Section 2.3 Functions. Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f :A B, is a subset of A B such that

Size: px
Start display at page:

Download "Section 2.3 Functions. Definition: Let A and B be sets. A function (mapping, map) f from A to B, denoted f :A B, is a subset of A B such that"

Transcription

1 Setion 2.3 Funtions Definition: Let n e sets. funtion (mpping, mp) f from to, enote f :, is suset of suh tht x[x y[y < x, y > f ]] n [< x, y 1 > f < x, y 2 > f ] y 1 = y 2 Note: f ssoites with eh x in one n only one y in. If f(x) = y is lle the omin n is lle the oomin. y is lle the imge of x uner f x is lle preimge of y (note there my e more thn one preimge of y ut there is only one imge of x). The rnge of f is the set of ll imges of points in uner f. We enote it y f(). Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

2 If S is suset of then Exmple: f(s) = {f(s) s in S}. Z f() = Z the imge of is Z the omin of f is = {,,, } the oomin is = {,, Z} f() = {, Z} the preimge of is the preimges of Z re, n f({,}) = {Z} Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

3 Injetions, Surjetions n ijetions Let f e funtion from to. Definition: f is one-to-one (enote 1-1) or injetive if preimges re unique. Note: this mens tht if then f() f(). Definition: f is onto or surjetive if every y in hs preimge. Note: this mens tht for every y in there must e n x in suh tht f(x) = y. Definition: f is ijetive if it is surjetive n injetive (one-to-one n onto). Exmples: The previous Exmple funtion is neither n injetion nor surjetion. Hene it is not ijetion. Z Surjetion ut not n injetion Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

4 V W Z Injetion ut not surjetion V W Surjetion n n injetion, hene ijetion Note: Whenever there is ijetion from to, the two sets must hve the sme numer of elements or the sme rinlity. Tht will eome our efinition, espeilly for infinite sets. Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

5 Exmples: Let = = R, the rels. Determine whih re injetions, surjetions, ijetions: f(x) = x, f(x) = x2, f(x) = x3, f(x) = x + sin(x), f(x) = x Let E e the set of even integers {0, 2, 4, 6,....}. Then there is ijetion f from N to E, the even nonnegtive integers, efine y f(x) = 2x. Hene, the set of even integers hs the sme rinlity s the set of nturl numers. OH, NO! IT CN T E...E IS ONL HLF S IG!!! Sorry! It gets worse efore it gets etter. Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

6 Inverse Funtions Definition: Let f e ijetion from to. Then the inverse of f, enote f-1, is the funtion from to efine s Exmple: f-1(y) = x iff f(x) = y Let f e efine y the igrm: f V W f -1 V W Note: No inverse exists unless f is ijetion. Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

7 Definition: Let S e suset of. Then f-1(s) = {x f(x) S} Note: f nee not e ijetion for this efinition to hol. Exmple: Let f e the following funtion: Z f -1 ({Z}) = {, } f -1 ({, }) = {, } Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

8 Composition Definition: Let f: C, g:. The omposition of f with g, enote f og, is the funtion from to C efine y Exmples: f og(x) = f(g(x)) g V W f C h i j fοg C h i j If f(x) = x2 n g(x) = 2x + 1, then f(g(x)) = (2x+1)2 n g(f(x)) = 2x2 + 1 Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

9 Definition: The floor funtion, enote f (x) = x or f(x) = floor(x), is the lrgest integer less thn or equl to x. The eiling funtion, enote f (x) = x or f(x) = eiling(x), is the smllest integer greter thn or equl to x. Exmples: 3.5 = 3, 3.5 = 4. Note: the floor funtion is equivlent to truntion for positive numers. Exmple: Suppose f: C, g: n f og is injetive. Wht n we sy out f n g? We know tht if then f(g()) f(g()) sine the omposition is injetive. Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

10 Sine f is funtion, it nnot e the se tht g() = g() sine then f woul hve two ifferent imges for the sme point. Hene, g() g() It follows tht g must e n injetion. However, f nee not e n injetion (you show). Prepre y: Dvi F. Mllister TP , 2007 MGrw-Hill

10.2 Graph Terminology and Special Types of Graphs

10.2 Graph Terminology and Special Types of Graphs 10.2 Grph Terminology n Speil Types of Grphs Definition 1. Two verties u n v in n unirete grph G re lle jent (or neighors) in G iff u n v re enpoints of n ege e of G. Suh n ege e is lle inient with the

More information

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator.

