Introduction to Digital Logic Missouri S&T University CPE 2210 Hardware Implementations

Size: px
Start display at page:

Download "Introduction to Digital Logic Missouri S&T University CPE 2210 Hardware Implementations"

Transcription

1 Introduction to Digital Logic Missouri S&T University CPE 2210 Hardware Implementations Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology 30 April 2018 rev Egemen K. Çetinkaya

2 Introduction Hardware Implementations Outline Integrated circuits Memory components Processors Summary 2

3 Computer Organization Overview Egemen K. Çetinkaya 3

4 Computing Resources Overview What are the computing resources? Egemen K. Çetinkaya 4

5 Computing Resources Overview Computing resources are: CPU (central processing unit) memory bandwidth power What are the computer resource constraints? 5

6 Computing Resources Overview Computing resources are: CPU memory bandwidth power Computer resource constraints are: delay cost ($) 6

7 Integrated Circuit (IC) Integrated Circuits Overview refers to a package made of semiconductor material IC generally referred as chip There are different type of ICs What are the IC design implementation factors? 7

8 Integrated Circuit (IC) Integrated Circuits Overview refers to a package made of semiconductor material IC generally referred as chip There are different type of ICs IC design implementation factors: time to implement cost to implement speed of IC size of IC power consumption of IC 8

9 Full-custom IC Integrated Circuits Types costly and time-consuming Semi-custom IC also known as ASIC (Application-Specific Integrated Circuit) two types: standard cell ASIC gate arrays (aka: structured ASIC, platform ASIC) 9

10 Programmable Logic Devices Overview PLD: Programmable Logic Device Electronic component for reconfigurable digital circuit Simple PLDs: PLA: Programmable Logic Array PAL: Programmable Array Logic GAL: Generic Array Logic Complex PLDs: arrangement of multiple PLDs FPGA: Field-Programmable Gate Array FPGAs generally use lookup table 10

11 Programmable Logic Devices General Structure Egemen K. Çetinkaya PLDs consist: buffers/inverters, AND array, OR array 11

12 Programmable Logic Arrays (PLAs) General Structure Both AND array & OR array is programmable for PLAs 12

13 Programmable Logic Arrays (PLAs) Main Components Both AND array & OR array is programmable for PLAs PLAs characterized by three numbers: the number of input lines n the number of product terms p the number of sum-of-products m E.g. n p m a typical PLA is

14 Programmable Logic Arrays (PLAs) POS Array vs. SOP Array POS: AND-OR planes, SOP: OR-AND planes x 1 x 2 x n x 1 x 2 x n Input buffers and inverters Input buffers and inverters x 1 x 1 x n x n x 1 x 1 x n x n P 1 S 1 AND plane P k OR plane OR plane S k AND plane f 1 f m f 1 f m 14

15 Programmable Array Logic (PAL) General Structure AND array is programmable & OR array is fixed 15

16 Programmable Array Logic (PAL) Main Components Both AND array & OR array is programmable for PLAs Only AND array is programmable in PAL OR array is fixed PAL is easier to program compared to PLA PAL is easier to cheaper compared to PLA PAL is less flexible than the PLA 16

17 PLD and Programmer Example Egemen K. Çetinkaya Atmel PLD and XELTEK programmer 17

18 I/O block I/O block Egemen K. Çetinkaya Complex PLDs Architectural Components PAL-like block PAL-like block I/O block Interconnection wires PAL-like block PAL-like block I/O block PAL- or PLA-like blocks interconnected 18

19 Logic Devices Tradeoffs Development time (t) Development cost ($) Off-the-shelf ICs non programmable Manufactured ICs programmable semi-custom IC full-custom IC Logic IC PLD FPGA Gate array ASIC Standard cell ASIC???????????? Speed (GHz)?????? Size (mm 2 )?????? Power (W)?????? 19

20 Logic Devices Tradeoffs Development time (t) Development cost ($) Off-the-shelf ICs non programmable Manufactured ICs programmable semi-custom IC full-custom IC Logic IC PLD FPGA Gate array ASIC Standard cell ASIC low low low medium medium high low low low medium medium high Speed (GHz) low low low medium medium high Size (mm 2 ) large large large medium medium small Power (W) high high high medium medium low 20

21 M words Egemen K. Çetinkaya Memory Architecture Memory components store data items A M N memory stores M data items of N bits each Each data item is a word N-bits wide each M N memory 21

22 Memory Components Overview Memory components store data items There are two types of memory components what are they? 22

23 Memory Components Overview Memory components store data items There are two types of memory components RAM: Random-Access Memory ROM: Read-Only Memory Difference? 23

