.5 SATA Specification (7mm & 9mm height compatible) SMSS325MxxxG-C4-x Version 1.2 Document Number: S-12157 ALL RIGHTS ARE STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT

More information

Hardware Specification. Figure 1-2 ZYNQ-7000 Device Family 2 / 9

Hardware Specification. Figure 1-2 ZYNQ-7000 Device Family 2 / 9 Z-turn Board 667MHz Xilinx XC7Z010/20 Dual-core ARM Cortex-A9 Processor with Xilinx 7-series FPGA logic 1GB DDR3 SDRAM (2 x 512MB, 32-bit), 16MB SPI Flash USB_UART, USB2.0 OTG, 1 x 10/100/1000Mbps Ethernet,

More information

Techniques for Optimizing Performance and Energy Consumption: Results of a Case Study on an ARM9 Platform

Techniques for Optimizing Performance and Energy Consumption: Results of a Case Study on an ARM9 Platform Techniques for Optimizing Performance and Energy Consumption: Results of a Case Study on an ARM9 Platform BL Standard IC s, PL Microcontrollers October 2007 Outline LPC3180 Description What makes this

More information

BTA-C Datasheet

BTA-C Datasheet BTA-C0-2 Datasheet Issued date: September 20, 206 EnzyTek Bluetooth Low Energy Module With on Board Antenna BTA-C0-2 OVERVIEW Highly integration BT 4.0 Low Energy Class II module, CSR CSR0 + Memory + Filter

More information

[MG2420] MCU Module Datasheet. (No. ADS0705) V1.0

[MG2420] MCU Module Datasheet. (No. ADS0705) V1.0 [MG2420] MCU Module Datasheet (No. ADS0705) V1.0 REVISION HISTORY Version Date Description VER.1.0 2013.10.22 First version release. V1.0 Page:2/17 CONTENTS 1. INTRODUCTION... 4 1.1. DEFINITIONS... 4 2.

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 128 Serial Communication Simplex Half-Duplex Duplex 129 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

BT-22 Product Specification

BT-22 Product Specification BT-22 Product Specification Features Amp ed RF, Inc. Description 10.4 mm x 13.5 mm Our micro-sized Bluetooth module is the smallest form factor available providing a complete RF platform. The BT-22 is

More information

EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG

EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG Adam Lindberg github.com/eproxus HARDWARE COMPONENTS SOFTWARE FUTURE Boot, Serial console, Erlang shell DEMO THE GRISP BOARD SPECS Hardware & specifications

More information

AMD HD7750 PCIe ADD-IN BOARD. Datasheet (GFX-A3T2-01FST1)

AMD HD7750 PCIe ADD-IN BOARD. Datasheet (GFX-A3T2-01FST1) AMD HD7750 PCIe ADD-IN BOARD Datasheet (GFX-A3T2-01FST1) CONTENTS 1. Feature... 3 2. Functional Overview... 4 2.1. Memory Interface... 4 2.2. Memory Aperture Size... 4 2.3. Avivo Display System... 5 2.4.

More information

HZX N03 Bluetooth 4.0 Low Energy Module Datasheet

HZX N03 Bluetooth 4.0 Low Energy Module Datasheet HZX-51822-16N03 Bluetooth 4.0 Low Energy Module Datasheet SHEN ZHEN HUAZHIXIN TECHNOLOGY LTD 2017.7 NAME : Bluetooth 4.0 Low Energy Module MODEL NO. : HZX-51822-16N03 VERSION : V1.0 1.Revision History

More information

WizFi250 Datasheet. (Version 1.01)

WizFi250 Datasheet. (Version 1.01) WizFi250 Datasheet (Version 1.01) 2013 WIZnet Co., Ltd. All Rights Reserved. For more information, visit our website at http://www.wiznet.co.kr For latest version of this document, visit our Wiki site

More information

Blackfin ADSP-BF533 External Bus Interface Unit (EBIU)

Blackfin ADSP-BF533 External Bus Interface Unit (EBIU) The World Leader in High Performance Signal Processing Solutions Blackfin ADSP-BF533 External Bus Interface Unit (EBIU) Support Email: china.dsp@analog.com ADSP-BF533 Block Diagram Core Timer 64 L1 Instruction

More information

March 21, BT22 Datasheet. Amp ed RF Technology, Co., Ltd.

March 21, BT22 Datasheet. Amp ed RF Technology, Co., Ltd. March 21, 2011 BT22 Datasheet Amp ed RF Technology, Co., Ltd. BT22 Features Bluetooth features Bluetooth qualified Bluetooth v2.1+edr Class 2 radio Range up to 30m LOS Description 10.4 mm x 13.5 mm Our

More information

APPROVAL SHEET. Apacer Technology Inc. Apacer Technology Inc. CUSTOMER: 研華股份有限公司 APPROVED NO. : T0026 PCB PART NO. :

APPROVAL SHEET. Apacer Technology Inc. Apacer Technology Inc. CUSTOMER: 研華股份有限公司 APPROVED NO. : T0026 PCB PART NO. : Apacer Technology Inc. CUSTOMER: 研華股份有限公司 APPROVAL SHEET APPROVED NO. : 90004-T0026 ISSUE DATE MODULE PART NO. : July-26-2012 : 78.A1GDR.AF00C PCB PART NO. : 48.16221.090 IC Brand DESCRIPTION : Hynix :

More information

Cannon Mountain Dr Longmont, CO LS6410 Hardware Design Perspective

Cannon Mountain Dr Longmont, CO LS6410 Hardware Design Perspective LS6410 Hardware Design Perspective 1. S3C6410 Introduction The S3C6410X is a 16/32-bit RISC microprocessor, which is designed to provide a cost-effective, lowpower capabilities, high performance Application

More information

Looking Ahead to Higher Performance SSDs with HLNAND

Looking Ahead to Higher Performance SSDs with HLNAND Looking Ahead to Higher Performance SSDs with HLNAND Roland Schuetz Director, Applications & Business Initiatives MOSAID Technologies Inc. Soogil Jeong Vice President, Engineering INDILINX Infrastructure

More information

SiFive Freedom SoCs: Industry s First Open-Source RISC-V Chips

SiFive Freedom SoCs: Industry s First Open-Source RISC-V Chips SiFive Freedom SoCs: Industry s First Open-Source RISC-V Chips Yunsup Lee Co-Founder and CTO High Upfront Cost Has Killed Innovation Our industry needs a fundamental change Total SoC Development Cost Design

More information

K Datasheet KENDRYTE KENDRYTE.COM. Canaan Inc. 2019

K Datasheet KENDRYTE KENDRYTE.COM. Canaan Inc. 2019 K Datasheet KENDRYTE Canaan Inc. 2019 KENDRYTE.COM i About This Guide This document provides the specifications of Kendryte family of chips. Revision History Date Ver. Revision History 2018-09-01 V0.1.0

More information

Contents. Version 1.13

Contents. Version 1.13 Datasheet DB4CGX15 Cyclone IV GX Development Board www.devboards.de Contents Contents... 2 Revisions... 3 Package contents... 4 DB4CGX15... 4 Introduction... 5 Installation... 6 Getting started... 7 Documentation...

More information

NovTech System On Chip NOVSOM CV

NovTech System On Chip NOVSOM CV NovTech System On Chip NOVSOM CV User s Guide Document Number: NOVSOM_CV_002 Rev. 0.2 05/2014 Property of NovTech, Inc, under NDA Page 1 of 31 Contact Information: Home Page: Company: www.novtech.com Modules:

More information