ME 4447 / ME 6405: Introduction to Mechatronics

Size: px
Start display at page:

Download "ME 4447 / ME 6405: Introduction to Mechatronics"

Transcription

1 ME 4447 / ME 6405: Introduction to Mechatronics Interrupts and Resets Rohan Bansal Edward Chyau Anirudh Rudraraju Interrupts and Resets 1

2 Telephone Analogy How do we know if someone is calling? Use polling Pick up the phone periodically and check if someone is there. Wait for an interrupt Wait until the phone rings, then answer it. Interrupts and Resets 2

3 Polling Loops and checks a register until a certain state is found Example Wait for a 1 in the CCF bit of the ADCTL (from Lab 2): LDX #$1030 WAIT BRCLR 0,X #$80 WAIT Interrupts and Resets 3

4 Interrupts A way to get the microcontrollers attention A signal is sent to the CPU when data arrives The CPU is free to execute other operations while waiting for data Interrupts and Resets 4

5 Applications of Interrupts Critical signals Switch power sources on power failure Turn on fans when overheating Notify the CPU when an error occurs Timers Create interrupts at specified real times Receive input Check when a button is pushed on a controller Interrupts and Resets 5

6 Drawbacks of Interrupts Interrupts can occur randomly Makes testing and debugging difficult Additional hardware may be required to produce a proper interrupt signal Interrupts and Resets 6

7 Interrupt Flow 1. Complete the current instruction 2. Save the current state to the stack 3. Identify the source of the interrupt 4. Activate Interrupt Service Routing (ISR) 5. Return to original program (RTI) and restore state Interrupts and Resets 7

8 Interrupt Flowchart SOFTWARE INTERRUPT HARDWARE INTERRUPT COPY REGISTER CONTENTS TO STACK N MASK SET? Y SET APPROPRIATE BIT IN CCR CONTINUE MAIN PROGRAM $FFC0 EXECUTE INTERRUPT SERVICE ROUTINE LOAD INTERRUPT VECTOR INTO PROGRAM COUNTER VECTOR TABLE $FFFF Interrupts and Resets 8

9 Saving Current State to Stack Make sure the stack is the same at the end of your interrupt code SP-9 SP-8 SP-7 SP-6 SP-5 SP-4 SP-3 SP-2 SP-1 SP CCR ACCB ACCA IXH IXL IYH IYL PCH PCL SP After Operation SP Before Operation Interrupts and Resets 9

10 Interrupt Vector Vector Address BUFFALO Address Interrupt Source CCR Mask Bit FFC0 FFC1 to FFD4 FFD5 Reserved FFD6 FFD7 C4 C6 SCI Serial System I FFD8 FFD9 C7 C9 SPI Serial Transfer Complete I FFDA FFDB CA CC Pulse Accumulator Input Edge I FFDC FFDD CD CF Pulse Accumulator Overflow I FFDE FFDF D0 D2 Timer Overflow I FFE0 FFE1 D3 D5 Timer Input Capture 4/Output Compare 5 I FFE2 FFE3 D6 D8 Timer Output Compare 4 I FFE4 FFE5 D9 DB Timer Output Compare 3 I FFE6 FFE7 DC DE Timer Output Compare 2 I FFE8 FFE9 DF E1 Timer Output Compare 1 I FFEA FFEB E2 E4 Timer Input Capture 3 I FFEC FFED E5 E7 Timer Input Capture 2 I FFEE FFEF E8 EA Timer Input Capture 1 I FFF0 FFF1 EB ED Real-Time Interrupt I FFF2 FFF3 EE F0 IRQ (external pin) I FFF4 FFF5 F1 F3 XIRQ pin X FFF6 FFF7 F4 F6 Software Interrupt None FFF8 FFF9 F7 F9 Illegal Opcode Trap None FFFA FFFB FA FC COP Failure None FFFC FFFD FD FF Clock Monitor Fail None FFFE FFFF RESET None Interrupts and Resets 10

11 Interrupt Example IRQ Handler Routine Initialize Strings IRQHANDLE ORG $3000 LDAA COUNT * A <-- current count INCA * increment count STAA COUNT * write back count LDX #MSG * print out msg JSR OUTSTRG LDX #COUNT * print out count JSR OUT1BYT RTI * all done return ORG $2000 * data section MSG FCC Number of times button pressed: FCB $04 COUNT FCB $00 * button counter Main IRQ Routine ORG JMP $00ee IRQHANDLE Main Program Do Nothing Loop ORG $2200 * main program CLI * enable interrupts LOOP BRA LOOP * endless loop SWI END Interrupts and Resets 11

12 Types of Interrupts Non-Maskable Interrupts Has priority over maskable interrupts Always Interrupts program execution 6 available non-maskable interrupts Maskable Interrupts Adjustable priority level Can be disabled by the I-bit of CCR 15 available maskable interrupts Interrupts and Resets 12

13 XIRQ When a non-maskable interrupt occurs S X H I N Z V C 1 1 X-bit is set to 1, blocking other non-maskable interrupts I -bit is set to 1, blocking other maskable interrupts X-bit cannot be set by software interrupt Interrupts and Resets 13

14 IRQ When a maskable interrupt occurs S X H I N Z V C 0 1 I -bit is set to 1, blocking other maskable interrupts I-bit can be set by software in prevent the execution of interrupts using: -SEI (Set Interrupt Mask) I-bit can be cleared by software using: -CLI (Clear Interrupt Mask) Interrupts and Resets 14

15 Copy Machine Analogy: Scenarios Rohan (Student) Matt (TA) Dr. Ume Regular Instruction IRQ XIRQ Interrupts and Resets 15

