ee457_mt_sp2013.fm 3 ( 48 points) 30 min. Virtual Memory: 6 pts 9 pts 6 pts 6 pts 6 pts 7 pts 3.1 PTBR stands for. It is initiated by (hardware / oper

Size: px
Start display at page:

Download "ee457_mt_sp2013.fm 3 ( 48 points) 30 min. Virtual Memory: 6 pts 9 pts 6 pts 6 pts 6 pts 7 pts 3.1 PTBR stands for. It is initiated by (hardware / oper"

Transcription

1

2

3

4

5

6

7 ee457_mt_sp2013.fm 3 ( 48 points) 30 min. Virtual Memory: PTBR stands for. It is initiated by (hardware / operating system) and is utilized by (MMU / CCU) (i.e. memory management unit or cache control unit) to look up (TLB / Page Table / Cache Tag RAM). 3.2 Page Table: Number of A,B,C,D Tables built by the OS: PQRST on the side represents a 20-bit (5-digit hex) VPN in a 4-level page table with upper 4 bits (P) indexing the A-level table, next 8 bits (QR) indexing the B-level tables, next 4 bits (S) indexing the C-level tables, and the last 4 bits (T) indexing the D-level tables. TABLE-I Suppose the first 8 distinct virtual pages accessed by the application program had the VPNs as stated in TABLE-I (in sorted order). How many tables of what size are built by OS by this time? A-level: B-level: C-level: D-level: Complete 8 distinct VPNs of your choice in TABLE-II such that the least number of A,B,C,D tables are built by OS. This least set consists of of A-Table(s), of B-Table(s), of C-Table(s), of D-Table(s) Similarly, complete 8 distinct VPNs of your choice in TABLE-III such that the most number of A,B,C D tables are built by OS. This set consists of of A-Table(s), of B-Table(s), of C-Table(s), of D-Table(s). 3.3 The advantage of (VIPT / PIPT) over (VIPT / PIPT) comes from the fact that 3.4 Memory addresses: In a 32-bit virtual address system using 1KB pages, state any two consecutive 32-bit word addresses (in hex) which do not fall in the same virtual page. I am evicting a page containing the byte with virtual address h. What is its virtual page number (in hex)?. What is the range of byte addresses residing in that page (lowest virtual byte address to highest virtual byte address). April 5, :34 pm EE457 Midterm Exam - Spring 2013 Page - 10 / 11 TABLE-II TABLE-III P Q R S T P Q R S T P Q R S T C Copyright 2013 Gandhi Puvvada

8 ee457_mt_sp2013.fm 3 ( 48 points) 30 min. Virtual Memory: PTBR stands for. It is initiated by (hardware / operating system) and is utilized by (MMU / CCU) (i.e. memory management unit or cache control unit) to look up (TLB / Page Table / Cache Tag RAM). 3.2 Page Table: Number of A,B,C,D Tables built by the OS: PQRST on the side represents a 20-bit (5-digit hex) VPN in a 4-level page table with upper 4 bits (P) indexing the A-level table, next 8 bits (QR) indexing the B-level tables, next 4 bits (S) indexing the C-level tables, and the last 4 bits (T) indexing the D-level tables Suppose the first 8 distinct virtual pages accessed by the application program had the VPNs as stated in TABLE-I (in sorted order). How many tables of what size are built by OS by this time? A-level: B-level: C-level: D-level: Complete 8 distinct VPNs of your choice in TABLE-II such that the least number of A,B,C,D tables are built by OS. This least set consists of of A-Table(s), of B-Table(s), of C-Table(s), of D-Table(s) Similarly, complete 8 distinct VPNs of your choice in TABLE-III such that the most number of A,B,C tables are built by OS. This most set consists of of A-Table(s), of B-Table(s), of C-Table(s), of D-Table(s). 3.3 The advantage of (VIPT / PIPT) over (VIPT / PIPT) comes from the fact that 3.4 Memory addresses: In a 32-bit virtual address system using 1KB pages, state any two consecutive 32-bit word addresses (in hex) which do not fall in the same virtual page. I am evicting a page containing the byte with virtual address h. What is its virtual page number (in hex)?. What is the range of byte addresses residing in that page (lowest virtual byte address to highest virtual byte address). April 4, 2013 :30 am EE457 Midterm Exam - Spring 2013 Page - 10 / 11 TABLE-I TABLE-II TABLE-III P Q R S T P Q R S T P Q R S T C Copyright 2013 Gandhi Puvvada

1 ( 23 points) 15 min.