24 Memory Components Overview Memory components store data items There are two types of memory components RAM: Random-Access Memory ROM: Read-Only Memory RAM: write to and read from operation ROM: only read from operation Distinction between the two is getting blurred due to new technologies 24

25 Random-Access Memory Overview RAM: write to and read from operation What are types of RAM? 25

26 Random-Access Memory Overview RAM: write to and read from operation Types of RAM: register files static RAM dynamic RAM 26

27 Called write port Egemen K. Çetinkaya Register Files Overview A M N register file is a datapath memory component It provides efficient access to M registers where each register is N bits wide Consider register file 16 registers, each 32-bits wide 32-bit data to write 4-bit address specifies which register to write Enable (load) line: Reg written on next clock 32 4 W_data W_addr W_en register file R_data R_addr R_en bit data that is read 4-bit address to specifies which register to read Enable read read port 27

28 Register Files Ports A M N register file is a datapath memory component It provides efficient access to M registers where each register is N bits wide Write port: collection of W_data, W_addr, W_en Read port: collection of R_data, R_addr, R_en A register file with one read and write port is called: dual-ported register file note that a register port might be also used for R and W in that case it is called single-ported register file (very rare) Multiported register file: e.g. 2 R, 1 W ports 28

29 Random-Access Memory Overview RAM very similar to register files RAMs typically larger memory than the register files a typical RAM is single ported Consider RAM data addr rw en RAM RAM block symbol 29

30 Random-Access Memory Architecture Bit storage blocks are called cell Egemen K. Çetinkaya Let A = log 2 M d0 wdata(n-1) word enable wdata(n-2) wdata0 bit storage block (aka cell ) addr0 addr1 addr(a-1) a0 a1 AxM d1 decoder a(a-1) word data cell clk en rw e d(m-1) to all cells rdata(n-1) rdata(n-2) rdata0 word word enable enable rw data RAM cell 30

31 Read-Only Memory Overview ROM: only read from operation What are types of ROM? 31

32 Read-Only Memory Overview ROM: only read from operation Types of ROM: Mask-programmed ROM Fuse-based programmable ROM also known as PROM (programmable ROM) also known as one-time programmable ROM (OTP ROM) Erasable PROM (EPROM) Electrically Erasable PROM (EEPROM) 32

33 Read-Only Memory Overview ROM can be read but not written nonvolatile memory memory maintains its contents without power RAMs are volatile memory ROMs are generally faster and low-power compared to RAMs Consider ROM data addr en 1024x32 ROM ROM block symbol 33

34 addr Egemen K. Çetinkaya Read-Only Memory Architecture Bit storage blocks are called cell Similar to RAM, but no write function Let A = log 2 M d0 word enable bit storage block (aka cell ) addr0 addr1 addr(a-1) a0 a1 AxM d1 decoder a(a-1) word data clk en e d(m-1) word word enable enable data rdata(n-1) rdata(n-2) rdata0 ROM cell 34

35 Programmable Read-Only Memory Architecture PROM: it consists of a decoder and an OR array 35

36 Programmable Read-Only Memory Logic Diagram Decoder functions as AND-array: n input 2 n 1 output 36

37 Programmable Read-Only Memory PLD Notation OR-array results: 2 n input m outputs 37

38 Processors General Architecture Circuit consisting of controller and datapath elements External control inputs External control outputs Controller DP control inputs DP control outputs External data inputs... Datapath... External data outputs 38

39 Processors Overview Circuit consisting of control and datapath elements Based on the number of task they can perform: single-purpose processor circuit performing a specific task fast and power-efficient programmable processor (aka general-purpose processor) task is stored in memory rather than building the circuit representation of processing task in memory is a program Microprocessors became popular in 1980s micro refers to being small microprocessors are programmable processor 39

40 Programmable Processors Architecture General-purpose processor can be programmed Egemen K. Çetinkaya Seatbelt warning light program 3-tap FIR filter program Other programs Instruction memory I Data memory D PC 0 IR Controller Control unit n-bit 2x1 Register file RF ALU Datapath General-purpose processor 40

41 Programmable Processors Architecture Egemen K. Çetinkaya Control unit instruction memory: stores the programs program counter: stores address of the instruction instruction register: Datapath stores current instruction store, load, manipulate data Seatbelt warning light program Instruction memory I PC 0 IR Controller Control unit 3-tap FIR filter program Data memory D n-bit 2x1 Register file RF ALU Datapath Other programs General-purpose processor 41

42 Hardware Implementations Summary Computing resources are: CPU, memory, BW, power IC types are: off-the-shelf vs. manufactured off-the-shelf ICs: logic IC, PLD, FPGA manufactured IC: full-custom vs. semi-custom Simple PLDs: PLA: Programmable Logic Array: OR-AND or AND-OR planes PAL: Programmable Array Logic Memory can be categorized based on r/w operation RAM: write to and read from operation ROM: only read from operation Processor circuit: control and datapath elements 42