16 Copy Machine Analogy: Scenarios S X H I N Z V C 0 0 S X H I N Z V C 0 1 Interrupts and Resets 16

17 Copy Machine Analogy: Scenarios S X H I N Z V C 0 1 S X H I N Z V C 1 1 Interrupts and Resets 17

18 Priority for Non-maskable Interrupts 1. Reset 2. Clock Monitor 3. COP Watchdog 4. Illegal Opcode 5. XIRQ 6. SWI Interrupts and Resets 18

19 7. IRQ Priority for Non-maskable Interrupts 8. Periodic Interrupt/Real-time Interrupt 9. Timer Input Capture Timer Input Capture Timer Input Capture Timer Output Capture Timer Output Capture Timer Output Capture Timer Output Capture Timer Output Capture Timer Overflow 18. Pulse Accumulator Overflow 19. Pulse Accumulator Input Edge 20. SPI Transfer Complete 21. SCI Serial System Interrupts and Resets 19

20 Highest Priority Interrupt Register (HPRIO) Used to increase the priority of 1 maskable interrupt Located at $103C and set on pins 0-3 I-bit must be set to change priority Default is IRQ Interrupts and Resets 20

21 Highest Priority Interrupt Register (HPRIO) Interrupts and Resets 21

22 IRQE in the OPTIONS OPTION $ ADPU CSEL IRQE DLY CME CR1 CR0 IRQE = IRQ Select Edge Sensitive Only (Time Protected) = IRQ configured for low LEVEL (default) 1 = IRQ configured for falling EDGEs Interrupts and Resets 22

23 What are Resets? Reset is used to force a microcontroller unit (MCU) to assume a set of initial conditions and to begin executing instructions from a predetermined starting address. Like interrupts, they fetch vectors to force a new starting point for further CPU operations. Interrupts and Resets 23

24 Types of Interrupts Power-On Reset (POR) External RESET pin COP Watchdog timer Reset. Clock Monitor Reset Interrupt vectors: Interrupts and Resets 24

25 Power-On Reset (POR) Used only for power-up conditions to initialize MCU internal circuits. Applying VDD to the MCU triggers the POR circuit, initiates a reset sequence, and starts an internal timing circuit. A 4064 clock cycle delay after the oscillator becomes active, allows the clock generator to stabilize In some crucial applications which need a longer delay time, external POR circuits are used Interrupts and Resets 25

26 COP Watchdog Timer Reset COP is a timer system to detect software processing errors Software responsible for keep the watchdog timer from running out. Generates Reset request if it runs out. Watchdog Timing pulses are drawn from the E-clock. COP timer rate can be set by using CR1 and CR0 pins of System Configuration Options (OPTION) register. Interrupts and Resets 26

27 Interrupts and Resets 27

28 Servicing the COP Timer 1. Write $55 to COPRST register to arm the clearing mechanism 2. Write $AA to the COPRST register Any number of instructions can be performed between the above 2 steps Must be performed in the correct sequence before the timer times out Rates are set by bits CR1 and CR0 in COPRST register Interrupts and Resets 28

29 Clock Monitor Reset Detects a slow or stopped E clock An E-clock frequency below 10 khz is detected as a clock monitor error Enabled by setting the CME bit in OPTION Useful as a backup for COP watchdog because CMR requires no clock while COP does CMR also provides additional level of protection by generating a system reset if the MCU clocks are accidentally stopped. In case of systems where stop instruction is used, CME bit would first be cleared before calling the STOP command. After recover from STOP, it would be set back to 1 again. Interrupts and Resets 29

30 External RESET External Reset is generated when the user manually presses the Reset button. As soon as the RESET pin goes to Zero, and internal Nchannel device is turned on. This device holds the RESET pin to zero for 4 E- clock cycles (Redundantly) after which it releases. RESET pin is sampled after 2E clock cycles from the time the Nchannel releases the pin. If low : External Reset If high: Internal Reset : either COP Watchdog or Clock Monitor Chance of Misinterpretation Interrupts and Resets 30

31 Reset Priority If in case of External Reset, when RESET pin is not held long enough, the reset is tentatively assumed to have come from COP or Clock Monitor Systems. First checks for Clock monitor and then checks COP watchdog. If neither pending, normal reset vector is selected by default. Interrupts and Resets 31

32 Interrupts and Resets 32

33 Central Processor Unit (CPU) CPU fetches reset vector from the appropriate address location(depends on the kind of reset; explained in detail later) during the first three cycles. Stack pointer and other CPU registers are indeterminate immediately after reset. X and I interrupt mask bits in the CCR are set to mask any interrupt requests. S bit in the CCR is set to disable the stop mode Interrupts and Resets 33

34 Memory Map RAM and I/O mapping register (INIT) is initialized to $01, putting 256 bytes of RAM at locations $0000-$00FF and control registers at locations $ 1000-$103F. 8KB of ROM and 512 B of EEPROM may or may not be present depending on the values of the two bits in CONFIG register that enable them. CONFIG register being a EEPROM cell is not affected by reset or power-down. Interrupts and Resets 34

35 Interrupts and Resets 35

36 (Reference: M68HC11E series Data Sheet) Interrupts and Resets 36

37 Parallel Input/Output (I/O) Strobe A Flag (STAF), strobe A interrupt (STAI), and handshake (HNDS) control bits in parallel I/O control register are cleared (when operating in single chip mode). (This prevents interrupt from being enabled) PortC, Port D(bits 5-0), PortA(bits 0,1,2, and 7), and Port E are configured as general purpose high impedance inputs. Port B and bits 6-3 of PortA have their directions fixed as outputs and their reset state is logic 0. Interrupts and Resets 37

38 Timer Initialized to count of $0000 All output compare (OC) registers are initialized to $FFFF Use OC to program an action to occur at a specific time (when counter matches OC register, task is executed) Input capture registers are indeterminate. IC records the time that an external event takes Interrupts and Resets 38

