PAGE CPU OVERVIEW DIAGRAM. Power Supply PCI MOXP UAA UAA(2) [0-7] AUP1S (A-wire) NOT RDR NOT. Right Reg. Left Reg RDR [2-3] ALU Reg [4-7]

Size: px
Start display at page:

Download "PAGE CPU OVERVIEW DIAGRAM. Power Supply PCI MOXP UAA UAA(2) [0-7] AUP1S (A-wire) NOT RDR NOT. Right Reg. Left Reg RDR [2-3] ALU Reg [4-7]"

Transcription

1 PAGE CPU OVERVIEW DIAGRAM Power Supply PC MOXP PCI IR UAA UAA(2) RAM [0-7] RDR RDR R0 R1 A-out MUX AUP1S (A-wire) Right Reg Left Reg [2-3] SE ALU Reg izbiz REG (0,1) [4-7]

2 Button CLK From WAM Haltwire On/Off Reg CU BZO REG Biz wire SEO AddrO WAM Reg B Reg IR/W Reg Math Reg AUP1S BZO R/W ALUCU M C S ALU Data Memory Ov iz SEL Mem Reg Stable Reg iz R/W Reg SS BZO

3 Multiple Wire Circuit Representation Multiple Wire Black Box Representation

4 2.1.3 FETCH HARDWARE CIRCUIT DIAGRAMS Normal Register NOR CLK NOR Normal Register Black Box Representation Flip Flop

5 Continuous Stream Register NOR NOR Continuous Stream Register Black Box Representation CSR

6 Intermediate View of a Generic 1-Bit Register Flip Flop List of Major 1-Bit Registers BZO Reg Math Reg Internal R/W Reg R/W Reg B Reg is-zero? (iz) Overflow? (Ov) Intermediate View of a Continuous Stream Register List of Major 1-Bit CS Registers WAM Reg ON/OFF Reg CSR

7 Intermediate view of an n-bit register with a single thick wire input. 1 2 Flip Flip n..... Flip Black Box Representation of an n-bit register receiving input from a single thick wire List of Major (Non-trivial) Registers PC Counter RIGHT Reg LEFT Reg izbiz (5 Bit) Reg CMS (3 Bit) Reg (also C, M, S) Stb (Stable) Reg (0) Mem. Reg ALU Reg IR (8 Bit) Reg R-0 Reg R-1 Reg A-Out Reg

8 In-depth view of the GDK Clock POWER SUPPLY BZZZZZZ ZZZZZZ (vibrating noise) QUARTZ from WAM CLK Output Clock Black Box Representation CLK

9 Input 2 Input 1 Intermediate view of the PC counter Inputs 1 and 2 will never simultaneously hold information. They have direct access to each bit through a simply fusion of their wires as displayed below. Flip- Flop Flip- Flop Flip- Flop Flip- Flop Output 1 Output 2 Input 2 Input Circuit Input 1 Diagram Input Black Box Representation Input 2 Input 1

10 PC (Zero) Initializer Circuit Diagram From Button And Not To PC From clock PC Initializer Black Box Representation (Two 1-Bit inputs, One 4-Bit output (all zeros) PCI

11 UNIT ADDER ALU -- Circuit Diagram Input HA HA HA Output UNIT ADDER ALU Black Box Representation UAA

12 TWO UNIT ADDER ALU Input HA HA Output TWO UNIT ADDER ALU Black Box Representation UAA(2)

13 2.2.3Load Hardware Circuit Diagrams Register Memory Bank Circuit Diagram Bits 2,3 RDR Bits 4,5 Note: R-0, R-1 and A-Out are all found in BOTH RDR registers. The RDRs are actually far more interleaved than shown here and it is only to ease the reader's viewing that we maintain them as two separate boxes. RDR From Stb Reg (0) : Register Address From Memory: To be Written into Register R/W Register Memory Bank Black Box Representation. RMB