1 ( 23 points) 15 min. ee57_mt_sp2.fm Spring 2 EE57 Instructor: Gandhi Puvvada Midterm Exam (2%) Date: //2, Friday Time: :M - 2:2PM in THH2 Name: Total points: 28 Perfect score: 9 / 28 ( 23 points) 5 min. Pipelining 5 5 3. I.F.R.F

More information

1 ( pipeline 89 + single cycle 20 + multicycle 44 = 153 points) 100 min.

1 ( pipeline 89 + single cycle 20 + multicycle 44 = 153 points) 100 min. ee57_mt_sp23.fm Spring 23 EE57 Instructor: Gandhi Puvvada Midterm Exam (2%) Date: /5/23, Friday Time: 9:5M - :5M in THH2 Name: Total points: 2 Perfect score: 22 / 2 ( pipeline 89 + single cycle 2 + multicycle

More information

EE457. Homework #7 (Virtual Memory)

EE457. Homework #7 (Virtual Memory) EE457 Homework #7 (Virtual Memory) Instructor: G. Puvvada Due: Please check on the BB Part Ia, Part Ib, and Part Ic are based on the textbook questions/figures. These are detailed in the first five pages.

More information

1 ( 10 points) 6 min.

1 ( 10 points) 6 min. ee201_midterm2_sp2010.fm Spring 2010 EE201L Instructor: Gandhi Puvvada Midterm Exam 2 (20%) Date: April 30, 2010, Friday Open-Book Open-Notes Exam Time: 4-6:20PM SGM101 Name: Notes and handouts in ring

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

1.2 Nexys-3 board Between divclk[16] and divclk[20], divclk[ ] is faster than divclk[ ]. It is faster by a factor of.

1.2 Nexys-3 board Between divclk[16] and divclk[20], divclk[ ] is faster than divclk[ ]. It is faster by a factor of. ee354l_quiz_fall2016.fm 1.2 Nexys-3 board F E A G D B C 1.2.0 You are aware of the scanning mechanism for the four SSDs in Nexys-3 and the 12 pins (4 anodes + cathodes =12 pins) involved in controlling

More information

Main Memory (II) Operating Systems. Autumn CS4023

Main Memory (II) Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline 1 Main Memory (II) Outline Main Memory (II) 1 Main Memory (II) Paging Main Memory (II) Physical address space of a process can be noncontiguous; process is allocated

More information

Chapter 10: Virtual Memory. Lesson 05: Translation Lookaside Buffers

Chapter 10: Virtual Memory. Lesson 05: Translation Lookaside Buffers Chapter 10: Virtual Memory Lesson 05: Translation Lookaside Buffers Objective Learn that a page table entry access increases the latency for a memory reference Understand that how use of translationlookaside-buffers

More information

6.004 Tutorial Problems L20 Virtual Memory

6.004 Tutorial Problems L20 Virtual Memory 6.004 Tutorial Problems L20 Virtual Memory Page Table (v + p) bits in virtual address (m + p) bits in physical address 2 v number of virtual pages 2 m number of physical pages 2 p bytes per physical page

More information

LECTURE 12. Virtual Memory

LECTURE 12. Virtual Memory LECTURE 12 Virtual Memory VIRTUAL MEMORY Just as a cache can provide fast, easy access to recently-used code and data, main memory acts as a cache for magnetic disk. The mechanism by which this is accomplished

More information

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space Process Abstraction, Part : Private Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection

More information

lecture 18 cache 2 TLB miss TLB - TLB (hit and miss) - instruction or data cache - cache (hit and miss)

lecture 18 cache 2 TLB miss TLB - TLB (hit and miss) - instruction or data cache - cache (hit and miss) lecture 18 2 virtual physical virtual physical - TLB ( and ) - instruction or data - ( and ) Wed. March 16, 2016 Last lecture I discussed the TLB and how virtual es are translated to physical es. I only