39 Real-Time Interrupt: RTI interrupt flag is cleared, automatic hardware interrupts are masked. Pulse Accumulator Disabled (PAI pin defaults to a general purpose input). Interrupts and Resets 39

40 Computer Operating Properly (COP) Watchdog Enabled if NOCOP bit in CONFIG register is clear. Other wise disabled. Interrupts and Resets 40

41 Serial Communications Interface (SCI) Baud rate must be reestablished Transmitter and receiver are disabled Serial Peripheral Interface (SPI) Disabled by resetting Analog-to-Digital Converter (A/D) Conversion complete flag is cleared by reset ADPU bit is cleared, disabling A/D system Interrupts and Resets 41

42 Mode of operation Determined by bits set in the HPRIO register Interrupts and Resets 42

43 Process Flow out of Resets When Triggered Vector fetch (program counter loaded with contents of specified address) S, X, and I bits set in the CCR MCU hardware reset Checks for interrupts Interrupts and Resets 43

44 Low Power Mode To reduce power consumption of the controller Temporarily stops CPU operations until a reset or interrupt occurs 2 modes WAIT STOP Interrupts and Resets 44

45 WAIT mode Command: WAI CPU always shut down during wait mode CPU registers are stacked Program is suspended until interrupted On-chip crystal oscillator remains active Power conservation depends on number of peripheral systems shut down A/D converter current can be eliminated by writing the ADPU bit to 0 The SPI system is enabled or disabled by the SPE control bit The SCI transmitter is enabled or disabled by the TE bit, and the SCI receiver is enabled or disabled by the RE bit. Interrupts and Resets 45

46 Command: STOP + S bit of CCR is clear Lowest possible power consumption All clocks are stopped (crystal oscillator too) Data in internal RAM is retained as long as VDD power is maintained Exit using RESET, XIRQ, or unmasked IRQ XIRQ has 2 recover methods If X is set, returns to command following STOP If X is clear, stacking sequence that leads to normal XIRQ request Interrupts and Resets 46

47 References Interrupts made Easy by Mark Minasi (COMPUTE! ISSUE 149 / FEBRUARY 1993 / PAGE 60, ) Previous Interrupts Lectures from ME 6405 ( Reference Manual, Technical Data, and User Guides for the HC11 Interrupts and Resets 47

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Interrupts and Resets

Introduction to Mechatronics. Fall Instructor: Professor Charles Ume. Interrupts and Resets ME645 Introduction to Mechatronics Fall 24 Instructor: Professor Charles Ume Interrupts and Resets Reason for Interrupts You might want instructions executed immediately after internal request and/or request

More information

Interrupts. Interrupts Resets Low Power Modes. Resets Low Power Modes

Interrupts. Interrupts Resets Low Power Modes. Resets Low Power Modes Interrupts Resets Low Power Modes Drop everything and get your priorities straight! Alan Claghorn Chris Golder Raja Shah Outline Interrupts Why use interrupts? Types of interrupts Interrupt Flow Priorities

More information

SECTION 5 RESETS AND INTERRUPTS

SECTION 5 RESETS AND INTERRUPTS SECTION RESETS AND INTERRUPTS Resets and interrupt operations load the program counter with a vector that points to a new location from which instructions are to be fetched. A reset immediately stops execution

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE: - To explain MCU processing of reset and and interrupt events OBJECTIVES: - Describe the differences between resets and interrupts. - Identify different sources of resets

More information

ECE/CE 3720: Embedded System Design

ECE/CE 3720: Embedded System Design Sequence of Events During Interrupt 1. Hardwere needs service (busy-to-done) transition. 2. Flag is set in one of the I/O status registers. (a) Interrupting event sets the flag (ex., STAF=1). Slide 1 ECE/CE

More information

ECE/CS 3720: Embedded System Design (ECE 6960/2 and CS 6968)

ECE/CS 3720: Embedded System Design (ECE 6960/2 and CS 6968) Sequence of Events During Interrupt 1. Hardwere needs service (busy-to-done) transition. 2. Flag is set in one of the I/O status registers. (a) Interrupting event sets the flag (ex., STAF=1). Slide 1 ECE/CS

More information

Menu. Polling Example

Menu. Polling Example Menu Interrupt motivation (polling example) Interrupt description Interrupt-driven I/O > Interrupt Protocol > Preemptive-Resume Priority Interrupts > Vectored Interrupt Resets and Interrupts in XMEGA,

More information

ECE 372 Microcontroller Design Parallel IO Ports - Interrupts. ECE 372 Microcontroller Design Parallel IO Ports - Interrupts

ECE 372 Microcontroller Design Parallel IO Ports - Interrupts. ECE 372 Microcontroller Design Parallel IO Ports - Interrupts Interrupts An interrupt can be compared with a phone call interrupting your task which you will resume when the call is finished You can mask an interrupt just as you can decide not to answer any phone

More information

Module Introduction. PURPOSE: The intent of this module is to explain MCU processing of reset and interrupt exception events.

Module Introduction. PURPOSE: The intent of this module is to explain MCU processing of reset and interrupt exception events. Module Introduction PURPOSE: The intent of this module is to explain MCU processing of reset and interrupt exception events. OBJECTIVES: - Describe the difference between resets and interrupts. - Identify

More information

EEL 4744C: Microprocessor Applications. Lecture 7. Part 2. M68HC12 Interrupt. Dr. Tao Li 1

EEL 4744C: Microprocessor Applications. Lecture 7. Part 2. M68HC12 Interrupt. Dr. Tao Li 1 EEL 4744C: Microprocessor Applications Lecture 7 Part 2 M68HC12 Interrupt Dr. Tao Li 1 Reading Assignment Software and Hardware Engineering (New version): Chapter 12 or SHE (old version) Chapter 8 And

More information

What Happens When You Reset the MC9S12?