14 Register Selection Device (RSD) 1 2 Not Not RSD Black Box (2 inputs, 3 outputs) RSD

15 Register Data Retriever R/W from R/W Reg 1 2 Data from Memory only used w/ Store Circuit 1 Address 00: R0 RSD Circuit 1 (Addr 01: R1) Circuit 1 (Addr 10: A-out) Register Data Retriever (3 inputs and clock, 4 bit output) RDR

16 Circuit 1 in Detail for A-Out Register From ALU Reg Clk From RSD A-out

17 Address Selection Device (ASD) ASD Box (4 inputs, 16 outputs) ASD

18 Address 1 from PC ASD Address 2 from PC ASD Circuit 1 Address 0000 RAM Circuit Diagram Circuit 1 (0001) Circuit 1 (0010) Circuit 1 (0011) Circuit 1 (0100) Circuit 1 (0101) Circuit 1 (0110) Circuit 1 (0111) Circuit 1 (1000) Circuit 1 (1001) Circuit 1 (1010) Circuit 1 (1011) Circuit 1 (1100) Circuit 1 (1101) Circuit 1 (1110) Circuit 1 (1111) To IR 0-3 To IR 4-7

19 RAM Circuit Diagram Black Box Address 1 Address 2 RAM Circuit Diagram Content 1 Content 2

20 Sign Extend 1 st bit 2 nd bit Sign Extend Box-2bits to 4 bits (2 input, 4 output) SE

21 2.3.3A-OUT UPDATE PHASE 1CIRCUIT DIAGRAMS 0 1 ALU Circuit Diagram 2C S M C 2C MULT FA iz is 0 A-out Ov

22 CMS 3 Wire Circuitry 3-Bit wire circuitry 3-Bit wire black box representation Intermediate view of the C M S register C M S

23 Is Zero Box Circuit Diagram is Zero Box Box Representation iz

24 FULL ADDER CIRCUIT DIAGRAM HA HA HA HA HA HA HA S FULL ADDER BLACK BOX REPRESENTAITON 2 FA

25 HALF ADDER CIRCUIT DIAGRAM B A unkeyed OR BLACK BOX REPRESENTATION HA REMAINDER OUTPUT

26 Multiplication Circuit Diagram ABM FA Not FA FA OR Multiplication Box Representation (2 4-Bit and one binary 1 input, 1 4-Bit and one Overflow bit output) MULT

27 All Bits Multiplication Box Circuit Diagram [0-3] LBM [0-3] [0-3] [0-3] LBM LBM [0-3] LBM All Bits Multiplication Box Box Diagram (2 4-bit inputs, 4 4-bit outputs ABM

28 Left Bit Multiplication Box Circuit Diagram Left Bit Multiplication Box Box Representation LBM

29 Control Unit 8 bit OP-CODE from IR (each box is a bit, ie, box 0 is the bit at position 0) AUP1S To A-wire To AddrO MATH Register AOS iss islc ALUCU C M S SEO ALUCU From on/off button OR WAM Register isl Internal R/W Register R/W Wire From WAM ish isb Haltwire OR ON/OFF Reg B Register BZO wire BIZ Wire To BZO Reg

30 is Stop (checks if the operation is Stop) ishalt (checks if operation is Halt) isstop Box 1 if OP-CODE is STOP 0 for anything else iss is Halt Black Box 1 if the OP-CODE is Halt 0 for anything else ish isbiz (checks if operation is Biz) isload (checks if operation is LOAD) N N isbiz Black Box 1 if OP-CODE is BIZ 0 if anything else isload Black Box 1 if OP-CODE is LOAD 0 if anything else isb isl

31 isload or Comp (checks if operation is LOAD or COMP) is Store (checks if operation is Store) N isload or Comp Black Box 1 if OP-CODE is COMP or LOAD 0 for anything else islc isstore Black Box 1 if OP-CODE is STORE 0 for anything else isst

