Victory Process. Full Physical 3D Semiconductor Simulator Etching and Deposition Simulation

Size: px
Start display at page:

Download "Victory Process. Full Physical 3D Semiconductor Simulator Etching and Deposition Simulation"

Transcription

1 Victory Process Full Physical 3D Semiconductor Simulator Etching and Deposition Simulation

2 Victory Process 3D Process Simulator Victory Process provides the capability to simulate comprehensive full process flows Etching, Deposition Oxidation, Stress Implantation Diffusion Self explanatory process flow description Open interface for modeling Model parameters and functions can be accessed and modified Open C-function library is used to implement the models Precompiled model library is provided - 2 -

3 Victory Process Level Set Framework The structure is represented as a set of implicit surfaces Hierarchical Cartesian meshes are used to improve the accuracy around critical areas Support for automatic and manual mesh refinement - 3 -

4 Victory Process Level Set Framework Very stable surface propagation algorithms Automatic void detection Avoids the problem of loops creation and correction - 4 -

5 Victory Process Etching / Deposition Modes Geometrical mode Numerical error is limited by the mesh size only Orders of magnitude faster than physical simulation of corresponding process Emulates a limited number of idealized processing steps Does not support shading effects Physical mode Simulates real physical processes Accurately handles complex shading and visibility effects Comprehensive set of models Can be extended via open modeling interface Slower than geometrical mode - 5 -

6 Victory Process Geometrical Mode Comprehensive mask support GDSII format masks lay format masks (MaskViews) Definition of mask polygons inside the processing deck Mask variations via the deck (shrink and expand) Selection of a simulation window - 6

7 Victory Process Geometrical Mode Lithography Calculation of aerial images Pattern transfer of aerial images Aerial Image Mask Layer Transferred Pattern - 7 -

8 Victory Process Geometrical Mode Geometrical etching Idealized directional mask pattern or image transfer Pattern transfer with tilted sidewalls and rounded corners Ideal Pattern Transfer With Tilted Sidewalls and Rounded Corners With Tilted Sidewalls - 8 -

9 Victory Process Geometrical Mode Geometrical etching Idealized wet and dry etching Selective and non-selective mode Wet Etching Initial Structure Dry Etching Wet Selective Etching - 9 -

10 Victory Process Geometrical Mode Geometrical CMP Idealized planarization Selective and non-selective mode Non-Selective Selective

11 Victory Process Geometrical Mode Geometrical deposition Idealized vertical resists or material regions defined by a mask Idealized conformal deposition Deposition of features with tilted sidewalls and rounded corners Planar mode to partially fill holes Conformal Deposition Planar Deposition

12 Victory Process Geometrical Mode - Summary Set of models for fast structure manipulation Based on idealized processing steps Used for Fast structure prototyping Creation of the initial shapes for subsequent physical analysis

13 Reactor-Scale vs. Feature-Scale The numerical engine of Victory Process only operates on the feature scale level Ballistic transport within the simulation domain is assumed Constant particle properties within the simulation domain are assumed Particle-particle interactions within the gas region are ignored Reactor scale conditions are an input to the simulation order of 10 um Wafer Reactor-Scale Feature-scale Simulation domain of Victory Process Substrate

14 Numerical engine : Calculates the amount of reactants reaching the surface from the reactor domain Takes into account secondary effects Re-deposition of removed material Reflection of reactants Calculates the surface propagation Open model library (accessible and extendible) : Provides information on particle fluxes coming from the reactor Specifies the distribution of particle re-emission and refection Determines how the mix of reactants at the surface affects the structure Local (for each surface point) etching or deposition rates are calculated

15 Boundary conditions : The structure is symmetrically and periodically extended in X and Y directions. This is necessary to properly take into account secondary effects. The number of 'reflections' depends on the desired redeposition accuracy Shading effects and visibility are taken into account for all 'reflections' Simulation domain