What Happens When You Reset the MC9S12? What Happens When You Reset the MC9S12? What happens to the MC9S12 when you turn on power or push the reset button? How does the MC9S12 know which instruction to execute first? On reset the MC9S12 loads

More information

538 Lecture Notes Week 5

538 Lecture Notes Week 5 538 Lecture Notes Week 5 (Sept. 30, 2013) 1/15 538 Lecture Notes Week 5 Answers to last week's questions 1. With the diagram shown for a port (single bit), what happens if the Direction Register is read?

More information

538 Lecture Notes Week 5

538 Lecture Notes Week 5 538 Lecture Notes Week 5 (October 4, 2017) 1/18 538 Lecture Notes Week 5 Announements Midterm: Tuesday, October 25 Answers to last week's questions 1. With the diagram shown for a port (single bit), what

More information

ECE/CS 5780/6780: Embedded System Design

ECE/CS 5780/6780: Embedded System Design ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 10: Interrupts in the 6812 Scott R. Little (Lecture 10: 6812 Interrupts) ECE/CS 5780/6780 1 / 35 General Features of Interrupts All interrupting

More information

General Features of Interrupts. ECE/CS 5780/6780: Embedded System Design. Stack Before and After an Interrupt. Sequence of Events During Interrupt

General Features of Interrupts. ECE/CS 5780/6780: Embedded System Design. Stack Before and After an Interrupt. Sequence of Events During Interrupt General Features of Interrupts ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 10: Interrupts in the 6812 All interrupting systems must have the: Ability for the hardware to request action

More information

CS/ECE 5780/6780: Embedded System Design

CS/ECE 5780/6780: Embedded System Design CS/ECE 5780/6780: Embedded System Design John Regehr Lecture 10: Interrupts in the 6812 General Features of Interrupts All interrupting systems must have the: Ability for the hardware to request action

More information

EXCEPTIONS ON THE 9S12

EXCEPTIONS ON THE 9S12 EXCEPTIONS ON THE 9S12 Exceptions are the way a processor responds to things other than the normal sequence of instructions in memory. Exceptions consist of such things as Reset and Interrupts. Interrupts

More information

Interrupt and Timer ISRs. Student's name & ID: Partner's name(s) & ID(s): Your Section number & TA's name

Interrupt and Timer ISRs. Student's name & ID: Partner's name(s) & ID(s): Your Section number & TA's name MPS Interrupt Lab Exercise Interrupt and Timer ISRs Student's name & ID: Partner's name(s) & ID(s): Your Section number & TA's name Notes: You must work on this assignment with your partner. Hand in a

More information

AN Kbyte Addressing with the M68HC11. Overview

AN Kbyte Addressing with the M68HC11. Overview Order this document by /D 128-Kbyte Addressing with the M68HC11 By Ross Mitchell MCU Applications Engineering Freescale Ltd. East Kilbride, Scotland Overview The maximum direct addressing capability of

More information

General Features of Interrupts. ECE/CS 5780/6780: Embedded System Design. Sequence of Events During Interrupt. Stack Before and After an Interrupt

General Features of Interrupts. ECE/CS 5780/6780: Embedded System Design. Sequence of Events During Interrupt. Stack Before and After an Interrupt General Features of Interrupts ECE/CS 5780/6780: Embedded System Design Chris J. Myers Lecture 9: Interrupts in the 6812 All interrupting systems must have the: Ability for the hardware to request action

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications Block Diagram of 68HC11A8 EE 3170 Microcontroller Applications Lecture 14: Advanced 68HC11 Hardware- PartI A: Measuring Real-Time in the 68HC11 - Miller 7.7-7.8 Based on slides for ECE3170 by Profs. Davis,

More information

Input/Output Modes Chapter 8

Input/Output Modes Chapter 8 Input/Output Modes Chapter 8 Microcomputers can communicate with a variety of I/O devices This information can be either data or control Data is usually encoded in numeric or alphanumeric forms such as

More information

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1 M68HC08 Microcontroller The MC68HC908GP32 Babak Kia Adjunct Professor Boston University College of Engineering Email: bkia -at- bu.edu ENG SC757 - Advanced Microprocessor Design General Description The

More information

DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM

DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM Lesson-10: Context, context Switching and interrupt latency 1 1. Context 2 An embedded system executes: multiple tasks (processes). An operating system facilitates

More information

Chapter 7 Central Processor Unit (S08CPUV2)

Chapter 7 Central Processor Unit (S08CPUV2) Chapter 7 Central Processor Unit (S08CPUV2) 7.1 Introduction This section provides summary information about the registers, addressing modes, and instruction set of the CPU of the HCS08 Family. For a more

More information

Lecture 10 I/O and Interrupts

Lecture 10 I/O and Interrupts CPE 390: Microprocessor Systems Spring 2018 Lecture 10 I/O and Interrupts Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030 Adapted from

More information

Interrupt and Timer ISRs. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name

Interrupt and Timer ISRs. Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name MPSD Interrupt Lab Exercise Interrupt and Timer ISRs Student's name & ID (1): Partner's name & ID (2): Your Section number & TA's name Notes: You must work on this assignment with your partner. Hand in

More information

Lab 9: On-Board Time Generation and Interrupts

Lab 9: On-Board Time Generation and Interrupts Lab 9: On-Board Time Generation and Interrupts Summary: Develop a program and hardware interface that will utilize externally triggered interrupts and the onboard timer functions of the 68HC12. Learning

More information

Microcontrollers. Program organization Interrupt driven I/O. EECE 218 Microcontrollers 1

Microcontrollers. Program organization Interrupt driven I/O. EECE 218 Microcontrollers 1 EECE 218 Microcontrollers Program organization Interrupt driven I/O EECE 218 Microcontrollers 1 Software Architecture How to organize the code for a microcontoller application? Typical microcontroller