More information

Virtual Memory II CSE 351 Spring

Virtual Memory II CSE 351 Spring Virtual Memory II CSE 351 Spring 2018 https://xkcd.com/1495/ Virtual Memory (VM) Overview and motivation VM as a tool for caching Address translation VM as a tool for memory management VM as a tool for

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

ECE 411 Exam 1 Practice Problems

ECE 411 Exam 1 Practice Problems ECE 411 Exam 1 Practice Problems Topics Single-Cycle vs Multi-Cycle ISA Tradeoffs Performance Memory Hierarchy Caches (including interactions with VM) 1.) Suppose a single cycle design uses a clock period

More information

Module 2: Virtual Memory and Caches Lecture 3: Virtual Memory and Caches. The Lecture Contains:

Module 2: Virtual Memory and Caches Lecture 3: Virtual Memory and Caches. The Lecture Contains: The Lecture Contains: Program Optimization for Multi-core: Hardware Side of It Contents RECAP: VIRTUAL MEMORY AND CACHE Why Virtual Memory? Virtual Memory Addressing VM VA to PA Translation Page Fault

More information

Virtual Memory Worksheet

Virtual Memory Worksheet Virtual Memory Worksheet (v + p) bits in virtual address (m + p) bits in physical address 2 v number of virtual pages 2 m number of physical pages 2 p bytes per physical page 2 v+p bytes in virtual memory

More information

CSE 141 Computer Architecture Spring Lectures 17 Virtual Memory. Announcements Office Hour

CSE 141 Computer Architecture Spring Lectures 17 Virtual Memory. Announcements Office Hour CSE 4 Computer Architecture Spring 25 Lectures 7 Virtual Memory Pramod V. Argade May 25, 25 Announcements Office Hour Monday, June 6th: 6:3-8 PM, AP&M 528 Instead of regular Monday office hour 5-6 PM Reading

More information

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Memory Management Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process switch Upon process switch what is updated in order to assist address translation? Contiguous

More information

Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses.

Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses. Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses. The memory is byte addressable. Memory accesses are to 1-byte

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2015

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2015 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2015 Previous class What is logical address? Who use it? Describes a location in the logical address space Compiler and CPU

More information

CAM Content Addressable Memory. For TAG look-up in a Fully-Associative Cache

CAM Content Addressable Memory. For TAG look-up in a Fully-Associative Cache CAM Content Addressable Memory For TAG look-up in a Fully-Associative Cache 1 Tagin Fully Associative Cache Tag0 Data0 Tag1 Data1 Tag15 Data15 1 Tagin CAM Data RAM Tag0 Data0 Tag1 Data1 Tag15 Data15 Tag

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 24 LAST TIME Extended virtual memory concept to be a cache of memory stored on disk DRAM becomes L4 cache of data stored on L5 disk Extend page

More information

CS-537: Midterm Exam (Fall 2008) Hard Questions, Simple Answers

CS-537: Midterm Exam (Fall 2008) Hard Questions, Simple Answers CS-537: Midterm Exam (Fall 28) Hard Questions, Simple Answers Please Read All Questions Carefully! There are seven (7) total numbered pages. Please put your NAME and student ID on THIS page, and JUST YOUR

More information

1.3 A Branch Delay Slot is (always advantageous / always disadvantageous / depends on compiler s ability to fill the slot) Explain

1.3 A Branch Delay Slot is (always advantageous / always disadvantageous / depends on compiler s ability to fill the slot) Explain ee57_mt_sp2.fm Spring 2 EE57 Instructor: Gandhi Puvvada Midterm Exam (2%) Date: //2, Friday Time: :M - 2:2PM in THH2 Name: Total points: 28 Perfect score: 9 / 28 ( 23 points) 5 min. Pipelining 5 6 5 3.