16 Etching models without particle flux Particle flux is not taken into account No visibility and shading effects are taken into account Selective etching capability Isotropic etching model Anisotropic etching model Selective Isotropic Etching Initial Structure Selective Anisotropic Etching

17 Deposition models without particle flux Particle flux is not taken into account No visibility and shading effects are taken into account Selective deposition capability Conformal deposition model Non-conformal deposition model Initial Structure Non-Conformal Selective Deposition

18 Etching and deposition models with a single primary particle Only the flux of a single particle coming from the reactor is taken into account Full consideration of visibility and shading effects The spacial velocity distribution of the particles coming from the reactor is an input to the model C-function in the open model library The spacial velocity distribution of the particles which are reflected from the surface is an input to the model C-function in the open model library The C-functions can be parametrized with parameters accessible through the input deck You can chose from a predefined set of distribution functions or create your own functions

19 Etching models with a single primary particle where surface reflection is neglected For these models a high sticking efficiency is implicitly assumed Hence surface reflection can be neglected Selective etching capability The etch rate is a linear function of the local particle flux Directional etching model Primary only etching model RIE etching model

20 Directional etching model Is a single primary particle etching model The velocity vector of all particles coming from the reactor is identical and by default perpendicular to the plane wafer surface Initial Structure Selective Directional Etching

21 Primary etching model Is a single primary particle etching model The spacial velocity distribution of the particles can vary from an isotropic distribution (default) to a highly focused distribution Width of the distribution function may be used as a parameter Isotropic Flux Initial Structure Cos 3 Flux Primary Etching Model Compared with Idealized Models

22 RIE etching model Is a single primary particle etching model The two physical particles (ion and neutral) are superimposed in one flux distribution This is possible because secondary fluxes are neglected and identical surface interaction (reaction) properties are assumed for both particles : rate is linearly proportional to the flux Particles are differentiated by the surface material In the model the incoming flux distribution depends on the surface material The RIE model is used for DRIE (Bosch) process simulation (etching cycle)

23 RIE etching model The spacial velocity distribution of the ions is highly focused Von Mises spacial velocity distribution is applied The standard deviation is used as a parameter The spacial velocity distribution of the neutral is isotropic Ratio between the two components (neutrals ions) on the plane surface is used as a parameter

24 RIE etching model Initial structure Etching with RIE Model Profile Sensitivity to RIE Model Parameters (ion focus, ion/neutral ratio)

25 Deposition models with a single primary particle where surface reflection is neglected For these models a high sticking efficiency is implicitly assumed Hence surface reflection can be neglected Selective deposition is possible Directional deposition model Primary only deposition model Ion beam deposition models

26 Directional deposition model Is a single primary particle deposition model The velocity vector of all particles coming from the reactor is identical and by default perpendicular to the plane wafer surface Particle direction may be used as a parameter Initial Structure Selective Directional Deposition

27 Primary deposition model Is a single primary particle deposition model The spacial velocity distribution of the particles can vary from an isotropic distribution (default) to a highly focused distribution Width of the distribution function may be used as a parameter Isotropic Flux Initial Structure Cos 3 Flux Primary Deposition Model Compared with Idealized Models

28 Ion beam deposition models Single primary particles are considered Static and rotating beams Beam can temporarily be switched off during rotation Ideally focused and Gaussian shape Beam with divergence Beam shape accessible via open model library Material specific, incident angle dependent deposition rate Tabulated rate functions accessible via open model library Specific convenient input deck statement

29 Ion beam deposition models Initial Structure Ion Beam Deposition With Single Directional Beam

30 Etching models with a single primary particle where surface reflection is taken into account Selective etching capability Material specific sticking efficiencies The etch rate is a linear function of the local particle flux Re-emission etching model

31 Re-emission etching model Is a single particle etching model Spacial primary velocity distribution of the particles can vary from an isotropic distribution (default) to a highly focused distribution Width of the distribution function may be used as a parameter Spacial velocity distribution of the reflected particles can vary from an isotropic distribution (default) to a highly focused distribution with preferential reflection direction