32 AddrO Stream Chooser isb isst isl OR To AddrO 1 if Address is last 4 bits 0 if anything else AddrO Stream (1, 4 bit input, 1 output) AOS

33 A-Out Update Phase 1 Selector OR A-Out Update Phase 1 Selector (4 inputs-0,1,2,3 bits of OP-CODE, 1 output) AUP1S

34 ALU CU To C Register in ALU To M Register in ALU To S Register in ALU ALU CU Black Box (6 inputs-0,1,2,3,6, and 7 bits of OP-CODE, 3 outputs for C, M, S registers) ALUCU

35 Biz Selector 1 st choice Selector BIZ Selector (1 choice and 1 selector input, 2 outputs) SEL

36 2's Complement HA HA HA 2's Complement Box (4 input, 4 output) 2C

37 Data From Left Reg Circuit 1 R/W Address 0000 Address Data Memory Circuit 1 (0001) Circuit 1 (0010) Circuit 1 (0011) Circuit 1 (0100) Circuit 1 (0101) Circuit 1 (0110) ASD Circuit 1 (0111) Circuit 1 (1000) Circuit 1 (1001) Circuit 1 (1010) Circuit 1 (1011) Circuit 1 (1100) Circuit 1 (1101) Circuit 1 (1110) Circuit 1 (1111) Mem Reg (4 bits)

38 2.4.3 WRITE HARDWARE CIRCUIT DIAGRAMS Sign Extend (1 to 4 bits) Sign Extend Black Box (1 bit input to 4 bit output) SE Sign Shrink Sign Shrink Box (4 bit input, 2 bit output) SS

39 Memory Black Box 4 bit Address (from Left) Read/Write (from CU) 0=Read 1=Write Data (from Right) Mem Reg Data Memory

40 1 st 4 bit input 2 nd 4 bit input Selector 4 bit output Mux Black Box (2 4 bit and 1 selector bit inputs, 4 outputs) MOX

41 Intermediate view of the izbiz Register (0, 1) 4-Bit Biz input Flip Flip 5-Bit izbiz Register (0,1) : follows standard register circuitry Four 1-Bit wires Flip Flip 1-Bit iz input Flip

42 APPENDIX C : First attempt at HALT and STOP Original Halt/Stop command (Historical) CLOCK CU CPU

43 APPENDIX D: FIRST ATTEMPT AT ALU CLK 2C C 2C CLK CLK C1 CLK CLK M CLK 1 M CLK 0 M 1 0 FA C2 MULT From CU iz OS A-OUT is-zero ALU CIRCUIT DIAGRAM (Historical V. 1)

CPU MINI PROJECT. Gen Kazama David Kawrykow COMP 273 Professor Vybihal CPU Mini Project

CPU MINI PROJECT. Gen Kazama David Kawrykow COMP 273 Professor Vybihal CPU Mini Project CPU MINI PROJECT Gen Kazama 260181388 David Kawrykow 260186503 COMP 273 Professor Vybihal CPU Mini Project Table of Contents Overview of CPU Section 1.0.0 CPU Diagram Section 1.1.0 1-Page CPU Overview

More information

Levels in Processor Design

Levels in Processor Design Levels in Processor Design Circuit design Keywords: transistors, wires etc.results in gates, flip-flops etc. Logical design Putting gates (AND, NAND, ) and flip-flops together to build basic blocks such

More information

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book

BUILDING BLOCKS OF A BASIC MICROPROCESSOR. Part 1 PowerPoint Format of Lecture 3 of Book BUILDING BLOCKS OF A BASIC MICROPROCESSOR Part PowerPoint Format of Lecture 3 of Book Decoder Tri-state device Full adder, full subtractor Arithmetic Logic Unit (ALU) Memories Example showing how to write

More information

CS222: Processor Design

CS222: Processor Design CS222: Processor Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati Processor Design building blocks Outline A simple implementation: Single Cycle Data pathandcontrol