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator. COMMON FRACTIONS BASIC DEFINITIONS * A frtion is n inite ivision. or / * In the frtion is lle the numertor n is lle the enomintor. * The whole is seprte into "" equl prts n we re onsiering "" of those

More information

Lecture 12 : Topological Spaces

Lecture 12 : Topological Spaces Leture 12 : Topologil Spes 1 Topologil Spes Topology generlizes notion of distne nd loseness et. Definition 1.1. A topology on set X is olletion T of susets of X hving the following properties. 1. nd X

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Lecture 8: Graph-theoretic problems (again)

Lecture 8: Graph-theoretic problems (again) COMP36111: Advned Algorithms I Leture 8: Grph-theoreti prolems (gin) In Prtt-Hrtmnn Room KB2.38: emil: iprtt@s.mn..uk 2017 18 Reding for this leture: Sipser: Chpter 7. A grph is pir G = (V, E), where V

More information

CS 241 Week 4 Tutorial Solutions

CS 241 Week 4 Tutorial Solutions CS 4 Week 4 Tutoril Solutions Writing n Assemler, Prt & Regulr Lnguges Prt Winter 8 Assemling instrutions utomtilly. slt $d, $s, $t. Solution: $d, $s, nd $t ll fit in -it signed integers sine they re 5-it

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Bayesian Networks: Directed Markov Properties (Cont d) and Markov Equivalent DAGs

Bayesian Networks: Directed Markov Properties (Cont d) and Markov Equivalent DAGs Byesin Networks: Direte Mrkov Properties (Cont ) n Mrkov Equivlent DAGs Huizhen Yu jney.yu@s.helsinki.fi Dept. Computer Siene, Univ. of Helsinki Proilisti Moels, Spring, 2010 Huizhen Yu (U.H.) Byesin Networks:

More information

Chapter 4 Fuzzy Graph and Relation

Chapter 4 Fuzzy Graph and Relation Chpter 4 Fuzzy Grph nd Reltion Grph nd Fuzzy Grph! Grph n G = (V, E) n V : Set of verties(node or element) n E : Set of edges An edge is pir (x, y) of verties in V.! Fuzzy Grph ~ n ( ~ G = V, E) n V :

More information

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts. Introduction to Matroids and Applications. Srikumar Ramalingam Cmrige, Msshusetts Introution to Mtrois n Applitions Srikumr Rmlingm MERL mm//yy Liner Alger (,0,0) (0,,0) Liner inepenene in vetors: v, v2,..., For ll non-trivil we hve s v s v n s, s2,..., s n 2v2...

More information

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. Functions functions 1 Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. a A! b B b is assigned to a a A! b B f ( a) = b Notation: If

More information

Solids. Solids. Curriculum Ready.

Solids. Solids. Curriculum Ready. Curriulum Rey www.mthletis.om This ooklet is ll out ientifying, rwing n mesuring solis n prisms. SOM CUES The Som Cue ws invente y Dnish sientist who went y the nme of Piet Hein. It is simple 3 # 3 #

More information

Greedy Algorithm. Algorithm Fall Semester

Greedy Algorithm. Algorithm Fall Semester Greey Algorithm Algorithm 0 Fll Semester Optimiztion prolems An optimiztion prolem is one in whih you wnt to fin, not just solution, ut the est solution A greey lgorithm sometimes works well for optimiztion

More information

Introduction to Algebra

Introduction to Algebra INTRODUCTORY ALGEBRA Mini-Leture 1.1 Introdution to Alger Evlute lgeri expressions y sustitution. Trnslte phrses to lgeri expressions. 1. Evlute the expressions when =, =, nd = 6. ) d) 5 10. Trnslte eh

More information

3. parallel: (b) and (c); perpendicular (a) and (b), (a) and (c)

3. parallel: (b) and (c); perpendicular (a) and (b), (a) and (c) SECTION 1.1 1. Plot the points (0, 4), ( 2, 3), (1.5, 1), and ( 3, 0.5) in the Cartesian plane. 2. Simplify the expression 13 7 2. 3. Use the 3 lines whose equations are given. Which are parallel? Which