More information

Lecture 21: Virtual Memory. Spring 2018 Jason Tang

Lecture 21: Virtual Memory. Spring 2018 Jason Tang Lecture 21: Virtual Memory Spring 2018 Jason Tang 1 Topics Virtual addressing Page tables Translation lookaside buffer 2 Computer Organization Computer Processor Memory Devices Control Datapath Input Output

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2017 Previous class What is logical address? Who use it? Describes a location in the logical memory address space Compiler

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

CS 351 Exam 3, Fall 2011

CS 351 Exam 3, Fall 2011 CS 351 Exam 3, Fall 2011 Your name: Rules You may use one handwritten 8.5 x 11 cheat sheet (front and back). This is the only resource you may consult during this exam. Include explanations and comments

More information

Virtual Memory. Samira Khan Apr 27, 2017

Virtual Memory. Samira Khan Apr 27, 2017 Virtual Memory Samira Khan Apr 27, 27 Virtual Memory Idea: Give the programmer the illusion of a large address space while having a small physical memory So that the programmer does not worry about managing

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Lecture 19: Virtual Memory: Concepts

Lecture 19: Virtual Memory: Concepts CSCI-UA.2-3 Computer Systems Organization Lecture 9: Virtual Memory: Concepts Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified) from: Clark Barrett

More information

CROWDMARK. Examination Midterm. Spring 2017 CS 350. Closed Book. Page 1 of 30. University of Waterloo CS350 Midterm Examination.

CROWDMARK. Examination Midterm. Spring 2017 CS 350. Closed Book. Page 1 of 30. University of Waterloo CS350 Midterm Examination. Times: Thursday 2017-06-22 at 19:00 to 20:50 (7 to 8:50PM) Duration: 1 hour 50 minutes (110 minutes) Exam ID: 3520593 Please print in pen: Waterloo Student ID Number: WatIAM/Quest Login Userid: Sections:

More information

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 CSE 30321 Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 Problem 1: (30 points) Background: One possible organization

More information

Virtual Memory. Computer Systems Principles

Virtual Memory. Computer Systems Principles Virtual Memory Computer Systems Principles Objectives Virtual Memory What is it? How does it work? Virtual Memory Address Translation /7/25 CMPSCI 23 - Computer Systems Principles 2 Problem Lots of executing

More information

Second Midterm Exam March 21, 2017 CS162 Operating Systems

Second Midterm Exam March 21, 2017 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2017 Ion Stoica Second Midterm Exam March 21, 2017 CS162 Operating Systems Your Name: SID AND 162 Login:

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 208 Lecture 23 LAST TIME: VIRTUAL MEMORY Began to focus on how to virtualize memory Instead of directly addressing physical memory, introduce a level of indirection

More information

Virtual Memory 2. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.4

Virtual Memory 2. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.4 Virtual Memory 2 Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter 5.4 Administrivia Project3 available now Design Doc due next week, Monday, April 16 th Schedule

More information

Operating Systems Design Exam 2 Review: Spring 2011

Operating Systems Design Exam 2 Review: Spring 2011 Operating Systems Design Exam 2 Review: Spring 2011 Paul Krzyzanowski pxk@cs.rutgers.edu 1 Question 1 CPU utilization tends to be lower when: a. There are more processes in memory. b. There are fewer processes

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16. In-Class Midterm. ( 11:35 AM 12:50 PM : 75 Minutes )

CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16. In-Class Midterm. ( 11:35 AM 12:50 PM : 75 Minutes ) CSE548, AMS542: Analysis of Algorithms, Fall 2012 Date: October 16 In-Class Midterm ( 11:35 AM 12:50 PM : 75 Minutes ) This exam will account for either 15% or 30% of your overall grade depending on your

More information

CS 416: Opera-ng Systems Design March 23, 2012

CS 416: Opera-ng Systems Design March 23, 2012 Question 1 Operating Systems Design Exam 2 Review: Spring 2011 Paul Krzyzanowski pxk@cs.rutgers.edu CPU utilization tends to be lower when: a. There are more processes in memory. b. There are fewer processes

More information

Memory Management. Goals of Memory Management. Mechanism. Policies

Memory Management. Goals of Memory Management. Mechanism. Policies Memory Management Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Memory Management Goals of Memory Management Convenient abstraction for programming

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 205 Lecture 23 LAST TIME: VIRTUAL MEMORY! Began to focus on how to virtualize memory! Instead of directly addressing physical memory, introduce a level of

