bits 5..0 the sub-function of opcode 0, 32 for the add instruction

Size: px
Start display at page:

Download "bits 5..0 the sub-function of opcode 0, 32 for the add instruction"

Transcription

1 CS2 Computer Systems note 1a Some MIPS instructions More details on these, and other instructions in the MIPS instruction set, can be found in Chapter 3 of Patterson and Hennessy. A full listing of MIPS instructions is given in Appendix A.10 of the same book. All instructions are a single 32-bit word, and each is word-aligned in memory, ie occupies bytes at addresses 4n, 4n+1, 4n+2 and 4n+3. Add Symbolic representation: add r1, r2, r3 Adds the contents of registers r2 and r3, and stores the result in register r1. (Overflow is ignored in the simulated processor in Practical 2) bits the main opcode, 0 for the add instruction bits first source register, r2 bits second source register, r3 bits destination register, r1 bits 5..0 the sub-function of opcode 0, 32 for the add instruction Subtract Symbolic representation: sub r1, r2, r3 Subtracts the contents of registers r3 from r2, and stores the result in register r1. (Overflow is ignored in the simulated processor in Practical 2) bits the main opcode, 0 for the sub instruction bits first source register, r2 bits second source register, r3 bits destination register, r1 1

2 bits 5..0 the sub-function of opcode 0, 34 for the sub instruction Add immediate Symbolic representation: addi r1, r2, n Adds the integer n to the contents of register r2, and stores the result in register r1. (Overflow is ignored in the simulated processor in Practical 2) bits the opcode, 8 for the addi instruction bits source register, r2 bits destination register, r1 bits the integer n, as a 16-bit 2 s-complement number, which is signextended Load word Symbolic representation: lw r1, n(r2) Adds the integer n to the contents of register r2, and uses the resulting integer to address memory and read the word at that address, which is stored in register r1. bits the opcode, 35 for the lw instruction bits base address register, r2 bits register to be loaded, r1 bits the integer n, as a 16-bit 2 s complement number, which is signextended Store word Symbolic representation: sw r1, n(r2) Adds the integer n to the contents of register r2, and uses the resulting integer to address memory, storing the word in register r1 at that address. bits the opcode, 43 for the lw instruction bits base address register, r2 2

3 bits register to be stored, r1 bits the integer n, as a 16-bit 2 s complement number, which is signextended Branch on equal Symbolic representation: beq r1, r2, label Compares the contents of registers r1 and r2, and if they are equal branches to the address indicated by label. bits the opcode, 4 for the beq instruction bits register r2 bits an integer, represented as a 16-bit two s complement number, which is multiplied by 4 and sign-extended to 32 bits, and then added to the address of the following instruction, and the result stored in the Program Counter to effect the branch. Branch on not equal Symbolic representation: bne r1, r2, label Compares the contents of registers r1 and r2, and if they are not equal branches to the address indicated by label. bits the opcode, 5 for the bne instruction bits register r2 bits an integer, represented as a 16-bit two s complement number, which is multiplied by 4 and sign-extended to 32 bits, and then added to the address of the following instruction, and the result stored in the Program Counter to effect the branch. Set less than Symbolic representation: slt r1, r2, r3 If the contents of register r2 is less than the contents of register r3, stores 1 into register r1, else stores 0 into register r1. The contents of r2 and r3 are interpreted as 32-bit 2 s-complement signed numbers. 3

4 bits the opcode, 0 for the slt instruction bits register r2 bits register r3 bits register r1 bits 5..0 the subfunction of opcode 0, 42 for the slt instruction Set less than immediate Symbolic representation: slti r1, r2, n If the contents of register r2 is less than the integer n, stores 1 into register r1, else stores 0 into register r1. The contents of r2 is interpreted as a 32-bit 2 s complement number. bits the opcode, 10 for the slti instruction bits register r2 bits register r1 bits the integer n, as a 16-bit 2 s-complement number, which is signextended to 32 bits before the comparison. Jump Symbolic representation: j target Unconditionally jump to the address indicated by target. bits the opcode, 2 for the jump instruction bits an integer, represented as a 26-bit number, which is multiplied by 4 and sign-extended to 32 bits, and then stored in the Program Counter to effect the branch. Jump and link Symbolic representation: jal target Save the address of the following instruction in register $ 31, and unconditionally jump to the address indicated by target. 4