32 Re-emission etching model Initial Structure Selective Etching with Re-emission Etching Model Effect of Varying Sticking Efficiencies

33 Etching models with a single primary particle where emission of etched material is taken into account Ion Milling Etching Models Static and rotating beams Beam can be temporarily switched off during rotation Ideally focused or Gaussian beam shape Beam with divergence Beam shape accessible via open model library Material specific, incident angle dependent mill rate Tabulated mill rate functions accessible via open model library Mill rate functions derived from processing conditions by means of a semi-empirical model (implemented in open model library) Redeposition capability Multiple material may be redeposited forming an alloy Specific convenient input deck statement

34 Ion milling etching models beam direction Initial Structure Static beam Redeposition of alloy Selective deposition efficiency Material specific mill rate functions After Ion Milling

35 Deposition models with a single primary particle where surface reflection is taken into account Selective deposition capability The deposition rate is a linear function of the local particle flux Reemission deposition model

36 Reemission deposition model Is a single particle deposition model Spacial primary velocity distribution of the particles can vary from an isotropic distribution (default) to a highly focused distribution Width of the distribution function may be used as a parameter Spacial velocity distribution of the reflected particles can vary from an isotropic distribution (default) to a highly focused distribution with preferential reflection direction

37 Reemission Deposition Model Initial Structure Vary Sticking Efficiency Deposition with Re-emission Model

38 Advanced etching models with multiple primary particle Multiple primary particles Some particles may be reflected Material specific sticking efficiencies Material specific surface reaction properties IECE (Ion Enhanced Chemical Etching) model

39 Ion enhanced chemical etching model Two particle model where ions and neutral coming from the reactor are taken into account Neutrals Chemically active, uncharged particles Ions Accelerated charged particles Neutrals are chemically reacting at the surface with bulk atoms Reaction by-products are covering dangling bonds at the surface reduces the effective chemical conversion rate Reaction by-products are removed from the surface by desorption and ion sputtering

40 Ion enhanced chemical etching model e.g Silicon Etching in SFx Plasma F Ions SiFx removed by ions SiFx removed by desorption 1. The neutrals (F) chemically attach themselves to Si surface (dangling bonds) 2. Newly formed SiFx molecules cover the surface preventing further reaction 3. SiFx molecules are removed either by Natural desorption Ion sputtering (when present) This decreases the surface coverage Once residuals leave the surface, Si bonds can 'catch' F radicals again from ambient Ion flux increases the effective etch rate The model is fully implemented in the open model library

41 Ion enhanced chemical etching model Ions decrease the surface coverage at the bottom of the trench Trench aspect ratio increases with ion energy

42 Victory Process Summary Victory Process is a powerful tool for simulating 3D structure transformations by etching and deposition processes Command deck syntax based on technological processes Very robust numerical algorithms for geometrical transformations Ability for rapid structure prototyping using geometrical mode Numerical engine takes into account secondary effects Redeposition Re-emission Open model library for user-defined models Supplied with a range of predefined models Suitable for applications like Planar MOS, FinFET, Power devices, MEMS, Hard coating, Mass storage devices

Victory Advanced Structure Editor. 3D Process Simulator for Large Structures

Victory Advanced Structure Editor. 3D Process Simulator for Large Structures Victory Advanced Structure Editor 3D Process Simulator for Large Structures Applications Victory Advanced Structure Editor is designed for engineers who need to create layout driven 3D process based structures

More information

Taurus-Process. Multidimensional Process Simulation SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

Taurus-Process. Multidimensional Process Simulation SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD Aurora DFM WorkBench Davinci Medici Raphael Raphael-NES Silicon Early Access TSUPREM-4 Taurus-Device Taurus-Lithography

More information

Optimization of Photolithography Process Using Simulation

Optimization of Photolithography Process Using Simulation Optimization of Photolithography Process Using Simulation Introduction The progress in semiconductor technology towards even smaller device geometries demands continuous refinements of photolithography