43 References and Further Reading [V2011] Frank Vahid, Digital Design with RTL Design, VHDL, and Verilog, 2nd edition, Wiley, [G2003] Donald D. Givone, Digital Principles and Design, McGraw-Hill, [BV2009] Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, 3rd edition, McGraw-Hill, [W2006] John F. Wakerly, Digital Design Principles and Practices, 4th edition, Prentice Hall,

44 End of Foils 44

Introduction to Digital Logic Missouri S&T University CPE 2210 Registers

Introduction to Digital Logic Missouri S&T University CPE 2210 Registers Introduction to Digital Logic Missouri S&T University CPE 2210 Registers Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and Technology cetinkayae@mst.edu

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers

Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Introduction to Digital Logic Missouri S&T University CPE 2210 Multipliers/Dividers Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science

More information

Section 6. Memory Components Chapter 5.7, 5.8 Physical Implementations Chapter 7 Programmable Processors Chapter 8

Section 6. Memory Components Chapter 5.7, 5.8 Physical Implementations Chapter 7 Programmable Processors Chapter 8 Section 6 Memory Components Chapter 5.7, 5.8 Physical Implementations Chapter 7 Programmable Processors Chapter 8 Types of memory Two major types of memory Volatile When power to the device is removed

More information

Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN

Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN Programmable Logic Devices UNIT II DIGITAL SYSTEM DESIGN 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 Implementation in Sequential Logic 2 PAL Logic Implementation Design Example: BCD to Gray Code Converter A B

More information

Embedded Controller Design. CompE 270 Digital Systems - 5. Objective. Application Specific Chips. User Programmable Logic. Copyright 1998 Ken Arnold 1

Embedded Controller Design. CompE 270 Digital Systems - 5. Objective. Application Specific Chips. User Programmable Logic. Copyright 1998 Ken Arnold 1 CompE 270 Digital Systems - 5 Programmable Logic Ken Arnold Objective Application Specific ICs Introduce User Programmable Logic Common Architectures Programmable Array Logic Address Decoding Example Development

More information

RTL Design (2) Memory Components (RAMs & ROMs)

RTL Design (2) Memory Components (RAMs & ROMs) RTL Design (2) Memory Components (RAMs & ROMs) Memory Components All sequential circuit have a form of memory Register, latches, etc However, the term memory is generally reserved for bits that are stored

More information

ELCT 912: Advanced Embedded Systems

ELCT 912: Advanced Embedded Systems Advanced Embedded Systems Lecture 2: Memory and Programmable Logic Dr. Mohamed Abd El Ghany, Memory Random Access Memory (RAM) Can be read and written Static Random Access Memory (SRAM) Data stored so

More information

CSE140: Components and Design Techniques for Digital Systems. Register Transfer Level (RTL) Design. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Register Transfer Level (RTL) Design. Tajana Simunic Rosing CSE140: Components and Design Techniques for Digital Systems Register Transfer Level (RTL) Design Tajana Simunic Rosing RTL Design Process Example: Simple data encryption/decryption device B =1, set offset

More information

Presentation 4: Programmable Combinational Devices

Presentation 4: Programmable Combinational Devices Presentation 4: Programmable Combinational Devices Asst. Prof Dr. Ahmet ÖZKURT DEUEEE Based on the Presentation by Prof. Kim, Young Ho Dept. of Information Computer Engineering E-mail : yhkim@hyowon.cs.pusan.ac.kr

More information

ECE 331 Digital System Design

ECE 331 Digital System Design ECE 331 Digital System Design Tristate Buffers, Read-Only Memories and Programmable Logic Devices (Lecture #17) The slides included herein were taken from the materials accompanying Fundamentals of Logic

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Mano & Ciletti Chapter 7 By Suleyman TOSUN Ankara University Outline RAM Memory decoding Error detection and correction ROM Programmable Logic Array (PLA) Programmable Array

More information

LSN 6 Programmable Logic Devices

LSN 6 Programmable Logic Devices LSN 6 Programmable Logic Devices Department of Engineering Technology LSN 6 What Are PLDs? Functionless devices in base form Require programming to operate The logic function of the device is programmed

More information

Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices INTRODUCTION A programmable logic device or PLD is an electronic component used to build reconfigurable digital circuits. Unlike a logic gate, which has a fixed function, a PLD

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220. PROGRAMMABLE LOGIC DEVICES (PLDs)

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220. PROGRAMMABLE LOGIC DEVICES (PLDs) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE4220 PROGRAMMABLE LOGIC DEVICES (PLDs) A PLD, or programmable logic device, is an electronic component that is used