5 bits the opcode, 3 for the jal instruction bits an integer, represented as a 26-bit number, which is multiplied by 4 and sign-extended to 32 bits, and then stored in the Program Counter to effect the branch. Jump register Symbolic representation: jr r1 Unconditionally jump to the address in register r1. bits the opcode, 0 for the jr instruction bits unused, set to 0 bits 5..0 the subfunction of opcode 0, 8 for the jr instruction Halt This final instruction is not a real MIPS instruction, but is included for the purposes of Practical 2. Symbolic representation: halt Causes the simulated processor/memory system in CS2 Practical 2 to halt. bits the opcode, 0 for the halt instruction bits unused, set to 0 bits 5..0 the subfunction of opcode 0, 12 for the halt instruction Marcelo Cintra (2000 Tim Hopkins) 5

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #3 Spring 2015 Use the MIPS assembly instructions listed below to solve the following problems. arithmetic add add sub subtract addi add

More information

--------------------------------------------------------------------------------------------------------------------- 1. Objectives: Using the Logisim simulator Designing and testing a Pipelined 16-bit

More information

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

More information

CS61C - Machine Structures. Lecture 6 - Instruction Representation. September 15, 2000 David Patterson.

CS61C - Machine Structures. Lecture 6 - Instruction Representation. September 15, 2000 David Patterson. CS61C - Machine Structures Lecture 6 - Instruction Representation September 15, 2000 David Patterson http://www-inst.eecs.berkeley.edu/~cs61c/ 1 Review Instructions: add, addi, sub, lw, sw beq, bne, j

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

MIPS PROJECT INSTRUCTION SET and FORMAT

MIPS PROJECT INSTRUCTION SET and FORMAT ECE 312: Semester Project MIPS PROJECT INSTRUCTION SET FORMAT This is a description of the required MIPS instruction set, their meanings, syntax, semantics, bit encodings. The syntax given for each instruction

More information

EE 361 University of Hawaii Fall

EE 361 University of Hawaii Fall C functions Road Map Computation flow Implementation using MIPS instructions Useful new instructions Addressing modes Stack data structure 1 EE 361 University of Hawaii Implementation of C functions and

More information

Informatics 2C Computer Systems Practical 2 Deadline: 18th November 2009, 4:00 PM

Informatics 2C Computer Systems Practical 2 Deadline: 18th November 2009, 4:00 PM Informatics 2C Computer Systems Practical 2 Deadline: 18th November 2009, 4:00 PM 1 Introduction This practical is based on material in the Computer Systems thread of the course. Its aim is to increase

More information

1 5. Addressing Modes COMP2611 Fall 2015 Instruction: Language of the Computer

1 5. Addressing Modes COMP2611 Fall 2015 Instruction: Language of the Computer 1 5. Addressing Modes MIPS Addressing Modes 2 Addressing takes care of where to find data instruction We have seen, so far three addressing modes of MIPS (to find data): 1. Immediate addressing: provides

More information

Q1: /30 Q2: /25 Q3: /45. Total: /100

Q1: /30 Q2: /25 Q3: /45. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam One September 19 th 2013 This is a closed book, closed note texam. Calculators are not permitted. Please work the exam in pencil and

More information

CS222: MIPS Instruction Set

CS222: MIPS Instruction Set CS222: MIPS Instruction Set Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Introduction to MIPS Instruction Set MIPS Arithmetic's Register Vs Memory, Registers

More information

CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE. Debdeep Mukhopadhyay, CSE, IIT Kharagpur. Instructions and Addressing

CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE. Debdeep Mukhopadhyay, CSE, IIT Kharagpur. Instructions and Addressing CS31001 COMPUTER ORGANIZATION AND ARCHITECTURE Debdeep Mukhopadhyay, CSE, IIT Kharagpur Instructions and Addressing 1 ISA vs. Microarchitecture An ISA or Instruction Set Architecture describes the aspects

More information

CS61C Machine Structures. Lecture 13 - MIPS Instruction Representation I. 9/26/2007 John Wawrzynek. www-inst.eecs.berkeley.