More information

CHAPTER 3 SIMULATION TOOLS AND

CHAPTER 3 SIMULATION TOOLS AND CHAPTER 3 SIMULATION TOOLS AND Simulation tools used in this simulation project come mainly from Integrated Systems Engineering (ISE) and SYNOPSYS and are employed in different areas of study in the simulation

More information

Deposition and Etching

Deposition and Etching CHAPTER 3 Topography Effects in Deposition and Etching Fundamental physical mechanisms in deposition and etching generate both desired and undesired topographic features. The goal of this chapter is to

More information

3D Process Modeling - A Novel and Efficient Tool for MEMS Foundry Design Support

3D Process Modeling - A Novel and Efficient Tool for MEMS Foundry Design Support 3D Process Modeling - A Novel and Efficient Tool for MEMS Foundry Design Support Gisbert Hölzer, Roy Knechtel X-FAB Semiconductor Foundries, AG Stephen Breit, Gerold Schropfer Coventor, Inc. Overview A

More information

Schematic creation of MOS field effect transistor.

Schematic creation of MOS field effect transistor. Schematic creation of MOS field effect transistor. Gate electrode Drain electrode Source electrode Gate length Gate oxide A good reference is http://jas2.eng.buffalo.edu/applets/education/fab/nmos/nmos.html

More information

CMOS TECHNOLOGY- Chapter 2 in the Text

CMOS TECHNOLOGY- Chapter 2 in the Text CMOS TECHOLOGY- Chapter 2 in the Text CMOS Technology- Chapter 2 We will describe a modern CMOS process flow. In the simplest CMOS technologies, we need to realize simply MOS and MOS transistors for circuits

More information

CLEAN ROOM TECHNOLOGY

CLEAN ROOM TECHNOLOGY CLEAN ROOM TECHNOLOGY Justin Mathew Applied Electronics and Instrumentation College Of Engineering, Trivandrum April 28, 2015 Justin Mathew (CET) Clean Room Technology April 28, 2015 1 / 18 Overview 1

More information

MEMS Pro v5.1 Layout Tutorial Physical Design Mask complexity

MEMS Pro v5.1 Layout Tutorial Physical Design Mask complexity MEMS Pro v5.1 Layout Tutorial 1 Physical Design Mask complexity MEMS masks are complex with curvilinear geometries Verification of manufacturing design rules is important Automatic generation of mask layout

More information

Defect Repair for EUVL Mask Blanks

Defect Repair for EUVL Mask Blanks Defect Repair for EUVL Mask Blanks A.Barty, S.Hau-Riege, P.B.Mirkarimi, D.G.Stearns, H.Chapman, D.Sweeney Lawrence Livermore National Laboratory M.Clift Sandia National Laboratory E.Gullikson, M.Yi Lawrence

More information

2.76 / Lecture 5: Large/micro scale

2.76 / Lecture 5: Large/micro scale 2.76 / 2.760 Lecture 5: Large/micro scale Constraints Micro-fabrication Micro-physics scaling Assignment Nano Micro Meso Macro Nano Nano Nano Micro Nano Meso Nano Macro Micro Nano Micro Micro Micro Meso

More information

3D Detector Simulation with Synopsys TCAD

3D Detector Simulation with Synopsys TCAD Journée de la simulation 17/6/2013 3D Detector Simulation with Synopsys TCAD V. Gkougkousis1,2, A. Lounis 1,2, N. Dinu 1, A. Bassalat 1,3 1. Laboratoire de L'accélérateur Linéaire 2. Université Paris-SUD

More information

MicraGEM-Si A flexible process platform for complex MEMS devices

MicraGEM-Si A flexible process platform for complex MEMS devices MicraGEM-Si A flexible process platform for complex MEMS devices By Dean Spicer, Jared Crawford, Collin Twanow, and Nick Wakefield Introduction MicraGEM-Si is a process platform for MEMS prototyping and

More information

반도체공정 - 김원정. Lattice constant (Å)