More information

ME 4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 6

ME 4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 6 ME 4447/6405 Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics Instructor: Professor Charles Ume LECTURE 6 MC9S12C Microcontroller Covered in Lecture 5: Quick Introduction

More information

SECTION 4 I/O INTERFACE

SECTION 4 I/O INTERFACE nc. SECTION 4 I/O INTERFACE MOTOROLA 4-1 nc. SECTION CONTENTS 4.1 INTRODUCTION.............................................. 4-3 4.2.......................... 4-3 4-2 I/O INTERFACE MOTOROLA nc. INTRODUCTION

More information

2.0 Installation & Quick Testing The following two sections will help you boot up your UF 6812 Development Board.

2.0 Installation & Quick Testing The following two sections will help you boot up your UF 6812 Development Board. Page 1/24 Revision 0 Contents 1.0 Introduction... 1 2.0 Installation & Quick Testing... 1 3.0 Header Definitions... 2 4.0 Jumper Definitions... 3 5.0 Memory Map & Interrupt Vectors... 5 6.0 CPLD/Header

More information

Ryerson University Department of Electrical and Computer Engineering ELE 538 Microprocessor Systems Final Examination December 8, 2003

Ryerson University Department of Electrical and Computer Engineering ELE 538 Microprocessor Systems Final Examination December 8, 2003 Ryerson University Department of Electrical and Computer Engineering ELE 538 Microprocessor Systems Final Examination December 8, 23 Name: Student Number: Time limit: 3 hours Section: Examiners: K Clowes,

More information

Hardware Version 1.0 Monitor Version 1.2. English Release October

Hardware Version 1.0 Monitor Version 1.2. English Release October Hardware Version 1.0 Monitor Version 1.2 English Release October 7 1999 Copyright (C)1996-98 by MCT Elektronikladen GbR Hohe Str. 9-13 D-04107 Leipzig Telefon: +49-(0)341-2118354 Fax: +49-(0)341-2118355

More information

MC68HC05J1A/D Rev. 1.0 HC 5 MC68HC05J1A MC68HCL05J1A MC68HSC05J1A. HCMOS Microcontroller Units TECHNICAL DATA

MC68HC05J1A/D Rev. 1.0 HC 5 MC68HC05J1A MC68HCL05J1A MC68HSC05J1A. HCMOS Microcontroller Units TECHNICAL DATA MC68HC0J1A/D Rev. 1.0 HC MC68HC0J1A MC68HCL0J1A MC68HSC0J1A HCMOS Microcontroller Units TECHNICAL DATA Technical Data Motorola reserves the right to make changes without further notice to any products

More information

EE Embedded Systems Design. Lessons Exceptions - Resets and Interrupts

EE Embedded Systems Design. Lessons Exceptions - Resets and Interrupts EE4800-03 Embedded Systems Design Lessons 7-10 - Exceptions - Resets and Interrupts 1 - Exceptions - Resets and Interrupts Polling vs. Interrupts Exceptions: Resets and Interrupts 68HC12 Exceptions Resets

More information

MC68HC12 Parallel I/O

MC68HC12 Parallel I/O EEL 4744C: Microprocessor Applications Lecture 6 Part 2 MC68HC12 Parallel I/O Dr. Tao Li 1 Software and Hardware Engineering (new version): Chapter 11 Or SHE (old version): Chapter 7 And Reading Assignment

More information

EE4390 Microprocessors

EE4390 Microprocessors EE4390 Microprocessors Lessons 23, 24 - Exceptions - Resets and Interrupts Revised: Aug 1, 2003 1 - Exceptions - Resets and Interrupts Polling vs. Interrupts Exceptions: Resets and Interrupts 68HC12 Exceptions

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

Go Gators! Relax! May the Schwartz be with you!

Go Gators! Relax! May the Schwartz be with you! Page 1/12 Exam 1 Instructions: Turn off cell phones beepers and other noise making devices. Show all work on the front of the test papers. If you need more room make a clearly indicated note on the front

More information

Chapter. Computer Architecture

Chapter. Computer Architecture Chapter 4 Computer Architecture Figure 4.1 Input device Central processing unit Main memory Output device Bus Data flow Control Figure 4.2 Central processing unit () Status bits ( ) Accumulator ( ) Index

More information

Microcontrollers. Microcontroller

Microcontrollers. Microcontroller Microcontrollers Microcontroller A microprocessor on a single integrated circuit intended to operate as an embedded system. As well as a CPU, a microcontroller typically includes small amounts of RAM and

More information

Application Note. Interfacing the CS5525/6/9 to the 68HC05. By Keith Coffey MOSI (PD3) SDO MISO (PD2) SCLK. Figure 1. 3-Wire and 4-Wire Interfaces

Application Note. Interfacing the CS5525/6/9 to the 68HC05. By Keith Coffey MOSI (PD3) SDO MISO (PD2) SCLK. Figure 1. 3-Wire and 4-Wire Interfaces Application Note Interfacing the CS5525/6/9 to the 68HC05 By Keith Coffey INTRODUCTION This application note details the interface of Crystal Semiconductor s CS5525/6/9 Analog-to-Digital Converter (ADC)

More information

Mark II Aiken Relay Calculator

Mark II Aiken Relay Calculator Introduction to Embedded Microcomputer Systems Lecture 6.1 Mark II Aiken Relay Calculator 2.12. Tutorial 2. Arithmetic and logical operations format descriptions examples h 8-bit unsigned hexadecimal $00

More information

Chapter 14. Motorola MC68HC11 Family MCU Architecture

Chapter 14. Motorola MC68HC11 Family MCU Architecture Chapter 14 Motorola MC68HC11 Family MCU Architecture Lesson 1 68HC11 MCU Architecture overview 2 Outline CPU Registers, MCU Architecture overview Address and Data Buses Execution Unit- ALU Ports 3 CPU

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5.