More information

REGISTER TRANSFER LANGUAGE

REGISTER TRANSFER LANGUAGE REGISTER TRANSFER LANGUAGE The operations executed on the data stored in the registers are called micro operations. Classifications of micro operations Register transfer micro operations Arithmetic micro

More information

The MIPS Processor Datapath

The MIPS Processor Datapath The MIPS Processor Datapath Module Outline MIPS datapath implementation Register File, Instruction memory, Data memory Instruction interpretation and execution. Combinational control Assignment: Datapath

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Datapath for a Simplified Processor James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Introduction

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 3, 2015 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

Basic Von Neumann Designs

Basic Von Neumann Designs COMP 273 Assignment #2 Part One Due: Monday October 12, 2009 at 23:55 on Web CT Mini-Project Due: Monday November 9, 2009 at 23:55 on Web CT Basic Von Neumann Designs This assignment is divided into two

More information

COMP 303 Computer Architecture Lecture 6

COMP 303 Computer Architecture Lecture 6 COMP 303 Computer Architecture Lecture 6 MULTIPLY (unsigned) Paper and pencil example (unsigned): Multiplicand 1000 = 8 Multiplier x 1001 = 9 1000 0000 0000 1000 Product 01001000 = 72 n bits x n bits =

More information

Parallel logic circuits

Parallel logic circuits Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

More information

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630

Computers and Microprocessors. Lecture 34 PHYS3360/AEP3630 Computers and Microprocessors Lecture 34 PHYS3360/AEP3630 1 Contents Computer architecture / experiment control Microprocessor organization Basic computer components Memory modes for x86 series of microprocessors

More information

Dec Hex Bin ORG ; ZERO. Introduction To Computing

Dec Hex Bin ORG ; ZERO. Introduction To Computing Dec Hex Bin 0 0 00000000 ORG ; ZERO Introduction To Computing OBJECTIVES this chapter enables the student to: Convert any number from base 2, base 10, or base 16 to any of the other two bases. Add and

More information

8-1. Fig. 8-1 ASM Chart Elements 2001 Prentice Hall, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 2e, Updated.

8-1. Fig. 8-1 ASM Chart Elements 2001 Prentice Hall, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 2e, Updated. 8-1 Name Binary code IDLE 000 Register operation or output R 0 RUN 0 1 Condition (a) State box (b) Example of state box (c) Decision box IDLE R 0 From decision box 0 1 START Register operation or output

More information

Problem Set 1 Solutions

Problem Set 1 Solutions CSE 260 Digital Computers: Organization and Logical Design Jon Turner Problem Set 1 Solutions 1. Give a brief definition of each of the following parts of a computer system: CPU, main memory, floating

More information

EXPERIMENT NUMBER 11 REGISTERED ALU DESIGN

EXPERIMENT NUMBER 11 REGISTERED ALU DESIGN 11-1 EXPERIMENT NUMBER 11 REGISTERED ALU DESIGN Purpose Extend the design of the basic four bit adder to include other arithmetic and logic functions. References Wakerly: Section 5.1 Materials Required

More information

REGISTER TRANSFER AND MICROOPERATIONS

REGISTER TRANSFER AND MICROOPERATIONS 1 REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

CHAPTER 4: Register Transfer Language and Microoperations

CHAPTER 4: Register Transfer Language and Microoperations CS 224: Computer Organization S.KHABET CHAPTER 4: Register Transfer Language and Microoperations Outline Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations

More information

REGISTER TRANSFER AND MICROOPERATIONS

REGISTER TRANSFER AND MICROOPERATIONS REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

Control Unit: Binary Multiplier. Arturo Díaz-Pérez Departamento de Computación Laboratorio de Tecnologías de Información CINVESTAV-IPN

Control Unit: Binary Multiplier. Arturo Díaz-Pérez Departamento de Computación Laboratorio de Tecnologías de Información CINVESTAV-IPN Control Unit: Binary Multiplier Arturo Díaz-Pérez Departamento de Computación Laboratorio de Tecnologías de Información CINVESTAV-IPN Example: Binary Multiplier Two versions Hardwired control Microprogrammed

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: January 2, 2018 at 11:23 CS429 Slideset 5: 1 Topics of this Slideset

More information

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

8-1. Fig. 8-1 ASM Chart Elements 2001 Prentice Hall, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 2e, Updated.