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 CMPUT Introdution to Computing - Summer 22 %XLOGLQJ&RPSXWHU&LUFXLWV Chpter 4.4 3XUSRVH We hve looked t so fr how to uild logi gtes from trnsistors. Next we will look t how to uild iruits from logi gtes,

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chpter 9 Greey Tehnique Copyright 2007 Person Aison-Wesley. All rights reserve. Greey Tehnique Construts solution to n optimiztion prolem piee y piee through sequene of hoies tht re: fesile lolly optiml

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of 2 A 2 B? Answer: 2 A 2 B = 2 A 2 B = 2 A 2 B = 8 16 = 128 Exercises Question 2: Is it true for all sets

More information

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers?

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers? Questions About Numbers Number Systems nd Arithmetic or Computers go to elementry school How do you represent negtive numbers? frctions? relly lrge numbers? relly smll numbers? How do you do rithmetic?

More information

Can Pythagoras Swim?

Can Pythagoras Swim? Overview Ativity ID: 8939 Mth Conepts Mterils Students will investigte reltionships etween sides of right tringles to understnd the Pythgoren theorem nd then use it to solve prolems. Students will simplify

More information

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V)

V = set of vertices (vertex / node) E = set of edges (v, w) (v, w in V) Definitions G = (V, E) V = set of verties (vertex / noe) E = set of eges (v, w) (v, w in V) (v, w) orere => irete grph (igrph) (v, w) non-orere => unirete grph igrph: w is jent to v if there is n ege from

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information

CS 340, Fall 2016 Sep 29th Exam 1 Note: in all questions, the special symbol ɛ (epsilon) is used to indicate the empty string.

CS 340, Fall 2016 Sep 29th Exam 1 Note: in all questions, the special symbol ɛ (epsilon) is used to indicate the empty string. CS 340, Fll 2016 Sep 29th Exm 1 Nme: Note: in ll questions, the speil symol ɛ (epsilon) is used to indite the empty string. Question 1. [10 points] Speify regulr expression tht genertes the lnguge over

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

Class Overview. Database Design. Database Design Process. Database Design. Introduction to Data Management CSE 414

Class Overview. Database Design. Database Design Process. Database Design. Introduction to Data Management CSE 414 Introution to Dt Mngement CSE 44 Unit 6: Coneptul Design E/R Digrms Integrity Constrints BCNF Introution to Dt Mngement CSE 44 E/R Digrms ( letures) CSE 44 Autumn 08 Clss Overview Dtse Design Unit : Intro

More information

and vertically shrinked by

and vertically shrinked by 1. A first exmple 1.1. From infinite trnsltion surfe mp to end-periodi mp. We begin with n infinite hlf-trnsltion surfe M 0 desribed s in Figure 1 nd n ffine mp f 0 defined s follows: the surfe is horizontlly

More information

FEEDBACK: The standard error of a regression is not an unbiased estimator for the standard deviation of the error in a multiple regression model.

FEEDBACK: The standard error of a regression is not an unbiased estimator for the standard deviation of the error in a multiple regression model. Introutory Eonometris: A Moern Approh 6th Eition Woolrige Test Bnk Solutions Complete ownlo: https://testbnkre.om/ownlo/introutory-eonometris-moern-pproh-6th-eition-jeffreym-woolrige-test-bnk/ Solutions

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Section 1.6. Inverse Functions

Section 1.6. Inverse Functions Section 1.6 Inverse Functions Important Vocabulary Inverse function: Let f and g be two functions. If f(g(x)) = x in the domain of g and g(f(x) = x for every x in the domain of f, then g is the inverse

More information

Subtracting Fractions

Subtracting Fractions Lerning Enhncement Tem Model Answers: Adding nd Subtrcting Frctions Adding nd Subtrcting Frctions study guide. When the frctions both hve the sme denomintor (bottom) you cn do them using just simple dding

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy Recognition of Tokens if expressions nd reltionl opertors if è if then è then else è else relop

More information

GENG2140 Modelling and Computer Analysis for Engineers

GENG2140 Modelling and Computer Analysis for Engineers GENG4 Moelling n Computer Anlysis or Engineers Letures 9 & : Gussin qurture Crete y Grn Romn Joles, PhD Shool o Mehnil Engineering, UWA GENG4 Content Deinition o Gussin qurture Computtion o weights n points