2. List the five interrupt pins available in INTR, TRAP, RST 7.5, RST 6.5, RST 5.5. DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6502- MICROPROCESSORS AND MICROCONTROLLERS UNIT I: 8085 PROCESSOR PART A 1. What is the need for ALE signal in

More information

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture)

COSC 243. Instruction Sets And Addressing Modes. Lecture 7&8 Instruction Sets and Addressing Modes. COSC 243 (Computer Architecture) COSC 243 Instruction Sets And Addressing Modes 1 Overview This Lecture Source Chapters 12 & 13 (10 th editition) Textbook uses x86 and ARM (we use 6502) Next 2 Lectures Assembly language programming 2

More information

COSC 243. Input / Output. Lecture 13 Input/Output. COSC 243 (Computer Architecture)

COSC 243. Input / Output. Lecture 13 Input/Output. COSC 243 (Computer Architecture) COSC 243 Input / Output 1 Introduction This Lecture Source: Chapter 7 (10 th edition) Next Lecture (until end of semester) Zhiyi Huang on Operating Systems 2 Memory RAM Random Access Memory Read / write

More information

EE319 K Lecture 3. Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator. University of Texas ECE

EE319 K Lecture 3. Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator. University of Texas ECE EE319 K Lecture 3 Introduction to the 9S12 Lab 1 Discussion Using the TExaS simulator University of Texas ECE Introduction (von Neumann architecture) processor Bus Memory Mapped I/O System Input Devices

More information

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly.

Control Unit: The control unit provides the necessary timing and control Microprocessor resembles a CPU exactly. Unit I 8085 and 8086 PROCESSOR Introduction to microprocessor A microprocessor is a clock-driven semiconductor device consisting of electronic logic circuits manufactured by using either a large-scale

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2005 Instructor: Professor Charles Ume LECTURE 9 Homework 1 Solution 1. Write an assembly language program to clear the usable internal RAM in the M68HC11E9. Solution:

More information

Interrupts. How can we synchronize with a peripheral? Polling

Interrupts. How can we synchronize with a peripheral? Polling Interrupts How can we synchronize with a peripheral? Polling run a program loop continually checking status of the peripheral wait for it to be ready for us to communicate with it Then handle I/O with

More information

Programming Book for 6809 Microprocessor Kit

Programming Book for 6809 Microprocessor Kit Programming Book for 6809 Microprocessor Kit Wichit Sirichote, wichit.sirichote@gmail.com Image By Konstantin Lanzet - CPU collection Konstantin Lanzet, CC BY-SA 3.0, Rev1.2 March 2018 1 Contents Lab 1

More information

Introduction to Microcontrollers

Introduction to Microcontrollers Motorola M68HC11 Specs Assembly Programming Language BUFFALO Topics of Discussion Microcontrollers M68HC11 Package & Pinouts Accumulators Index Registers Special Registers Memory Map I/O Registers Instruction

More information

What happens when an HC12 gets in unmasked interrupt:

What happens when an HC12 gets in unmasked interrupt: What happens when an HC12 gets in unmasked interrupt: 1. Completes current instruction 2. Clears instruction queue 3. Calculates return address 4. Stacks return address and contents of CPU registers 5.

More information

CPU08RM/AD REV 3 8M68HC08M. CPU08 Central Processor Unit. Reference Manual

CPU08RM/AD REV 3 8M68HC08M. CPU08 Central Processor Unit. Reference Manual CPU08RM/AD REV 3 68HC08M6 HC08M68HC 8M68HC08M CPU08 Central Processor Unit Reference Manual blank CPU08 Central Processor Unit Reference Manual Motorola reserves the right to make changes without further

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

1. Memory Mapped Systems 2. Adding Unsigned Numbers

1. Memory Mapped Systems 2. Adding Unsigned Numbers 1 Memory Mapped Systems 2 Adding Unsigned Numbers 1 1 Memory Mapped Systems Our system uses a memory space Address bus is 16-bit locations Data bus is 8-bit 2 Adding Unsigned Numbers 2 Our system uses

More information

SECTION 4 EXTERNAL MEMORY INTERFACE

SECTION 4 EXTERNAL MEMORY INTERFACE nc. SECTION 4 EXTERNAL MEMORY INTERFACE MOTOROLA DSP56004 User s Manual 4-1 External Memory Interface nc. 4.1 INTRODUCTION.................................. 4-3 4.2 EMI PROGRAMMING MODEL.......................

More information

M68HC11E Family. Data Sheet M68HC11. Microcontrollers M68HC11E/D Rev. 5 6/2003 MOTOROLA.COM/SEMICONDUCTORS

M68HC11E Family. Data Sheet M68HC11. Microcontrollers M68HC11E/D Rev. 5 6/2003 MOTOROLA.COM/SEMICONDUCTORS M68HCE Family Data Sheet M68HC Microcontrollers M68HCE/D Rev. 5 6/23 MOTOROLA.COM/SEMICONDUCTORS MC68HCE Family Data Sheet To provide the most up-to-date information, the revision of our documents on

More information

Types of Interrupts:

Types of Interrupts: Interrupt structure Introduction Interrupt is signals send by an external device to the processor, to request the processor to perform a particular task or work. Mainly in the microprocessor based system

More information

Mask Set Errata for 68HC812A4, Mask 0L00N

Mask Set Errata for 68HC812A4, Mask 0L00N Freescale Semiconductor Mask Set Errata MSE812A4_0L00N Rev. 1, 10/2004 Mask Set Errata for 68HC812A4, Mask 0L00N Introduction This mask set errata applies to this 68HC812A4 MCU mask set: 0L00N MCU Device

More information

FLASH: FASTER WAIT MODE WAKEUP RECOVERY TIME FOR FLASH AR457 ATD: CONVERSION OF THE (V RH V RL )/2 INTERNAL REF VOLTAGE RETURNS $7F, $80 OR $81