8-1. Fig. 8-1 ASM Chart Elements 2001 Prentice Hall, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 2e, Updated. 8-1 Name Binary code IDLE 000 Register operation or output R 0 RUN Condition (a) State box (b) Example of state box (c) Decision box IDLE R 0 From decision box START Register operation or output PC 0 (d)

More information

EE 3170 Microcontroller Applications

EE 3170 Microcontroller Applications EE 3170 Microcontroller Applications Lecture 4 : Processors, Computers, and Controllers - 1.2 (reading assignment), 1.3-1.5 Based on slides for ECE3170 by Profs. Kieckhafer, Davis, Tan, and Cischke Outline

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

Readings: Storage unit. Can hold an n-bit value Composed of a group of n flip-flops. Each flip-flop stores 1 bit of information.

Readings: Storage unit. Can hold an n-bit value Composed of a group of n flip-flops. Each flip-flop stores 1 bit of information. Registers Readings: 5.8-5.9.3 Storage unit. Can hold an n-bit value Composed of a group of n flip-flops Each flip-flop stores 1 bit of information ff ff ff ff 178 Controlled Register Reset Load Action

More information

EE 109L Final Review

EE 109L Final Review EE 09L Final Review Name: Closed Book / Score:. Short Answer (6 pts.) a. Storing temporary values in (memory / registers) is preferred due to the (increased / decreased) access time. b. True / False: A

More information

Informatics 2C Computer Systems Practical 2 Deadline: 18th November 2009, 4:00 PM

Informatics 2C Computer Systems Practical 2 Deadline: 18th November 2009, 4:00 PM Informatics 2C Computer Systems Practical 2 Deadline: 18th November 2009, 4:00 PM 1 Introduction This practical is based on material in the Computer Systems thread of the course. Its aim is to increase

More information

CSEE 3827: Fundamentals of Computer Systems. Storage

CSEE 3827: Fundamentals of Computer Systems. Storage CSEE 387: Fundamentals of Computer Systems Storage The big picture General purpose processor (e.g., Power PC, Pentium, MIPS) Internet router (intrusion detection, pacet routing, etc.) WIreless transceiver

More information

Two hours - online EXAM PAPER MUST NOT BE REMOVED FROM THE EXAM ROOM UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE

Two hours - online EXAM PAPER MUST NOT BE REMOVED FROM THE EXAM ROOM UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE COMP 12111 Two hours - online This paper version is made available as a backup In this event, only MCQ answers written in the boxes on the exam paper will be marked. EXAM PAPER MUST NOT BE REMOVED FROM

More information

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( ) 6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Signals and Wires Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate digital signals

More information

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics Chapter 4 Objectives Learn the components common to every modern computer system. Chapter 4 MARIE: An Introduction to a Simple Computer Be able to explain how each component contributes to program execution.

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

Question Total Possible Test Score Total 100

Question Total Possible Test Score Total 100 Computer Engineering 2210 Final Name 11 problems, 100 points. Closed books, closed notes, no calculators. You would be wise to read all problems before beginning, note point values and difficulty of problems,

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Digital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University

Digital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University Digital Circuit Design and Language Datapath Design Chang, Ik Joon Kyunghee University Typical Synchronous Design + Control Section : Finite State Machine + Data Section: Adder, Multiplier, Shift Register