반도체공정 - 김원정. Lattice constant (Å) 반도체물리 - 반도체공정 - 김원정 Semiconductors Lattice constant (Å) 1 PN junction Transistor 2 Integrated circuit Integrated circuit originally referred to a miniaturized electronic circuit consisting of semiconductor

More information

Klaus Dehmelt EIC Detector R&D Weekly Meeting November 28, 2011 GEM SIMULATION FRAMEWORK

Klaus Dehmelt EIC Detector R&D Weekly Meeting November 28, 2011 GEM SIMULATION FRAMEWORK Klaus Dehmelt EIC Detector R&D Weekly Meeting November 28, 2011 GEM SIMULATION FRAMEWORK Overview GEM Simulation Framework in the context of Simulation Studies for a High Resolution Time Projection Chamber

More information

SILVACO International 0

SILVACO International 0 TCAD WORKSHOP USING SILVACO TCAD TOOLS Volume I This workshop will introduce you to process and device simulation using the Silvaco TCAD tools. It is assumed that you are familiar with basic concepts of

More information

2/3D Simulation of High Voltage MOSFET. Copyright 2008 Crosslight Software Inc.

2/3D Simulation of High Voltage MOSFET. Copyright 2008 Crosslight Software Inc. 2/3D Simulation of High Voltage MOSFET Copyright 2008 Crosslight Software Inc. www.crosslight.com 1 2 Contents Overview of CSuprem/Apsys models Process simulation Breakdown trend of a 300V LDMOS 3D Simulation

More information

Photoresist with Ultrasonic Atomization Allows for High-Aspect-Ratio Photolithography under Atmospheric Conditions

Photoresist with Ultrasonic Atomization Allows for High-Aspect-Ratio Photolithography under Atmospheric Conditions Photoresist with Ultrasonic Atomization Allows for High-Aspect-Ratio Photolithography under Atmospheric Conditions 1 CONTRIBUTING AUTHORS Robb Engle, Vice President of Engineering, Sono-Tek Corporation

More information

Search Results. Search SPIN Web Database What is SPIN? Journal Coverage. Article Collection: View Collection Help (Click on the

Search Results. Search SPIN Web Database What is SPIN? Journal Coverage. Article Collection: View Collection Help (Click on the 1 of 5 10.07.2003 03:36 Advertising Information Search SPIN Web Database What is SPIN? Journal Coverage Search Results [New Search] Article Collection: View Collection Help (Click on the to add an article.)

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

Line Pattern Collapse

Line Pattern Collapse Line Pattern Collapse Modeling and Prediction in Semiconductor Processing Derek Bassett a, Michael Carcasi a, Wallace Printz a, Shinichiro Kawakami b, Yuichiro Miyata c a Tokyo Electron America, 2400 Grove

More information

Influence of Geometrical Configuration of Cantilever Structure on Sensitivity of MEMS Resonant Sensors

Influence of Geometrical Configuration of Cantilever Structure on Sensitivity of MEMS Resonant Sensors Influence of Geometrical Configuration of Cantilever Structure on Sensitivity of MEMS Resonant Sensors Georgeta Ionascu 1, Adriana Sandu 2, Elena Manea 3, Lucian Bogatu 4 1 Professor, Mechatronics & Precision

More information

Optimizing Lift-Out. Cheryl Hartfield. Senior Applications Specialist, Omniprobe

Optimizing Lift-Out. Cheryl Hartfield. Senior Applications Specialist, Omniprobe Optimizing Lift-Out Cheryl Hartfield Senior Applications Specialist, Omniprobe hartfield@omniprobe.com Lift-out Solutions Lift-out involves multiple aspects How you cut: Total Release Milling* How you

More information

Reflectivity metrics for optimization of anti-reflection coatings on wafers with topography

Reflectivity metrics for optimization of anti-reflection coatings on wafers with topography Reflectivity metrics for optimization of anti-reflection coatings on wafers with topography Mark D. Smith, Trey Graves, John Biafore, and Stewart Robertson KLA-Tencor Corp, 8834 N. Capital of Texas Hwy,