CS61C Machine Structures. Lecture 13 - MIPS Instruction Representation I. 9/26/2007 John Wawrzynek. www-inst.eecs.berkeley. CS61C Machine Structures Lecture 13 - MIPS Instruction Representation I 9/26/2007 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L13 MIPS Instruction Representation

More information

Part 1 (70% of grade for homework 2): MIPS Programming: Simulating a simple computer

Part 1 (70% of grade for homework 2): MIPS Programming: Simulating a simple computer CS 465 - Homework 2 Fall 2016 Profs. Daniel A. Menasce and Yutao Zhong Team Allowed: maximum of two per team. State clearly team member names and GMU IDs as comments in source code and each page of submitted

More information

Computer Architecture

Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.2: MIPS ISA -- Instruction Representation Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design,

More information

Brock Wilcox CS470 Homework Assignment 2

Brock Wilcox CS470 Homework Assignment 2 Brock Wilcox CS470 Homework Assignment 2 Please complete the following exercises from Chapter 2 of Patterson & Hennessy, Computer Organization & Design: The Hardware/Software Interface, Fourth Edition,

More information

Instructions: MIPS ISA. Chapter 2 Instructions: Language of the Computer 1

Instructions: MIPS ISA. Chapter 2 Instructions: Language of the Computer 1 Instructions: MIPS ISA Chapter 2 Instructions: Language of the Computer 1 PH Chapter 2 Pt A Instructions: MIPS ISA Based on Text: Patterson Henessey Publisher: Morgan Kaufmann Edited by Y.K. Malaiya for

More information

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 22 September Your Name (please print clearly) Signed.

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 22 September Your Name (please print clearly) Signed. Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam One 4 February Your Name (please print clearly)

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam One 4 February Your Name (please print clearly) Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

Chapter 2: Instructions:

Chapter 2: Instructions: Chapter 2: Instructions: Language of the Computer Computer Architecture CS-3511-2 1 Instructions: To command a computer s hardware you must speak it s language The computer s language is called instruction

More information

EEM 486: Computer Architecture. Lecture 2. MIPS Instruction Set Architecture

EEM 486: Computer Architecture. Lecture 2. MIPS Instruction Set Architecture EEM 486: Computer Architecture Lecture 2 MIPS Instruction Set Architecture EEM 486 Overview Instruction Representation Big idea: stored program consequences of stored program Instructions as numbers Instruction

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

CS/COE1541: Introduction to Computer Architecture

CS/COE1541: Introduction to Computer Architecture CS/COE1541: Introduction to Computer Architecture Dept. of Computer Science University of Pittsburgh http://www.cs.pitt.edu/~melhem/courses/1541p/index.html 1 Computer Architecture? Application pull Operating

More information

MIPS Instruction Reference

MIPS Instruction Reference Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly

More information

CS3350B Computer Architecture MIPS Introduction

CS3350B Computer Architecture MIPS Introduction CS3350B Computer Architecture MIPS Introduction Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada Thursday January

More information

F. Appendix 6 MIPS Instruction Reference

F. Appendix 6 MIPS Instruction Reference F. Appendix 6 MIPS Instruction Reference Note: ALL immediate values should be sign extended. Exception: For logical operations immediate values should be zero extended. After extensions, you treat them

More information

Chapter 2A Instructions: Language of the Computer

Chapter 2A Instructions: Language of the Computer Chapter 2A Instructions: Language of the Computer Copyright 2009 Elsevier, Inc. All rights reserved. Instruction Set The repertoire of instructions of a computer Different computers have different instruction

More information

Review of Last Lecture. CS 61C: Great Ideas in Computer Architecture. MIPS Instruction Representation II. Agenda. Dealing With Large Immediates

Review of Last Lecture. CS 61C: Great Ideas in Computer Architecture. MIPS Instruction Representation II. Agenda. Dealing With Large Immediates CS 61C: Great Ideas in Computer Architecture MIPS Instruction Representation II Guest Lecturer: Justin Hsia 2/11/2013 Spring 2013 Lecture #9 1 Review of Last Lecture Simplifying MIPS: Define instructions

More information

Course Administration

Course Administration Fall 2017 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture 2/4 Avinash Kodi Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701 E-mail: kodi@ohio.edu

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Are you P2P sharing fans? Two

More information

Mips Code Examples Peter Rounce

Mips Code Examples Peter Rounce Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II 2004-02-23 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia In the US, who is