More information

3. Determine whether f is a function from the set of all bit strings to the set of integers if

3. Determine whether f is a function from the set of all bit strings to the set of integers if Exercises Exercises 1. Why is f not a function from R to R if a) f(x) = 1/x? b) c) 2. Determine whether f is a function from Z to R if a) f(n) = ± n. b). c) f(n) = 1/(n2 4). 3. Determine whether f is a

More information

Pipeline Example: Cycle 1. Pipeline Example: Cycle 2. Pipeline Example: Cycle 4. Pipeline Example: Cycle 3. 3 instructions. 3 instructions.

Pipeline Example: Cycle 1. Pipeline Example: Cycle 2. Pipeline Example: Cycle 4. Pipeline Example: Cycle 3. 3 instructions. 3 instructions. ipeline Exmple: Cycle 1 ipeline Exmple: Cycle X X/ /W X X/ /W $3,$,$1 lw $,0($5) $3,$,$1 3 instructions 8 9 ipeline Exmple: Cycle 3 ipeline Exmple: Cycle X X/ /W X X/ /W sw $6,($7) lw $,0($5) $3,$,$1 sw

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

s1 s2 d B (F/D.IR.RS1 == D/X.IR.RD) (F/D.IR.RS2 == D/X.IR.RD) (F/D.IR.RS1 == X/M.IR.RD) (F/D.IR.RS2 == X/M.IR.RD) = 1 = 1

s1 s2 d B (F/D.IR.RS1 == D/X.IR.RD) (F/D.IR.RS2 == D/X.IR.RD) (F/D.IR.RS1 == X/M.IR.RD) (F/D.IR.RS2 == X/M.IR.RD) = 1 = 1 Hrwre Interlock Exmple: cycle Hrwre Interlock Exmple: cycle ile s s / / / t em / ile s s / / / t em / nop nop hzr hzr $,$,$ $,$,$ (/..R == /..R) (/..R == /..R) (/..R == /..R) (/..R == /..R) = (/..R ==

More information

Functions. Edexcel GCE. Core Mathematics C3

Functions. Edexcel GCE. Core Mathematics C3 Edexcel GCE Core Mathematics C Functions Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation

Union-Find Problem. Using Arrays And Chains. A Set As A Tree. Result Of A Find Operation Union-Find Problem Given set {,,, n} of n elements. Initilly ech element is in different set. ƒ {}, {},, {n} An intermixed sequence of union nd find opertions is performed. A union opertion combines two

More information

Final Exam Review F 06 M 236 Be sure to look over all of your tests, as well as over the activities you did in the activity book

Final Exam Review F 06 M 236 Be sure to look over all of your tests, as well as over the activities you did in the activity book inl xm Review 06 M 236 e sure to loo over ll of your tests, s well s over the tivities you did in the tivity oo 1 1. ind the mesures of the numered ngles nd justify your wor. Line j is prllel to line.

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

PROBLEM OF APOLLONIUS

PROBLEM OF APOLLONIUS PROBLEM OF APOLLONIUS In the Jnury 010 issue of Amerin Sientist D. Mkenzie isusses the Apollonin Gsket whih involves fining the rius of the lrgest irle whih just fits into the spe etween three tngent irles

More information

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos

ΕΠΛ323 - Θεωρία και Πρακτική Μεταγλωττιστών. Lecture 3b Lexical Analysis Elias Athanasopoulos ΕΠΛ323 - Θωρία και Πρακτική Μταγλωττιστών Lecture 3 Lexicl Anlysis Elis Athnsopoulos elisthn@cs.ucy.c.cy RecogniNon of Tokens if expressions nd relnonl opertors if è if then è then else è else relop è

More information

Compilers. Chapter 4: Syntactic Analyser. 3 er course Spring Term. Precedence grammars. Precedence grammars

Compilers. Chapter 4: Syntactic Analyser. 3 er course Spring Term. Precedence grammars. Precedence grammars Complers Chpter 4: yntt Anlyser er ourse prng erm Prt 4g: mple Preedene Grmmrs Alfonso Orteg: lfonso.orteg@um.es nrque Alfonse: enrque.lfonse@um.es Introduton A preedene grmmr ses the nlyss n the preedene

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler

12/9/14. CS151 Fall 20124Lecture (almost there) 12/6. Graphs. Seven Bridges of Königsberg. Leonard Euler CS5 Fll 04Leture (lmost there) /6 Seven Bridges of Königserg Grphs Prof. Tny Berger-Wolf Leonrd Euler 707-783 Is it possile to wlk with route tht rosses eh ridge e Seven Bridges of Königserg Forget unimportnt

More information

Rational Numbers---Adding Fractions With Like Denominators.