FLASH: FASTER WAIT MODE WAKEUP RECOVERY TIME FOR FLASH AR457 ATD: CONVERSION OF THE (V RH V RL )/2 INTERNAL REF VOLTAGE RETURNS $7F, $80 OR $81 MOTOROLA SEMICONDUCTOR TECHNICAL INFORMATION 68HC912BC32MSE1 Rev 1 March 1, 2001 Mask Set Errata 1 MC68HC912BC32 Microcontroller Unit INTRODUCTION This errata provides mask-set specific information applicable

More information

M68HC11 E SERIES HCMOS MICROCONTROLLER UNIT

M68HC11 E SERIES HCMOS MICROCONTROLLER UNIT M68HC11 E SERIES HCMOS MICROCONTROLLER UNIT Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding

More information

HC05 MC68HC05P18 MC68HC805P18. Advance Information. Freescale Semiconductor, Inc. Archived Order this document by MC68HC805P18/D Rev. 2.

HC05 MC68HC05P18 MC68HC805P18. Advance Information. Freescale Semiconductor, Inc. Archived Order this document by MC68HC805P18/D Rev. 2. Archived 200. Order this document by MC68HC80P18/D Rev. 2.0. HC0 MC68HC0P18 MC68HC80P18 ARCHIVED 200 Advance Information This document contains information on a new product. Specifications and information

More information

instruction 1 Fri Oct 13 13:05:

instruction 1 Fri Oct 13 13:05: instruction Fri Oct :0:0. Introduction SECTION INSTRUCTION SET This section describes the aressing modes and instruction types.. Aressing Modes The CPU uses eight aressing modes for flexibility in accessing

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

Interrupt/Timer/DMA 1

Interrupt/Timer/DMA 1 Interrupt/Timer/DMA 1 Exception An exception is any condition that needs to halt normal execution of the instructions Examples - Reset - HWI - SWI 2 Interrupt Hardware interrupt Software interrupt Trap

More information

Lecture #13 Interrupts Embedded System Engineering Philip Koopman Monday, 29-Feb-2016

Lecture #13 Interrupts Embedded System Engineering Philip Koopman Monday, 29-Feb-2016 Lecture #13 Interrupts 18-348 Embedded System Engineering Philip Koopman Monday, 29-Feb-2016 Electrical& Computer ENGINEERING Copyright 2006-2016, Philip Koopman, All Rights Reserved Example: Electronic

More information

UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING. Principles of Computer Operation

UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING. Principles of Computer Operation UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING Experiment PCO: Principles of Computer Operation Location: Part I Lab., CYC 102. Objective: The objective is to learn the basic

More information

Freescale Semiconductor, I SECTION 6 PROGRAM CONTROL UNIT

Freescale Semiconductor, I SECTION 6 PROGRAM CONTROL UNIT nc. SECTION 6 PROGRAM CONTROL UNIT This section describes the hardware of the program control unit and concludes with a description of the programming model. The instruction pipeline description is also

More information

Using the stack and the stack pointer

Using the stack and the stack pointer Using the stack and the stack pointer o The Stack and Stack Pointer o The stack is a memory area for temporary storage o The stack pointer points to the last byte in the stack o Some instructions which

More information

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 Exp:1 STUDY OF MICROCONTROLLER 8051 To study the microcontroller and familiarize the 8051microcontroller kit Theory:- A Microcontroller consists of a powerful

More information

Capstone Design Course. Lecture-2: The Timer

Capstone Design Course. Lecture-2: The Timer Capstone Design Course Lecture-2: The Timer By Syed Masud Mahmud, Ph.D. Copyright 2002 by Syed Masud Mahmud 1 The Timer The 68HC11 has a 16-Bit Free Running Timer. The count value of the timer is available

More information

Wed. Aug 23 Announcements

Wed. Aug 23 Announcements Wed. Aug 23 Announcements Professor Office Hours 1:30 to 2:30 Wed/Fri EE 326A You should all be signed up for piazza Most labs done individually (if not called out in the doc) Make sure to register your

More information

CHAPTER 11 INTERRUPTS PROGRAMMING

CHAPTER 11 INTERRUPTS PROGRAMMING CHAPTER 11 INTERRUPTS PROGRAMMING Interrupts vs. Polling An interrupt is an external or internal event that interrupts the microcontroller To inform it that a device needs its service A single microcontroller

More information

MC68HC908GR16 Data Sheet

MC68HC908GR16 Data Sheet MC68HC908GR16 Data Sheet M68HC08 Microcontrollers MC68HC908GR16 Rev. 5.0 0/2007 freescale.com MC68HC908GR16 Data Sheet To provide the most up-to-date information, the revision of our documents on the

More information

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7

ME4447/6405. Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics. Instructor: Professor Charles Ume LECTURE 7 ME4447/6405 Microprocessor Control of Manufacturing Systems and Introduction to Mechatronics Instructor: Professor Charles Ume LECTURE 7 Reading Assignments Reading assignments for this week and next

More information

University of Florida EEL 4744 Fall 1998 Dr. Eric M. Schwartz

University of Florida EEL 4744 Fall 1998 Dr. Eric M. Schwartz Department of Electrical & Computer Engineering 15 October 199 Professor in ECE 31-Dec-9 12:22 PM Page 1/ Instructions: Show all work on the front of the test papers. If you need more room, make a clearly

More information

UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING Experiment PCO: Principles of Computer Operation Location: Part I Lab., CYC 102. Objective: The objective is to learn the basic

More information

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1

Module 3. Embedded Systems I/O. Version 2 EE IIT, Kharagpur 1 Module 3 Embedded Systems I/O Version 2 EE IIT, Kharagpur 1 Lesson 15 Interrupts Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would learn Interrupts