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points Addressed in this Lecture Lecture 7: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits Lecture 9 Jaeyong Chung Robust Systems Laboratory Incheon National University DIGITAL DESIGN FLOW Chung EPC6055 2 FPGA vs. ASIC FPGA (A programmable Logic Device) Faster time-to-market

More information

LSN 1 Digital Design Flow for PLDs

LSN 1 Digital Design Flow for PLDs LSN 1 Digital Design Flow for PLDs ECT357 Microprocessors I Department of Engineering Technology LSN 1 Programmable Logic Devices Functionless devices in base form Require programming to operate The logic

More information

EECS150 - Digital Design Lecture 16 Memory 1

EECS150 - Digital Design Lecture 16 Memory 1 EECS150 - Digital Design Lecture 16 Memory 1 March 13, 2003 John Wawrzynek Spring 2003 EECS150 - Lec16-mem1 Page 1 Memory Basics Uses: Whenever a large collection of state elements is required. data &

More information

Chapter 13 Programmable Logic Device Architectures

Chapter 13 Programmable Logic Device Architectures Chapter 13 Programmable Logic Device Architectures Chapter 13 Objectives Selected areas covered in this chapter: Describing different categories of digital system devices. Describing different types of

More information

CSEE 3827: Fundamentals of Computer Systems. Storage

CSEE 3827: Fundamentals of Computer Systems. Storage CSEE 387: Fundamentals of Computer Systems Storage The big picture General purpose processor (e.g., Power PC, Pentium, MIPS) Internet router (intrusion detection, pacet routing, etc.) WIreless transceiver

More information

Semiconductor Memories: RAMs and ROMs

Semiconductor Memories: RAMs and ROMs Semiconductor Memories: RAMs and ROMs Lesson Objectives: In this lesson you will be introduced to: Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc. Different terms like: read, write,

More information

Follow-up question: now, comment on what each of these acronyms actually means, going beyond a mere recitation of the definition.

Follow-up question: now, comment on what each of these acronyms actually means, going beyond a mere recitation of the definition. Question 1 Define the following acronyms as they apply to digital logic circuits: ASIC PAL PLA PLD CPLD FPGA file 03041 Answer 1 ASIC: Application-Specific Integrated Circuit PAL: Programmable Array Logic

More information

Evolution of Implementation Technologies. ECE 4211/5211 Rapid Prototyping with FPGAs. Gate Array Technology (IBM s) Programmable Logic

Evolution of Implementation Technologies. ECE 4211/5211 Rapid Prototyping with FPGAs. Gate Array Technology (IBM s) Programmable Logic ECE 42/52 Rapid Prototyping with FPGAs Dr. Charlie Wang Department of Electrical and Computer Engineering University of Colorado at Colorado Springs Evolution of Implementation Technologies Discrete devices:

More information

Digital Electronics 27. Digital System Design using PLDs

Digital Electronics 27. Digital System Design using PLDs 1 Module -27 Digital System Design 1. Introduction 2. Digital System Design 2.1 Standard (Fixed function) ICs based approach 2.2 Programmable ICs based approach 3. Comparison of Digital System Design approaches

More information

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Unit 6.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2. Logic Logic and Computer Design Fundamentals Part Implementation

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

FPGA for Dummies. Introduc)on to Programmable Logic

FPGA for Dummies. Introduc)on to Programmable Logic FPGA for Dummies Introduc)on to Programmable Logic FPGA for Dummies Historical introduc)on, where we come from; FPGA Architecture: Ø basic blocks (Logic, FFs, wires and IOs); Ø addi)onal elements; FPGA

More information

Register Transfer Level (RTL) Design

Register Transfer Level (RTL) Design CSE4: Components and Design Techniques for Digital Systems Register Transfer Level (RTL) Design Mohsen Imani Topics for today Another example of RTL design RTL circuit delays and clock HLSM array and Register

More information

CS310 Embedded Computer Systems. Maeng

CS310 Embedded Computer Systems. Maeng 1 INTRODUCTION (PART II) Maeng Three key embedded system technologies 2 Technology A manner of accomplishing a task, especially using technical processes, methods, or knowledge Three key technologies for

More information

Programmable logic technology

Programmable logic technology Programmable logic technology This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lecture 13: Memory and Programmable Logic

Lecture 13: Memory and Programmable Logic Lecture 13: Memory and Programmable Logic Syed M. Mahmud, Ph.D ECE Department Wayne State University Aby K George, ECE Department, Wayne State University Contents Introduction Random Access Memory Memory

More information

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 3: Memory and Programmable Logic (continue) Dr. Mohamed Abd El Ghany, Memory Model 32-bit address space can address up to 4 GB (2 32 ) different memory locations 0x00000000