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Guest Lecturer Alan Christopher Lecture 08 MIPS Instruction Representation I 2014-02-07 BOINC MORE THAN JUST SETI@HOME BOINC (developed here

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

ICS 233 COMPUTER ARCHITECTURE. MIPS Processor Design Multicycle Implementation

ICS 233 COMPUTER ARCHITECTURE. MIPS Processor Design Multicycle Implementation ICS 233 COMPUTER ARCHITECTURE MIPS Processor Design Multicycle Implementation Lecture 23 1 Add immediate unsigned Subtract unsigned And And immediate Or Or immediate Nor Shift left logical Shift right

More information

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

MIPS Coding Continued

MIPS Coding Continued MIPS Coding Continued Exercise 1 Suppose we have three arrays, A, B, C, all of size 10. Now we want to set C[i] = min(a[i], B[i]) for all 0

More information

CSSE 232 Computer Architecture I. I/O and Addressing

CSSE 232 Computer Architecture I. I/O and Addressing CSSE 232 Computer Architecture I I/O and Addressing 1 / 21 Class Status Reading for today 2.9-2.10, 6.6 (optional) 2 / 21 Outline I/O More memory instructions Addressing modes Jump and branch instructions

More information

CS 4200/5200 Computer Architecture I

CS 4200/5200 Computer Architecture I CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational

More information

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions

comp 180 Lecture 10 Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Outline of Lecture Procedure calls Saving and restoring registers Summary of MIPS instructions Procedure Calls A procedure of a subroutine is like an agent which needs certain information to perform a

More information

CS3350B Computer Architecture MIPS Instruction Representation

CS3350B Computer Architecture MIPS Instruction Representation CS3350B Computer Architecture MIPS Instruction Representation Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

More information

ECE468 Computer Organization & Architecture. MIPS Instruction Set Architecture

ECE468 Computer Organization & Architecture. MIPS Instruction Set Architecture ECE468 Computer Organization & Architecture MIPS Instruction Set Architecture ECE468 Lec4.1 MIPS R2000 / R3000 Registers 32-bit machine --> Programmable storage 2^32 x bytes 31 x 32-bit GPRs (R0 = 0) 32

More information

MIPS Instruction Set

MIPS Instruction Set MIPS Instruction Set Prof. James L. Frankel Harvard University Version of 7:12 PM 3-Apr-2018 Copyright 2018, 2017, 2016, 201 James L. Frankel. All rights reserved. CPU Overview CPU is an acronym for Central

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

Chapter 3. Instructions:

Chapter 3. Instructions: Chapter 3 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 2 Instructions: Language of the Computer Fall 2005 Department of Computer Science Kent State University Assembly Language Encodes machine instructions using symbols and numbers

More information

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Machine Interpretation Levels of Representation/Interpretation

More information

I-Format Instructions (3/4) Define fields of the following number of bits each: = 32 bits

I-Format Instructions (3/4) Define fields of the following number of bits each: = 32 bits CS61C L10 MIPS Instruction Representation II (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #10 Instruction Representation II 2007-7-8 Review There are register calling conventions!

More information

MIPS Memory Access Instructions

MIPS Memory Access Instructions MIPS Memory Access Instructions MIPS has two basic data transfer instructions for accessing memory lw $t0, 4($s3) #load word from memory sw $t0, 8($s3) #store word to memory The data is loaded into (lw)

More information

2) Using the same instruction set for the TinyProc2, convert the following hex values to assembly language: x0f

2) Using the same instruction set for the TinyProc2, convert the following hex values to assembly language: x0f CS2 Fall 28 Exam 2 Name: ) The Logisim TinyProc2 has four instructions, each using 8 bits. The instruction format is DR SR SR2 OpCode with OpCodes of for add, for subtract, and for multiply. Load Immediate

More information

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015 Branch Addressing Branch instructions specify Opcode, two registers, target address Most branch targets are near branch Forward or backward op rs rt constant or address 6 bits 5 bits 5 bits 16 bits PC-relative

More information

Inf2C Computer Systems. Coursework 2. MIPS Multi-cycle Processor Design

Inf2C Computer Systems. Coursework 2. MIPS Multi-cycle Processor Design Inf2C Computer Systems Coursework 2 MIPS Multi-cycle Processor Design Deadline: Fri 22 Nov 2013, 16:00 Paul Jackson 1 Introduction The aim of this practical is to increase your familiarity with the structure