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

COMPUTER ORGANIZATION

COMPUTER ORGANIZATION COMPUTER ORGANIZATION INDEX UNIT-II PPT SLIDES Srl. No. Module as per Session planner Lecture No. PPT Slide No. 1. Register Transfer language 2. Register Transfer Bus and memory transfers 3. Arithmetic

More information

CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett

CS101 Lecture 25: The Machinery of Computation: Computer Architecture. John Magee 29 July 2013 Some material copyright Jones and Bartlett CS101 Lecture 25: The Machinery of Computation: Computer Architecture John Magee 29 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? Can we relate this

More information

Introduction to Computer Design

Introduction to Computer Design Introduction to Computer Design Memory (W 800-840) Basic processor operation Processor organization Executing instructions Processor implementation using VHDL 1 Random Access Memory data_in address read/write

More information

The Processor (1) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

The Processor (1) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University The Processor (1) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University Chapter 5. Computer Architecture Organization and Design Computer System Architecture Database Lab, SANGJI University Computer Architecture Organization and Design Instruction Codes Computer Registers

More information

16.1. Unit 16. Computer Organization Design of a Simple Processor

16.1. Unit 16. Computer Organization Design of a Simple Processor 6. Unit 6 Computer Organization Design of a Simple Processor HW SW 6.2 You Can Do That Cloud & Distributed Computing (CyberPhysical, Databases, Data Mining,etc.) Applications (AI, Robotics, Graphics, Mobile)

More information

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction CS 61C: Great Ideas in Computer Architecture MIPS CPU Datapath, Control Introduction Instructor: Alan Christopher 7/28/214 Summer 214 -- Lecture #2 1 Review of Last Lecture Critical path constrains clock

More information

EE 109L Review. Name: Solutions

EE 109L Review. Name: Solutions EE 9L Review Name: Solutions Closed Book / Score:. Short Answer (6 pts.) a. Storing temporary values in (memory / registers) is preferred due to the (increased / decreased) access time. b. True / False:

More information

SAE5C Computer Organization and Architecture. Unit : I - V

SAE5C Computer Organization and Architecture. Unit : I - V SAE5C Computer Organization and Architecture Unit : I - V UNIT-I Evolution of Pentium and Power PC Evolution of Computer Components functions Interconnection Bus Basics of PCI Memory:Characteristics,Hierarchy

More information

EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS

EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS EE 2 Lab Manual, EE Department, KFUPM EXPERIMENT #8: BINARY ARITHMETIC OPERATIONS OBJECTIVES: Design and implement a circuit that performs basic binary arithmetic operations such as addition, subtraction,

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability!

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I CS61C L18 CPU Design: The Single-Cycle I (1)! 2010-07-21!!!Instructor Paul Pearce! Nasty new windows vulnerability!

More information

ECE 341 Midterm Exam

ECE 341 Midterm Exam ECE 341 Midterm Exam Time allowed: 75 minutes Total Points: 75 Points Scored: Name: Problem No. 1 (8 points) For each of the following statements, indicate whether the statement is TRUE or FALSE: (a) A

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A

Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A Department of Computer Science and Engineering CS6303-COMPUTER ARCHITECTURE UNIT-I OVERVIEW AND INSTRUCTIONS PART A 1.Define Computer Architecture Computer Architecture Is Defined As The Functional Operation

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

Major CPU Design Steps

Major CPU Design Steps Datapath Major CPU Design Steps. Analyze instruction set operations using independent RTN ISA => RTN => datapath requirements. This provides the the required datapath components and how they are connected

More information

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

Digital Logic the Bare Minimum

Digital Logic the Bare Minimum Digital Logic the Bare Minimum Norman Matloff University of California at Davis updated October 31, 1999 Contents 1 Overview 2 2 Combinational Logic 2 2.1 A Few Basic Gates.......................................