Rational Numbers---Adding Fractions With Like Denominators. Rtionl Numbers---Adding Frctions With Like Denomintors. A. In Words: To dd frctions with like denomintors, dd the numertors nd write the sum over the sme denomintor. B. In Symbols: For frctions c nd b

More information

Compilers Spring 2013 PRACTICE Midterm Exam

Compilers Spring 2013 PRACTICE Midterm Exam Compilers Spring 2013 PRACTICE Midterm Exm This is full length prctice midterm exm. If you wnt to tke it t exm pce, give yourself 7 minutes to tke the entire test. Just like the rel exm, ech question hs

More information

Lists in Lisp and Scheme

Lists in Lisp and Scheme Lists in Lisp nd Scheme Lists in Lisp nd Scheme Lists re Lisp s fundmentl dt structures, ut there re others Arrys, chrcters, strings, etc. Common Lisp hs moved on from eing merely LISt Processor However,

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

1.5 Part - 2 Inverse Relations and Inverse Functions

1.5 Part - 2 Inverse Relations and Inverse Functions 1.5 Part - 2 Inverse Relations and Inverse Functions What happens when we reverse the coordinates of all the ordered pairs in a relation? We obviously get another relation, but does it have any similarities

More information

Distance vector protocol

Distance vector protocol istne vetor protool Irene Finohi finohi@i.unirom.it Routing Routing protool Gol: etermine goo pth (sequene of routers) thru network from soure to Grph strtion for routing lgorithms: grph noes re routers

More information

Table-driven look-ahead lexical analysis

Table-driven look-ahead lexical analysis Tle-riven look-he lexil nlysis WUU YANG Computer n Informtion Siene Deprtment Ntionl Chio-Tung University, HsinChu, Tiwn, R.O.C. Astrt. Moern progrmming lnguges use regulr expressions to efine vli tokens.

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Lesson 4.4. Euler Circuits and Paths. Explore This

Lesson 4.4. Euler Circuits and Paths. Explore This Lesson 4.4 Euler Ciruits nd Pths Now tht you re fmilir with some of the onepts of grphs nd the wy grphs onvey onnetions nd reltionships, it s time to egin exploring how they n e used to model mny different

More information

Theory of Computation CSE 105

Theory of Computation CSE 105 $ $ $ Theory of Computtion CSE 105 Regulr Lnguges Study Guide nd Homework I Homework I: Solutions to the following problems should be turned in clss on July 1, 1999. Instructions: Write your nswers clerly

More information

x )Scales are the reciprocal of each other. e

x )Scales are the reciprocal of each other. e 9. Reciprocls A Complete Slide Rule Mnul - eville W Young Chpter 9 Further Applictions of the LL scles The LL (e x ) scles nd the corresponding LL 0 (e -x or Exmple : 0.244 4.. Set the hir line over 4.

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Informtion Retrievl nd Orgnistion Suffix Trees dpted from http://www.mth.tu.c.il/~himk/seminr02/suffixtrees.ppt Dell Zhng Birkeck, University of London Trie A tree representing set of strings { } eef d

More information

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example:

box Boxes and Arrows 3 true 7.59 'X' An object is drawn as a box that contains its data members, for example: Boxes nd Arrows There re two kinds of vriles in Jv: those tht store primitive vlues nd those tht store references. Primitive vlues re vlues of type long, int, short, chr, yte, oolen, doule, nd flot. References

More information

The Greedy Method. The Greedy Method

The Greedy Method. The Greedy Method Lists nd Itertors /8/26 Presenttion for use with the textook, Algorithm Design nd Applictions, y M. T. Goodrich nd R. Tmssi, Wiley, 25 The Greedy Method The Greedy Method The greedy method is generl lgorithm

More information

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search.