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local

More information

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes Chapter 2 Instructions: Language of the Computer Adapted by Paulo Lopes Instruction Set The repertoire of instructions of a computer Different computers have different instruction sets But with many aspects

More information

CSCI 402: Computer Architectures. Instructions: Language of the Computer (3) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Instructions: Language of the Computer (3) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Instructions: Language of the Computer (3) Fengguang Song Department of Computer & Information Science IUPUI Recall Big endian, little endian Memory alignment Unsigned

More information

Midterm. CS64 Spring Midterm Exam

Midterm. CS64 Spring Midterm Exam Midterm LAST NAME FIRST NAME PERM Number Instructions Please turn off all pagers, cell phones and beepers. Remove all hats & headphones. Place your backpacks, laptops and jackets at the front. Sit in every

More information

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont )

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont ) Chapter 2 Computer Abstractions and Technology Lesson 4: MIPS (cont ) Logical Operations Instructions for bitwise manipulation Operation C Java MIPS Shift left >>> srl Bitwise

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Branch to a labeled instruction if a condition is true Otherwise, continue sequentially beq rs, rt, L1 if (rs == rt) branch to

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed.

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed. Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

ECE 486/586. Computer Architecture. Lecture # 7

ECE 486/586. Computer Architecture. Lecture # 7 ECE 486/586 Computer Architecture Lecture # 7 Spring 2015 Portland State University Lecture Topics Instruction Set Principles Instruction Encoding Role of Compilers The MIPS Architecture Reference: Appendix

More information

Instructions: Language of the Computer

Instructions: Language of the Computer CS359: Computer Architecture Instructions: Language of the Computer Yanyan Shen Department of Computer Science and Engineering 1 The Language a Computer Understands Word a computer understands: instruction

More information

Control Instructions. Computer Organization Architectures for Embedded Computing. Thursday, 26 September Summary

Control Instructions. Computer Organization Architectures for Embedded Computing. Thursday, 26 September Summary Control Instructions Computer Organization Architectures for Embedded Computing Thursday, 26 September 2013 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition,

More information

Control Instructions

Control Instructions Control Instructions Tuesday 22 September 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary Previous Class Instruction Set

More information

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support Components of an ISA EE 357 Unit 11 MIPS ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

CS61C L10 MIPS Instruction Representation II, Floating Point I (6)

CS61C L10 MIPS Instruction Representation II, Floating Point I (6) CS61C L1 MIPS Instruction Representation II, Floating Point I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #1 Instruction Representation II, Floating Point I 25-1-3 There is one

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 8: Procedures (cont d), Binary Numbers and Adders Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Review: Procedure Calling Steps

More information

Introduction to the MIPS. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Introduction to the MIPS. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction to the MIPS Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction to the MIPS The Microprocessor without Interlocked Pipeline Stages

More information

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4 Processor Han Wang CS3410, Spring 2012 Computer Science Cornell University See P&H Chapter 2.16 20, 4.1 4 Announcements Project 1 Available Design Document due in one week. Final Design due in three weeks.

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

R-type Instructions. Experiment Introduction. 4.2 Instruction Set Architecture Types of Instructions

R-type Instructions. Experiment Introduction. 4.2 Instruction Set Architecture Types of Instructions Experiment 4 R-type Instructions 4.1 Introduction This part is dedicated to the design of a processor based on a simplified version of the DLX architecture. The DLX is a RISC processor architecture designed

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept nstructions: nstructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch &

More information

Levels of Programming. Registers

Levels of Programming. Registers Levels of Programming COSC 2021: Computer Organization Instructor: Dr. Amir Asif Department of Computer Science York University Handout # 3: MIPS Instruction Set I Topics: 1. Arithmetic Instructions 2.