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

( input = α output = λ move = L )

( input = α output = λ move = L ) basicarchitectures What we are looking for -- A general design/organization -- Some concept of generality and completeness -- A completely abstract view of machines a definition a completely (?) general

More information

RISC Processor Design

RISC Processor Design RISC Processor Design Single Cycle Implementation - MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 13 SE-273: Processor Design Feb 07, 2011 SE-273@SERC 1 Courtesy:

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

CSE 141L Computer Architecture Lab Fall Lecture 3

CSE 141L Computer Architecture Lab Fall Lecture 3 CSE 141L Computer Architecture Lab Fall 2005 Lecture 3 Pramod V. Argade November 1, 2005 Fall 2005 CSE 141L Course Schedule Lecture # Date Day Lecture Topic Lab Due 1 9/27 Tuesday No Class 2 10/4 Tuesday

More information

Combinational and sequential circuits (learned in Chapters 1 and 2) can be used to create simple digital systems.

Combinational and sequential circuits (learned in Chapters 1 and 2) can be used to create simple digital systems. REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

are Softw Instruction Set Architecture Microarchitecture are rdw

are Softw Instruction Set Architecture Microarchitecture are rdw Program, Application Software Programming Language Compiler/Interpreter Operating System Instruction Set Architecture Hardware Microarchitecture Digital Logic Devices (transistors, etc.) Solid-State Physics

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST III Date : 21/11/2017 Max Marks : 40 Subject & Code : Computer Organization (15CS34) Semester : III (A & B) Name of the faculty: Mrs. Sharmila Banu Time : 11.30 am 1.00 pm Answer

More information

Lecture 2: Bus

Lecture 2: Bus Lecture 2 Bus (Väylä) Stallings: Ch 3 What moves on Bus? Bus characteristics PCI-bus PCI Express Bus (Sta06 Fig 3.16) For communication with and between devices Broadcast (yleislähetys): most common Everybody

More information

Chapter 4. Computer Organization

Chapter 4. Computer Organization Chapter 4 Computer Organization Von Neumann Concept Stored program concept General purpose computational device driven by internally stored program Data and instructions look same i.e. binary Operation

More information

Computer Organization. Structure of a Computer. Registers. Register Transfer. Register Files. Memories

Computer Organization. Structure of a Computer. Registers. Register Transfer. Register Files. Memories Computer Organization Structure of a Computer Computer design as an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + Control = finite

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture

von Neumann Architecture Basic Computer System Early Computers Microprocessor Reading Assignment An Introduction to Computer Architecture Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications

Basic Computer System. von Neumann Architecture. Reading Assignment. An Introduction to Computer Architecture. EEL 4744C: Microprocessor Applications Reading Assignment EEL 4744C: Microprocessor Applications Lecture 1 Part 1 An Introduction to Computer Architecture Microcontrollers and Microcomputers: Chapter 1, Appendix A, Chapter 2 Software and Hardware

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Datapath Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Components of a Computer Processor Control Enable? Read/Write

More information

Chapter 5: The Processor: Datapath and Control

Chapter 5: The Processor: Datapath and Control Chapter 5: The Processor: Datapath and Control Overview Logic Design Conventions Building a Datapath and Control Unit Different Implementations of MIPS instruction set A simple implementation of a processor

More information

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath COMP33 - Computer Architecture Lecture 8 Designing a Single Cycle Datapath The Big Picture The Five Classic Components of a Computer Processor Input Control Memory Datapath Output The Big Picture: The

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

TDT4255 Computer Design. Lecture 4. Magnus Jahre. TDT4255 Computer Design

TDT4255 Computer Design. Lecture 4. Magnus Jahre. TDT4255 Computer Design 1 TDT4255 Computer Design Lecture 4 Magnus Jahre 2 Outline Chapter 4.1 to 4.4 A Multi-cycle Processor Appendix D 3 Chapter 4 The Processor Acknowledgement: Slides are adapted from Morgan Kaufmann companion