Today. CS 188: Artificial Intelligence Fall Recap: Search. Example: Pancake Problem. Example: Pancake Problem. General Tree Search. CS 88: Artificil Intelligence Fll 00 Lecture : A* Serch 9//00 A* Serch rph Serch Tody Heuristic Design Dn Klein UC Berkeley Multiple slides from Sturt Russell or Andrew Moore Recp: Serch Exmple: Pncke

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2: Solutions. Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2: Solutions. Please write your name in the upper corner of each page. 6045J/18400J: Automt, Computbility nd Complexity Mrh 30, 2005 Quiz 2: Solutions Prof Nny Lynh Vinod Vikuntnthn Plese write your nme in the upper orner of eh pge Problem Sore 1 2 3 4 5 6 Totl Q2-1 Problem

More information

CSc 453 Compilers and Systems Software. 6 : Top-Down Parsing I

CSc 453 Compilers and Systems Software. 6 : Top-Down Parsing I C 45 Compilers n ystems oftwre 6 : op-down Prsing I Christin Collberg Deprtment of Computer iene University of rizon ollberg@gmil.om Copyright 2009 Christin Collberg eptember 14, 2009 1 Overview 2 Compiler

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

Introducing fractions

Introducing fractions Introduing frtions Nme Colour hlf of eh shpe: Show the following fr ons: out of out of out of Lel these fr ons: Shde these fr ons: 7 0 Represents ommon fr ons on different models Interprets the numertor

More information

Graph theory Route problems

Graph theory Route problems Bhelors thesis Grph theory Route prolems Author: Aolphe Nikwigize Dte: 986 - -5 Sujet: Mthemtis Level: First level (Bhelor) Course oe: MAE Astrt In this thesis we will review some route prolems whih re

More information

5 ANGLES AND POLYGONS

5 ANGLES AND POLYGONS 5 GLES POLYGOS urling rige looks like onventionl rige when it is extene. However, it urls up to form n otgon to llow ots through. This Rolling rige is in Pington sin in Lonon, n urls up every Friy t miy.

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

UTMC APPLICATION NOTE UT1553B BCRT TO INTERFACE PSEUDO-DUAL-PORT RAM ARCHITECTURE INTRODUCTION ARBITRATION DETAILS DESIGN SELECTIONS

UTMC APPLICATION NOTE UT1553B BCRT TO INTERFACE PSEUDO-DUAL-PORT RAM ARCHITECTURE INTRODUCTION ARBITRATION DETAILS DESIGN SELECTIONS UTMC APPLICATION NOTE UT1553B BCRT TO 80186 INTERFACE INTRODUCTION The UTMC UT1553B BCRT is monolithi CMOS integrte iruit tht provies omprehensive Bus Controller n Remote Terminl funtions for MIL-STD-

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

Containers: Queue and List

Containers: Queue and List Continers: Queue n List Queue A ontiner in whih insertion is one t one en (the til) n eletion is one t the other en (the he). Also lle FIFO (First-In, First-Out) Jori Cortell n Jori Petit Deprtment of

More information

Bruce McCarl's GAMS Newsletter Number 37

Bruce McCarl's GAMS Newsletter Number 37 Bruce McCrl's GAMS Newsletter Number 37 This newsletter covers 1 Uptes to Expne GAMS User Guie by McCrl et l.... 1 2 YouTube vieos... 1 3 Explntory text for tuple set elements... 1 4 Reing sets using GDXXRW...

More information

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to

Here is an example where angles with a common arm and vertex overlap. Name all the obtuse angles adjacent to djcent tht do not overlp shre n rm from the sme vertex point re clled djcent ngles. me the djcent cute ngles in this digrm rm is shred y + + me vertex point for + + + is djcent to + djcent simply mens

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

Duality in linear interval equations

Duality in linear interval equations Aville online t http://ijim.sriu..ir Int. J. Industril Mthemtis Vol. 1, No. 1 (2009) 41-45 Dulity in liner intervl equtions M. Movhedin, S. Slhshour, S. Hji Ghsemi, S. Khezerloo, M. Khezerloo, S. M. Khorsny

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information