More information

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses Today Comments about assignment 3-43 Comments about assignment 3 ASICs and Programmable logic Others courses octor Per should show up in the end of the lecture Mealy machines can not be coded in a single

More information

EECS150 - Digital Design Lecture 16 - Memory

EECS150 - Digital Design Lecture 16 - Memory EECS150 - Digital Design Lecture 16 - Memory October 17, 2002 John Wawrzynek Fall 2002 EECS150 - Lec16-mem1 Page 1 Memory Basics Uses: data & program storage general purpose registers buffering table lookups

More information

PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES

PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES PROGRAMMABLE MODULES SPECIFICATION OF PROGRAMMABLE COMBINATIONAL AND SEQUENTIAL MODULES. psa. rom. fpga THE WAY THE MODULES ARE PROGRAMMED NETWORKS OF PROGRAMMABLE MODULES EXAMPLES OF USES Programmable

More information

DIGITAL DESIGN TECHNOLOGY & TECHNIQUES

DIGITAL DESIGN TECHNOLOGY & TECHNIQUES DIGITAL DESIGN TECHNOLOGY & TECHNIQUES CAD for ASIC Design 1 INTEGRATED CIRCUITS (IC) An integrated circuit (IC) consists complex electronic circuitries and their interconnections. William Shockley et

More information

10 2 ADDRESS DECODING:

10 2 ADDRESS DECODING: 10 2 ADDRESS DECODING: Simple NAND Gate Decoder: When the 2K 8 EPROM is used, address connections A10 A0 of the 8088 are connected to address inputs A10 A0 of the EPROM. The remaining nine address pins

More information

FYSE420 DIGITAL ELECTRONICS. Lecture 7

FYSE420 DIGITAL ELECTRONICS. Lecture 7 FYSE420 DIGITAL ELECTRONICS Lecture 7 1 [1] [2] [3] DIGITAL LOGIC CIRCUIT ANALYSIS & DESIGN Nelson, Nagle, Irvin, Carrol ISBN 0-13-463894-8 DIGITAL DESIGN Morris Mano Fourth edition ISBN 0-13-198924-3

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE140: Componts and Design Techniques for Digital Systems Tajana Simunic Rosing 1 Outline Today: Memory ROM RAM FIFO Queue Next: Register Transfer Level Design 2 CSE140: Componts and Design Techniques

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422)

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) Memory In computing, memory refers to the computer hardware devices used to store information for immediate use

More information

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs)

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Fall 2002 EECS150 - Lec06-FPGA Page 1 Outline What are FPGAs? Why use FPGAs (a short history

More information

Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices Programmable Logic Devices Fig. (1) General structure of PLDs Programmable Logic Device (PLD): is an integrated circuit with internal logic gates and/or connections that can

More information

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs?

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs? EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Outline What are FPGAs? Why use FPGAs (a short history lesson). FPGA variations Internal logic

More information

Programmable Logic Devices

Programmable Logic Devices Programmable Logic Devices Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid Outline Tecnologies for implementing programmable circuits Simple Programmable Logic

More information

Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective

Outline. Field Programmable Gate Arrays. Programming Technologies Architectures. Programming Interfaces. Historical perspective Outline Field Programmable Gate Arrays Historical perspective Programming Technologies Architectures PALs, PLDs,, and CPLDs FPGAs Programmable logic Interconnect network I/O buffers Specialized cores Programming

More information

ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring Logic and Computer Design Fundamentals.

ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring Logic and Computer Design Fundamentals. University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 6 Part 2 Memories & Programmable Logic Devices Originals by: Charles R.

More information

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Hardware Design Environments Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Outline Welcome to COE 405 Digital System Design Design Domains and Levels of Abstractions Synthesis

More information

CSE140: Components and Design Techniques for Digital Systems. Register Transfer Level (RTL) Design. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Register Transfer Level (RTL) Design. Tajana Simunic Rosing CSE140: Components and Design Techniques for Digital Systems Register Transfer Level (RTL) Design Tajana Simunic Rosing Welcome to CSE 140! Where we are going today: RTL examples, Memory Upcoming: HW6

More information

Review: Timing. EECS Components and Design Techniques for Digital Systems. Lec 13 Storage: Regs, SRAM, ROM. Outline.