More information

Laboratory Exercise 6 Pipelined Processors 0.0

Laboratory Exercise 6 Pipelined Processors 0.0 Laboratory Exercise 6 Pipelined Processors 0.0 Goals After this laboratory exercise, you should understand the basic principles of how pipelining works, including the problems of data and branch hazards

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

Review of the Machine Cycle

Review of the Machine Cycle MIPS Branch and Jump Instructions Cptr280 Dr Curtis Nelson Review of the Machine Cycle When a program is executing, its instructions are located in main memory. The address of an instruction is the address

More information

CS 61C: Great Ideas in Computer Architecture. MIPS Instruction Formats

CS 61C: Great Ideas in Computer Architecture. MIPS Instruction Formats CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructor: Justin Hsia 6/27/2012 Summer 2012 Lecture #7 1 Review of Last Lecture New registers: $a0-$a3, $v0-$v1, $ra, $sp Also: $at,

More information

Lecture 9: Disassembly

Lecture 9: Disassembly Lecture 9: Disassembly CSE 30: Computer Organization and Systems Programming Winter 2010 Rajesh Gupta / Ryan Kastner Dept. of Computer Science and Engineering University of California, San Diego Instruction

More information

CS3350B Computer Architecture Winter 2015

CS3350B Computer Architecture Winter 2015 CS3350B Computer Architecture Winter 2015 Lecture 5.5: Single-Cycle CPU Datapath Design Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design, Patterson

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures $2M 3D camera Lecture 8 MIPS Instruction Representation I Instructor: Miki Lustig 2014-09-17 August 25: The final ISA showdown: Is ARM, x86, or

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 19 September 2012

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 19 September 2012 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

Procedure Calling. Procedure Calling. Register Usage. 25 September CSE2021 Computer Organization

Procedure Calling. Procedure Calling. Register Usage. 25 September CSE2021 Computer Organization CSE2021 Computer Organization Chapter 2: Part 2 Procedure Calling Procedure (function) performs a specific task and return results to caller. Supporting Procedures Procedure Calling Calling program place

More information

CS152 Computer Architecture and Engineering

CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Electrical Engineering and Computer Science, Computer Science Division Fall 2001 CS152 Computer Architecture and Engineering Homework #2 Solutions

More information

Programming at different levels

Programming at different levels CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 EMY MNEMONIC MACHINE LANGUAGE PROGRAMMING EXAMPLES Programming at different levels CS1114 Mathematical Problem : a = b + c CS2214 CS2214 The C-like

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Instructions: Language of the Computer Operations and Operands of the Computer Hardware Signed and Unsigned Numbers Representing

More information

RISC-V Assembly and Binary Notation

RISC-V Assembly and Binary Notation RISC-V Assembly and Binary Notation L02-1 Course Mechanics Reminders Course website: http://6004.mit.edu All lectures, videos, tutorials, and exam material can be found under Information/Resources tab.

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept Instructions: Instructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch

More information

Assembler. Lecture 8 CS301

Assembler. Lecture 8 CS301 Assembler Lecture 8 CS301 Discussion Given the following function header, int foo(int a, int b); what will be on the stack before any of the calculations in foo are performed? Assume foo() calls some other

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Instruction Formats July 2, 2014 Review New registers: $a0-$a3, $v0-$v1, $ra, $sp New instructions: slt, la, li, jal, jr Saved registers: $s0-$s7, $sp, $ra Volatile registers: $t0-$t9, $v0-$v1, $a0-$a3

More information

5/17/2012. Recap from Last Time. CSE 2021: Computer Organization. The RISC Philosophy. Levels of Programming. Stored Program Computers

5/17/2012. Recap from Last Time. CSE 2021: Computer Organization. The RISC Philosophy. Levels of Programming. Stored Program Computers CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-2 Code Translation-1 Registers, Arithmetic, logical, jump, and branch instructions MIPS to machine language

More information

Recap from Last Time. CSE 2021: Computer Organization. Levels of Programming. The RISC Philosophy 5/19/2011

Recap from Last Time. CSE 2021: Computer Organization. Levels of Programming. The RISC Philosophy 5/19/2011 CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-3 Code Translation-1 Registers, Arithmetic, logical, jump, and branch instructions MIPS to machine language

More information

Instruction Set Architecture. "Speaking with the computer"

Instruction Set Architecture. Speaking with the computer Instruction Set Architecture "Speaking with the computer" The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture Digital Design

More information

MIPS Instruction Format

MIPS Instruction Format MIPS Instruction Format MIPS uses a 32-bit fixed-length instruction format. only three different instruction word formats: There are Register format Op-code Rs Rt Rd Function code 000000 sssss ttttt ddddd

More information