More information

Virtual Memory Review. Page faults. Paging system summary (so far)

Virtual Memory Review. Page faults. Paging system summary (so far) Lecture 22 (Wed 11/19/2008) Virtual Memory Review Lab #4 Software Simulation Due Fri Nov 21 at 5pm HW #3 Cache Simulator & code optimization Due Mon Nov 24 at 5pm More Virtual Memory 1 2 Paging system

More information

CS 351 Exam 3, Fall 2013

CS 351 Exam 3, Fall 2013 CS 351 Exam 3, Fall 2013 Your name: Rules You may use one handwritten 8.5 x 11 cheat sheet (front and back). This is the only resource you may consult during this exam. Include explanations and comments

More information

Virtual Memory 2. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. q Handling bigger address spaces q Speeding translation Virtual Memory 2 q Handling bigger address spaces q Speeding translation Two considerations with page tables Mapping must be fast Done on every memory reference, at least 1 per instruction With large address

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

CS 3733 Operating Systems:

CS 3733 Operating Systems: CS 3733 Operating Systems: Topics: Memory Management (SGG, Chapter 08) Instructor: Dr Dakai Zhu Department of Computer Science @ UTSA 1 Reminders Assignment 2: extended to Monday (March 5th) midnight:

More information

VM as a cache for disk

VM as a cache for disk Virtualization Virtual Memory Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Virtualization of a resource: presenting a user with a different view of that

More information

Course Administration

Course Administration Spring 207 EE 363: Computer Organization Chapter 5: Large and Fast: Exploiting Memory Hierarchy - Avinash Kodi Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 4570

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 27, FALL 2012

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 27, FALL 2012 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 27, FALL 2012 ANNOUNCEMENTS Need student input on Lecturer Search Max Morawski Lecture 2:30pm 3:15pm, Fri 12/7, ITE 217 Meet with

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

memory management Vaibhav Bajpai

memory management Vaibhav Bajpai memory management Vaibhav Bajpai OS 2013 motivation virtualize resources: multiplex CPU multiplex memory (CPU scheduling) (memory management) why manage memory? controlled overlap processes should NOT

More information

Virtual Memory 3. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.4

Virtual Memory 3. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. P & H Chapter 5.4 Virtual Memory 3 Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter 5.4 Project3 available now Administrivia Design Doc due next week, Monday, April 16 th Schedule

More information

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15 Memory Addressing Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection Memory as

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 12

ECE 571 Advanced Microprocessor-Based Design Lecture 12 ECE 571 Advanced Microprocessor-Based Design Lecture 12 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 1 March 2018 HW#6 will be posted Project will be coming up Announcements

More information

Memory management: outline

Memory management: outline Memory management: outline Concepts Swapping Paging o Multi-level paging o TLB & inverted page tables 1 Memory size/requirements are growing 1951: the UNIVAC computer: 1000 72-bit words! 1971: the Cray

More information

CS 333 Introduction to Operating Systems. Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 11 Virtual Memory (1) Jonathan Walpole Computer Science Portland State University Virtual addresses Virtual memory addresses (what the process uses) Page

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 3 submission deadline: Nov.

More information

ADMIN. SI232 Set #18: Caching Finale and Virtual Reality (Chapter 7) Down the home stretch. Split Caches. Final Exam Monday May 1 (first exam day)

ADMIN. SI232 Set #18: Caching Finale and Virtual Reality (Chapter 7) Down the home stretch. Split Caches. Final Exam Monday May 1 (first exam day) ADMIN SI232 Set #8: Caching Finale and Virtual Reality (Chapter 7) Ethics Discussion & Reading Quiz Wed April 2 Reading posted online Reading finish Chapter 7 Sections 7.4 (skip 53-536), 7.5, 7.7, 7.8

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont Lecture 16 Virtual Memory Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Shen, Smith, Sohi, Tyson, and

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 4 submission deadline: Mar.