Review: Timing. EECS Components and Design Techniques for Digital Systems. Lec 13 Storage: Regs, SRAM, ROM. Outline. Review: Timing EECS 150 - Components and Design Techniques for Digital Systems Lec 13 Storage: Regs,, ROM David Culler Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~culler

More information

Programmable Logic Devices (PLDs)

Programmable Logic Devices (PLDs) Programmable Logic Devices (PLDs) 212: Digital Design I, week 13 PLDs basically store binary information in a volatile/nonvolatile device. Data is specified by designer and physically inserted (Programmed)

More information

INTRODUCTION TO FPGA ARCHITECTURE

INTRODUCTION TO FPGA ARCHITECTURE 3/3/25 INTRODUCTION TO FPGA ARCHITECTURE DIGITAL LOGIC DESIGN (BASIC TECHNIQUES) a b a y 2input Black Box y b Functional Schematic a b y a b y a b y 2 Truth Table (AND) Truth Table (OR) Truth Table (XOR)

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable.

Hardware Design with VHDL PLDs I ECE 443. FPGAs can be configured at least once, many are reprogrammable. PLDs, ASICs and FPGAs FPGA definition: Digital integrated circuit that contains configurable blocks of logic and configurable interconnects between these blocks. Key points: Manufacturer does NOT determine

More information

FPGA Based Digital Design Using Verilog HDL

FPGA Based Digital Design Using Verilog HDL FPGA Based Digital Design Using Course Designed by: IRFAN FAISAL MIR ( Verilog / FPGA Designer ) irfanfaisalmir@yahoo.com * Organized by Electronics Division Integrated Circuits Uses for digital IC technology

More information

Programmable Logic Devices. Programmable Read Only Memory (PROM) Example

Programmable Logic Devices. Programmable Read Only Memory (PROM) Example Programmable Logic Devices Programmable Logic Devices (PLDs) are the integrated circuits. They contain an array of AND gates & another array of OR gates. There are three kinds of PLDs based on the type

More information

PLAs & PALs. Programmable Logic Devices (PLDs) PLAs and PALs

PLAs & PALs. Programmable Logic Devices (PLDs) PLAs and PALs PLAs & PALs Programmable Logic Devices (PLDs) PLAs and PALs PLAs&PALs By the late 1970s, standard logic devices were all the rage, and printed circuit boards were loaded with them. To offer the ultimate

More information

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017 Lecture Objectives Introduction to Computing Chapter The AVR microcontroller and embedded systems using assembly and c Students should be able to: Convert between base and. Explain the difference between

More information

Computer Structure. Unit 2: Memory and programmable devices

Computer Structure. Unit 2: Memory and programmable devices Computer Structure Unit 2: Memory and programmable devices Translated from Francisco Pérez García (fperez at us.es) by Mª Carmen Romero (mcromerot at us.es, Office G1.51, 954554324) Electronic Technology

More information

ECE 3220 Digital Design with VHDL. Course Information. Lecture 1

ECE 3220 Digital Design with VHDL. Course Information. Lecture 1 ECE 3220 Digital Design with VHDL Course Information Lecture 1 Course Information Course #: ECE 3220 Course Name: Digital Design with VHDL Course Instructor: Dr. Vida Vakilian Email: vvakilian@csub.edu

More information

Chapter 5. Register Transfer Level (RTL) Design High Level State Machine (HLSM) Memory Chapters 5

Chapter 5. Register Transfer Level (RTL) Design High Level State Machine (HLSM) Memory Chapters 5 Chapter 5 Register Transfer Level (RTL) Design High Level State Machine (HLSM) Memory Chapters 5 High Level Sequential Behavior FSM can be used to capture sequential behavior using bit inputs HLSM can

More information

PROGRAMMABLE LOGIC DEVICES

PROGRAMMABLE LOGIC DEVICES PROGRAMMABLE LOGIC DEVICES Programmable logic devices (PLDs) are used for designing logic circuits. PLDs can be configured by the user to perform specific functions. The different types of PLDs available

More information

Programmable Logic Devices Introduction CMPE 415. Programmable Logic Devices

Programmable Logic Devices Introduction CMPE 415. Programmable Logic Devices Instructor: Professor Jim Plusquellic Programmable Logic Devices Text: The Design Warrior s Guide to FPGAs, Devices, Tools and Flows, Clive "Max" Maxfield, ISBN: 0-7506-7604-3 Modeling, Synthesis and Rapid

More information

Chapter 10: Design Options of Digital Systems

Chapter 10: Design Options of Digital Systems Chapter 10: Design Options of Digital Systems Prof. Ming-Bo Lin Department of Electronic Engineering National Taiwan University of Science and Technology Digital System Designs and Practices Using Verilog

More information

Chapter 6 Selected Design Topics

Chapter 6 Selected Design Topics Logic and Computer Design Fundamentals Chapter 6 Selected Design Topics Part 4 Programmable Implementation Technologies Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active

More information

Address connections Data connections Selection connections

Address connections Data connections Selection connections Interface (cont..) We have four common types of memory: Read only memory ( ROM ) Flash memory ( EEPROM ) Static Random access memory ( SARAM ) Dynamic Random access memory ( DRAM ). Pin connections common

More information

A search for Compromises!