More information

Interrupt is a process where an external device can get the attention of the microprocessor. Interrupts can be classified into two types:

Interrupt is a process where an external device can get the attention of the microprocessor. Interrupts can be classified into two types: 8085 INTERRUPTS 1 INTERRUPTS Interrupt is a process where an external device can get the attention of the microprocessor. The process starts from the I/O device The process is asynchronous. Classification

More information

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University

EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1. Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University EE 5340/7340 Motorola 68HC11 Microcontroler Lecture 1 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University What is Assembly Language? Assembly language is a programming language

More information

INTERRUPTS in microprocessor systems

INTERRUPTS in microprocessor systems INTERRUPTS in microprocessor systems Microcontroller Power Supply clock fx (Central Proccesor Unit) CPU Reset Hardware Interrupts system IRQ Internal address bus Internal data bus Internal control bus

More information

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes Course Introduction Purpose: This course provides an overview of the Direct Memory Access Controller and the Interrupt Controller on the SH-2 and SH-2A families of 32-bit RISC microcontrollers, which are

More information

ECE/CE 3720: Embedded System Design

ECE/CE 3720: Embedded System Design Basic Components of Input Capture Slide 1 ECE/CE 3720: Embedded System Design Chris J. Myers Lecture 12: Input Capture Slide 3 Basic Principles of Input Capture Basic Principles of Input Capture (cont)

More information

EE4390 Microprocessors. Lessons 2, 3 68HC12 Hardware Overview, Subsystems, and memory System

EE4390 Microprocessors. Lessons 2, 3 68HC12 Hardware Overview, Subsystems, and memory System EE4390 Microprocessors Lessons 2, 3 68HC12 Hardware Overview, Subsystems, and memory System 1 Overview 68HC12 hardware overview Subsystems Memory System 2 68HC12 Hardware Overview "Copyright of Motorola,

More information

M68HC11E/D REV 3.1 HC11M68HC 1M68HC11M. M68HC11E Family Technical Data. HCMOS Microcontroller Unit

M68HC11E/D REV 3.1 HC11M68HC 1M68HC11M. M68HC11E Family Technical Data. HCMOS Microcontroller Unit M68HC11E/D REV 3.1 68HC11M6 HC11M68HC 1M68HC11M M68HC11E Family Technical Data HCMOS Microcontroller Unit blank MC68HC11E Family Technical Data Motorola reserves the right to make changes without further

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller 1 Salient Features (1). 8 bit microcontroller originally developed by Intel in 1980. (2). High-performance CMOS Technology. (3). Contains Total 40 pins. (4). Address bus is of 16 bit

More information

AN1239. HC05 MCU Keypad Decoding Techniques Using the MC68HC705J1A. Introduction

AN1239. HC05 MCU Keypad Decoding Techniques Using the MC68HC705J1A. Introduction Order this document by /D Rev. 1.0 HC05 MCU Keypad Decoding Techniques Using the MC68HC705J1A By David Yoder CSIC Applications Introduction This application note demonstrates the use of a matrix keypad

More information

TEMPERATURE SENSOR. Revision Class. Instructor / Professor LICENSE

TEMPERATURE SENSOR. Revision Class. Instructor / Professor LICENSE CME-11E9 EVBU LAB EXPERIMENT TEMPERATURE SENSOR Revision 04.02.11 Class Instructor / Professor LICENSE You may use, copy, modify and distribute this document freely as long as you include this license

More information

Introduction to the MC9S12 Hardware Subsystems

Introduction to the MC9S12 Hardware Subsystems Setting and clearing bits in C Using pointers in C o Program to count the number of negative numbers in an area of memory Introduction to the MC9S12 Hardware Subsystems o The MC9S12 timer subsystem Operators

More information

EE 308 Spring Lecture 28 March 30, 2012 Review for Exam 2. Introduction to the MC9S12 Expanded Mode

EE 308 Spring Lecture 28 March 30, 2012 Review for Exam 2. Introduction to the MC9S12 Expanded Mode Lecture 28 March 30, 2012 Review for Exam 2 Introduction to the MC9S12 Expanded Mode 1 Review for Exam 2 1. C Programming (a) Setting and clearing bits in registers PORTA = PORTA 0x02; PORTA = PORTA &

More information

S12 and S12XD Family Compatibility Steve McAslan, 8/16-bit Products Division, East Kilbride Joachim Krücken, 8/16-bit Products Division, Munich

S12 and S12XD Family Compatibility Steve McAslan, 8/16-bit Products Division, East Kilbride Joachim Krücken, 8/16-bit Products Division, Munich Freescale Semiconductor Application Note Document Number: AN2615 Rev. 4, 07/2007 S12 and S12XD Family Compatibility by: Steve McAslan, 8/16-bit Products Division, East Kilbride Joachim Krücken, 8/16-bit

More information

Roberto Muscedere Images and Text Portions 2003 Prentice Hall 1

Roberto Muscedere Images and Text Portions 2003 Prentice Hall 1 Microcomputer Structure and Operation Chapter 5 A Microprocessor ( P) contains the controller, ALU and internal registers A Microcomputer ( C) contains a microprocessor, memory (RAM, ROM, etc), input and

More information

ECE 367 -Experiment #1 Fall 2012

ECE 367 -Experiment #1 Fall 2012 Due at the beginning of lab during week 3 (9/1/2012) Introduction ECE 367 -Experiment #1 Fall 2012 The goal of this experiment is the acquaint you with the Technological Arts nanocore12 microcontroller

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

MC68705P3 Bootstrap ROM

MC68705P3 Bootstrap ROM MC68705P3 Bootstrap ROM ;This is a listing of the Bootstrap ROM which resides in Motorola's MC68705P3 single chip ;micros. Its sole purpose is to program its own EPROM by copying the data from an external

More information