More information

Due: Instructor: G. Puvvada

Due: Instructor: G. Puvvada EE457 Homework 18 (not too long Due: Instructor: G. Puvvada in the wooden box outside EEB243 The material which was not tested in the midterm is very important for the final exam. The final exam is supposed

More information

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches CS 61C: Great Ideas in Computer Architecture Direct Mapped Caches Instructor: Justin Hsia 7/05/2012 Summer 2012 Lecture #11 1 Review of Last Lecture Floating point (single and double precision) approximates

More information

CSC258: Computer Organization. Memory Systems

CSC258: Computer Organization. Memory Systems CSC258: Computer Organization Memory Systems 1 Summer Independent Studies I m looking for a few students who will be working on campus this summer. In addition to the paid positions posted earlier, I have

More information

ELEC3441: Computer Architecture Second Semester, Homework 3 (r1.1) SOLUTION. r1.1 Page 1 of 12

ELEC3441: Computer Architecture Second Semester, Homework 3 (r1.1) SOLUTION. r1.1 Page 1 of 12 Homework 3, Part ELEC3441: Computer Architecture Second Semester, 2015 16 Homework 3 (r1.1) r1.1 Page 1 of 12 A.1 Cache Access Part A: Problem Set Consider the following sequence of memory accesses to

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Virtual Memory 11282011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Review Cache Virtual Memory Projects 3 Memory

More information

CS307 Operating Systems Main Memory

CS307 Operating Systems Main Memory CS307 Main Memory Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2018 Background Program must be brought (from disk) into memory and placed within a process

More information

CS 550 Operating Systems Spring Memory Management: Page Replacement

CS 550 Operating Systems Spring Memory Management: Page Replacement CS 550 Operating Systems Spring 2018 Memory Management: Page Replacement 1 OS Involvement with Page Table Management Four times when OS deals with page-tables 1. Process creation create page table 2. Upon

More information

Paging. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Paging. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Paging Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3044: Operating Systems, Fall 2016, Jinkyu Jeong (jinkyu@skku.edu) Paging Allows the physical

More information

Virtual to physical address translation

Virtual to physical address translation Virtual to physical address translation Virtual memory with paging Page table per process Page table entry includes present bit frame number modify bit flags for protection and sharing. Page tables can

More information

Duke University CompSci 356 Midterm Spring 2016

Duke University CompSci 356 Midterm Spring 2016 Duke University CompSci 356 Midterm Spring 2016 Name (Print):, (Family name) (Given name) Student ID Number: Date of Exam: Feb 25, 2016 Time Period: 11:45am-1pm Number of Exam Pages: 15 (including this

More information

CS Operating system

CS Operating system Name / ID (please PRINT) Seq#: Seat Number CS 3733.001 -- Operating system Spring 2017 -- Midterm II -- April 13, 2017 You have 75 min. Good Luck! This is a closed book/note examination. But You can use

More information

COSC Operating Systems Design, Fall 2001, Byunggu Yu. Chapter 9 Memory Management (Lecture Note #8) 1. Background

COSC Operating Systems Design, Fall 2001, Byunggu Yu. Chapter 9 Memory Management (Lecture Note #8) 1. Background COSC4740 01 Operating Systems Design, Fall 2001, Byunggu Yu Chapter 9 Memory Management (Lecture Note #8) 1. Background The computer programs, together with the data they access, must be in main memory

More information

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 13: Virtual Memory Management CSC 469H1F Fall 2006 Angela Demke Brown Topics Review virtual memory basics Large (64-bit) virtual address spaces Multiple Page Sizes Placement policy and cache effects

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Virtual Memory (1) Page Tables When and why do we access a page table? - On every instruction to translate virtual to physical addresses? Page Tables When and why

More information

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan SE-292 High Performance Computing Memory Hierarchy R. Govindarajan govind@serc Reality Check Question 1: Are real caches built to work on virtual addresses or physical addresses? Question 2: What about

More information

CS630 Operating System Design, First Exam, Spring 2017,

CS630 Operating System Design, First Exam, Spring 2017, First Exam, Spring 2017, Problem 1. (35 Points) Assume that P A, P B and P C are three distinctive programs. When P A is executed, it forks new processes executing P B at tick-marks 2, 5 and 7 and its