A search for Compromises! EET 310 Chapter 5 Lesson Notes () PL Categories R.L. Jones 11/6/2011 1 OF 5.5 Programmable Logic array types 5.5.1 The FPL PL s come in many varieties. The FPL type has two Programmable areas; the OR array

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

8051 INTERFACING TO EXTERNAL MEMORY

8051 INTERFACING TO EXTERNAL MEMORY 8051 INTERFACING TO EXTERNAL MEMORY Memory Capacity The number of bits that a semiconductor memory chip can store Called chip capacity It can be in units of Kbits (kilobits), Mbits (megabits), and so on

More information

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I)

COMP3221: Microprocessors and. and Embedded Systems. Overview. Lecture 23: Memory Systems (I) COMP3221: Microprocessors and Embedded Systems Lecture 23: Memory Systems (I) Overview Memory System Hierarchy RAM, ROM, EPROM, EEPROM and FLASH http://www.cse.unsw.edu.au/~cs3221 Lecturer: Hui Wu Session

More information

Digital Design Methodology

Digital Design Methodology Digital Design Methodology Prof. Soo-Ik Chae Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 1-1 Digital Design Methodology (Added) Design Methodology Design Specification

More information

Fig. 6-1 Conventional and Array Logic Symbols for OR Gate

Fig. 6-1 Conventional and Array Logic Symbols for OR Gate 6- (a) Conventional symbol (b) Array logic symbol Fig. 6- Conventional and Array Logic Symbols for OR Gate 2 Prentice Hall, Inc. 6-2 k address lines Read n data input lines emory unit 2 k words n bits

More information

ECE 545 Lecture 12. Datapath vs. Controller. Structure of a Typical Digital System Data Inputs. Required reading. Design of Controllers

ECE 545 Lecture 12. Datapath vs. Controller. Structure of a Typical Digital System Data Inputs. Required reading. Design of Controllers ECE 545 Lecture 12 Design of Controllers Finite State Machines and Algorithmic State Machine (ASM) Charts Required reading P. Chu, using VHDL Chapter 1, Finite State Machine: Principle & Practice Chapter

More information

Allmost all systems contain two main types of memory :

Allmost all systems contain two main types of memory : Memory Interface Allmost all systems contain two main types of memory : read-only memory (ROM) system software and permanent system data random access memory (RAM) or read/write memory application software

More information

UNIT V (PROGRAMMABLE LOGIC DEVICES)

UNIT V (PROGRAMMABLE LOGIC DEVICES) UNIT V (PROGRAMMABLE LOGIC DEVICES) Introduction There are two types of memories that are used in digital systems: Random-access memory(ram): perform both the write and read operations. Read-only memory(rom):

More information

Computer Systems Organization

Computer Systems Organization The IAS (von Neumann) Machine Computer Systems Organization Input Output Equipment Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions

More information

CMPE 415 Programmable Logic Devices FPGA Technology I

CMPE 415 Programmable Logic Devices FPGA Technology I Department of Computer Science and Electrical Engineering CMPE 415 Programmable Logic Devices FPGA Technology I Prof. Ryan Robucci Some slides (blue-frame) developed by Jim Plusquellic Some images credited

More information

Design Methodologies. Full-Custom Design

Design Methodologies. Full-Custom Design Design Methodologies Design styles Full-custom design Standard-cell design Programmable logic Gate arrays and field-programmable gate arrays (FPGAs) Sea of gates System-on-a-chip (embedded cores) Design

More information

Memory & Simple I/O Interfacing

Memory & Simple I/O Interfacing Chapter 10 Memory & Simple I/O Interfacing Expected Outcomes Explain the importance of tri-state devices in microprocessor system Distinguish basic type of semiconductor memory and their applications Relate

More information

machine cycle, the CPU: (a) Fetches an instruction, (b) Decodes the instruction, (c) Executes the instruction, and (d) Stores the result.

machine cycle, the CPU: (a) Fetches an instruction, (b) Decodes the instruction, (c) Executes the instruction, and (d) Stores the result. Central Processing Unit (CPU) A processor is also called the CPU, and it works hand in hand with other circuits known as main memory to carry out processing. The CPU is the "brain" of the computer; it

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 1: Introduction Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Administrative Rules Course components: Lecture: Thursday (fourth slot), 13:15-14:45 (H8) Office

More information

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI CHAPTER 2 ARRAY SUBSYSTEMS [2.4-2.9] MANJARI S. KULKARNI OVERVIEW Array classification Non volatile memory Design and Layout Read-Only Memory (ROM) Pseudo nmos and NAND ROMs Programmable ROMS PROMS, EPROMs,