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

CMPUT101 Introduction to Computing - Summer 2002

CMPUT101 Introduction to Computing - Summer 2002 7KH9RQ1HXPDQQ$UFKLWHFWXUH 2GGVDQG(QGV Chapter 5.1-5.2 Von Neumann Architecture CMPUT101 Introduction to Computing (c) Yngvi Bjornsson & Vadim Bulitko 1 'HVLJQLQJ&RPSXWHUV All computers more or less based

More information

Computer Organization

Computer Organization Chapter 4 Computer Organization Von Neuman Concept Stored program concept General purpose computational device driven by internally stored program Data and instructions look same i.e. binary Operation

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

EET2411 DIGITAL ELECTRONICS. A device or electrical circuit used to store a single bit (0 or 1) Ex. FF.

EET2411 DIGITAL ELECTRONICS. A device or electrical circuit used to store a single bit (0 or 1) Ex. FF. Chapter 12 - Memory Devices Digital information is easily stored Commonly used memory devices and systems will be examined Flip flops Registers VLSI and LSI memory devices The difference between main memory

More information

Single Cycle Datapath

Single Cycle Datapath Single Cycle atapath Lecture notes from MKP, H. H. Lee and S. Yalamanchili Section 4.-4.4 Appendices B.7, B.8, B.,.2 Practice Problems:, 4, 6, 9 ing (2) Introduction We will examine two MIPS implementations

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 16 Control Unit Operations Rev. 3.2 (2009-10) by Enrico Nardelli 16-1 Execution of the Instruction Cycle It has many elementary phases,

More information

Control Unit for Multiple Cycle Implementation

Control Unit for Multiple Cycle Implementation Control Unit for Multiple Cycle Implementation Control is more complex than in single cycle since: Need to define control signals for each step Need to know which step we are on Two methods for designing

More information

CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle

CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle CS 224: Computer Organization S.KHABET CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions

More information

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions Chapter 05: Basic Processing Units Control Unit Design Lesson 15: Microinstructions 1 Objective Understand that an instruction implement by sequences of control signals generated by microinstructions in

More information

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

More information

Computer architecture Assignment 3

Computer architecture Assignment 3 Computer architecture Assignment 3 1- An instruction at address 14E in the basic computer has I=0, an operation code of the AND instruction, and an address part equal to 109(all numbers are in hexadecimal).

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

Topics of this Slideset. CS429: Computer Organization and Architecture. Digital Signals. Truth Tables. Logic Design

Topics of this Slideset. CS429: Computer Organization and Architecture. Digital Signals. Truth Tables. Logic Design Topics of this Slideset CS429: Computer Organization and rchitecture Dr. Bill Young Department of Computer Science University of Texas at ustin Last updated: July 5, 2018 at 11:55 To execute a program

More information

Computer Organization

Computer Organization Computer Organization! Computer design as an application of digital logic design procedures! Computer = processing unit + memory system! Processing unit = control + datapath! Control = finite state machine

More information

Topic #6. Processor Design

Topic #6. Processor Design Topic #6 Processor Design Major Goals! To present the single-cycle implementation and to develop the student's understanding of combinational and clocked sequential circuits and the relationship between

More information

TABLE 8-1. Control Signals for Binary Multiplier. Load. MUL0 Q 0 CAQ sr CAQ. Shift_dec. C out. Load LOADQ. CAQ sr CAQ. Shift_dec P P 1.

TABLE 8-1. Control Signals for Binary Multiplier. Load. MUL0 Q 0 CAQ sr CAQ. Shift_dec. C out. Load LOADQ. CAQ sr CAQ. Shift_dec P P 1. T-192 Control Signals for Binary Multiplier TABLE 8-1 Control Signals for Binary Multiplier Block Diagram Module Microoperation Control Signal Name Control Expression Register A: A 0 Initialize IDLE G

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CPE 442 single-cycle datapath.1 Outline of Today s Lecture Recap and Introduction Where are we with respect to the BIG picture?

More information

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

More information