More information

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements CS 61C: Great Ideas in Computer Architecture Virtual II Guest Lecturer: Justin Hsia Agenda Review of Last Lecture Goals of Virtual Page Tables Translation Lookaside Buffer (TLB) Administrivia VM Performance

More information

Memory Hierarchy. Mehran Rezaei

Memory Hierarchy. Mehran Rezaei Memory Hierarchy Mehran Rezaei What types of memory do we have? Registers Cache (Static RAM) Main Memory (Dynamic RAM) Disk (Magnetic Disk) Option : Build It Out of Fast SRAM About 5- ns access Decoders

More information

Fall 2016 Instructor: Gandhi Puvvada. Thursday, 9/22/2016 (A 2H 50M exam) 05:30 PM - 08:20 PM (170 min) in THH101. Student s Last Name:

Fall 2016 Instructor: Gandhi Puvvada. Thursday, 9/22/2016 (A 2H 50M exam) 05:30 PM - 08:20 PM (170 min) in THH101. Student s Last Name: EE457 Quiz (~0%) Closed-book Closed-notes Exam; No cheat sheets; No cell phones or computers Calculators and Verilog Guides are not needed and hence not allowed. Fall 206 Instructor: Gandhi Puvvada Thursday,

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Fall 2014 Final Review Geoffrey M. Voelker Course Plugs If you enjoy CSE 120 topics, you might find some other courses interesting this year CSE 124: Networked Services

More information

2-Level Page Tables. Virtual Address Space: 2 32 bytes. Offset or Displacement field in VA: 12 bits

2-Level Page Tables. Virtual Address Space: 2 32 bytes. Offset or Displacement field in VA: 12 bits -Level Page Tables Virtual Address (VA): bits Offset or Displacement field in VA: bits Virtual Address Space: bytes Page Size: bytes = KB Virtual Page Number field in VA: - = bits Number of Virtual Pages:

More information

Computer Structure. X86 Virtual Memory and TLB

Computer Structure. X86 Virtual Memory and TLB Computer Structure X86 Virtual Memory and TLB Franck Sala Slides from Lihu and Adi s Lecture 1 Virtual Memory Provides the illusion of a large memory Different machines have different amount of physical

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018

CS 31: Intro to Systems Virtual Memory. Kevin Webb Swarthmore College November 15, 2018 CS 31: Intro to Systems Virtual Memory Kevin Webb Swarthmore College November 15, 2018 Reading Quiz Memory Abstraction goal: make every process think it has the same memory layout. MUCH simpler for compiler

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 4: Memory Organization Our goal: understand the basic types of memory in computer understand memory hierarchy and the general process to access memory

More information

Virtual Memory. Yannis Smaragdakis, U. Athens

Virtual Memory. Yannis Smaragdakis, U. Athens Virtual Memory Yannis Smaragdakis, U. Athens Example Modern Address Space (64-bit Linux) location of code : 0x40057d location of heap : 0xcf2010 location of stack : 0x7fff9ca45fcc 0x400000 0x401000 0xcf2000

More information

CS/CoE 1541 Exam 2 (Spring 2019).

CS/CoE 1541 Exam 2 (Spring 2019). CS/CoE 1541 Exam 2 (Spring 2019) Name: Question 1 (5+5+5=15 points): Show the content of each of the caches shown below after the two memory references 35, 44 Use the notation [tag, M(address),] to describe

More information

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program Virtual Memory (VM) Overview and motivation VM as tool for caching VM as tool for memory management VM as tool for memory protection Address translation 4 May 22 Virtual Memory Processes Definition: A

More information

OPEN BOOK, OPEN NOTES. NO COMPUTERS, OR SOLVING PROBLEMS DIRECTLY USING CALCULATORS.

OPEN BOOK, OPEN NOTES. NO COMPUTERS, OR SOLVING PROBLEMS DIRECTLY USING CALCULATORS. CS/ECE472 Midterm #2 Fall 2008 NAME: Student ID#: OPEN BOOK, OPEN NOTES. NO COMPUTERS, OR SOLVING PROBLEMS DIRECTLY USING CALCULATORS. Your signature is your promise that you have not cheated and will

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, March 2, 27 Instructors: Franz Franchetti & Seth Copen Goldstein Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information