More information

An Introduction to Programmable Logic

An Introduction to Programmable Logic Outline An Introduction to Programmable Logic 3 November 24 Transistors Logic Gates CPLD Architectures FPGA Architectures Device Considerations Soft Core Processors Design Example Quiz Semiconductors Semiconductor

More information

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types CSCI 4717/5717 Computer Architecture Topic: Internal Memory Details Reading: Stallings, Sections 5.1 & 5.3 Basic Organization Memory Cell Operation Represent two stable/semi-stable states representing

More information

MEMORY AND PROGRAMMABLE LOGIC

MEMORY AND PROGRAMMABLE LOGIC MEMORY AND PROGRAMMABLE LOGIC Memory is a device where we can store and retrieve information It can execute a read and a write Programmable Logic is a device where we can store and retrieve information

More information

I 4 I 3 I 2 I 1 I 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 T-125. ROM Truth Table (Partial) 1997 by Prentice-Hall, Inc.

I 4 I 3 I 2 I 1 I 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 T-125. ROM Truth Table (Partial) 1997 by Prentice-Hall, Inc. 997 by Prentice-Hall, Inc. ano & Kime Upper Saddle River, New Jersey 7458 T-5 Inputs Outputs I 4 I 3 I I I A 7 A 6 A 5 A 4 A 3 A A A...... RO Truth Table (Partial) 997 by Prentice-Hall, Inc. ano & Kime

More information

Read Only Memory ROM

Read Only Memory ROM Read Only Memory ROM A read only memory have address inputs and data outputs With m address lines you can access the 2 m different memory addresses At each address, there is one data word with n bits Usually,

More information

Chapter TEN. Memory and Memory Interfacing

Chapter TEN. Memory and Memory Interfacing Chapter TEN Memory and Memory Interfacing OBJECTIVES this chapter enables the student to: Define the terms capacity, organization, and speed as used in semiconductor memories. Calculate the chip capacity

More information

Chapter 1 Microprocessor architecture ECE 3120 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ mmahmoud@tntech.edu Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware

More information

Review: Chip Design Styles

Review: Chip Design Styles MPT-50 Introduction to omputer Design SFU, Harbour entre, Spring 007 Lecture 9: Feb. 6, 007 Programmable Logic Devices (PLDs) - Read Only Memory (ROM) - Programmable Array Logic (PAL) - Programmable Logic

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

Design and Implementation of an AHB SRAM Memory Controller

Design and Implementation of an AHB SRAM Memory Controller Design and Implementation of an AHB SRAM Memory Controller 1 Module Overview Learn the basics of Computer Memory; Design and implement an AHB SRAM memory controller, which replaces the previous on-chip

More information

Electronic Control systems are also: Members of the Mechatronic Systems. Control System Implementation. Printed Circuit Boards (PCBs) - #1

Electronic Control systems are also: Members of the Mechatronic Systems. Control System Implementation. Printed Circuit Boards (PCBs) - #1 Control System Implementation Hardware implementation Electronic Control systems are also: Members of the Mechatronic Systems Concurrent design (Top-down approach?) Mechanic compatibility Solve the actual

More information

FPGA Implementations

FPGA Implementations FPGA Implementations Smith Text: Chapters 4-8 Online version at: http://www10.edacafe.com/book/asic/asics.php Topic outline Chapter 4 Programmable ASIC technologies Chapter 5 Programmable logic cells Chapter

More information

Verilog Module 1 Introduction and Combinational Logic

Verilog Module 1 Introduction and Combinational Logic Verilog Module 1 Introduction and Combinational Logic Jim Duckworth ECE Department, WPI 1 Module 1 Verilog background 1983: Gateway Design Automation released Verilog HDL Verilog and simulator 1985: Verilog

More information

Atmel s s AT94K Series Field Programmable System Level Integrated Circuit (FPSLIC)

Atmel s s AT94K Series Field Programmable System Level Integrated Circuit (FPSLIC) Atmel s s AT94K Series Field Programmable System Level Integrated Circuit (FPSLIC) Embedded Systems Based Built-In Self-Test and Diagnosis of the FPGA Core Slide 1 Embedded Systems Lecture 1/19/08 System-On-Chip

More information

Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices

Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices 3 Digital Systems Implementation Programmable Logic Devices Basic FPGA Architectures Why Programmable Logic Devices (PLDs)? Low cost, low risk way of implementing digital circuits as application specific

More information

Control System Implementation

Control System Implementation Control System Implementation Hardware implementation Electronic Control systems are also: Members of the Mechatronic Systems Concurrent design (Top-down approach?) Mechanic compatibility Solve the actual

More information

CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

More information