More information

Modeling Custom Surface Roughness with LucidShape 2D Scatter Curve BSDF Material

Modeling Custom Surface Roughness with LucidShape 2D Scatter Curve BSDF Material WHITE PAPER Modeling Custom Surface Roughness with LucidShape 2D Scatter Curve BSDF Material Author Andreas Bielawny, Ph.D. CAE Synopsys, Inc. Abstract LucidShape accurately simulates how light interacts

More information

Applications* X3D Moving Grid Methods for Semiconductor INTRODUCTION ANDREW KUPRAT *, DAVID CARTWRIGHT, J. TINKA GAMMEL,

Applications* X3D Moving Grid Methods for Semiconductor INTRODUCTION ANDREW KUPRAT *, DAVID CARTWRIGHT, J. TINKA GAMMEL, VLSI DESIGN 1998, Vol. 8, Nos. (1-4), pp. 117-121 Reprints available directly from the publisher Photocopying permitted by license only (C) 1998 OPA (Overseas Publishers Association) N.V. Published by

More information

Level set modeling of the orientation dependence of solid phase epitaxial regrowth

Level set modeling of the orientation dependence of solid phase epitaxial regrowth Level set modeling of the orientation dependence of solid phase epitaxial regrowth Saurabh Morarka a Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611-6200

More information

ksa MOS Ultra-Scan Performance Test Data

ksa MOS Ultra-Scan Performance Test Data ksa MOS Ultra-Scan Performance Test Data Introduction: ksa MOS Ultra Scan 200mm Patterned Silicon Wafers The ksa MOS Ultra Scan is a flexible, highresolution scanning curvature and tilt-measurement system.

More information

Speed, Accuracy and Automation in MEMS Simulation and Development C. J. Welham, Coventor, Paris

Speed, Accuracy and Automation in MEMS Simulation and Development C. J. Welham, Coventor, Paris Speed, Accuracy and Automation in MEMS Simulation and Development C. J. Welham, Coventor, Paris MEMS Design & Simulation Challenges Overview Simulation Challenges and Approaches Validation Case Studies

More information

On-Chip Variation (OCV) Kunal Ghosh

On-Chip Variation (OCV) Kunal Ghosh On-Chip Variation (OCV) Kunal Ghosh Ever thought what s an interviewer s favorite questions to rip you off all my previous ebooks. And On-Chip Variation (OCV) is one of them, specifically for Static Timing

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

Appendix XI. Appendix XI

Appendix XI. Appendix XI Appendix XI The SPT Program The SPT FORTRAN program calculates the sidewall profile expected when sputtering amorphous silicon with Ar + ions. It requires access to the results from programs IED (or NED)

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

HIGH DENSITY PLASMA DEPOSITION MODELING USING LEVEL SET METHODS

HIGH DENSITY PLASMA DEPOSITION MODELING USING LEVEL SET METHODS HIGH DENSITY PLASMA DEPOSITION MODELING USING LEVEL SET METHODS D. Adalsteinsson J.A. Sethian Dept. of Mathematics University of California, Berkeley 94720 and Juan C. Rey Technology Modeling Associates

More information

Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers

Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers Scanning Acoustic Microscopy For Metrology of 3D Interconnect Bonded Wafers Jim McKeon, Ph.D. - Sonix, Director of Technology Sriram Gopalan, Ph.D. - Sonix, Technology Engineer 8700 Morrissette Drive 8700

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Porous Reactor with Injection Needle

Porous Reactor with Injection Needle Porous Reactor with Injection Needle Introduction This model treats the flow field and species distribution in an experimental reactor for studies of heterogeneous catalysis. The model exemplifies the

More information

What s new in MEMS Pro V8.0 Highlights

What s new in MEMS Pro V8.0 Highlights Click to edit Master title style 1 What s new in MEMS Pro V8.0 Highlights Click Contents to edit Master title style New platform support File I/O enhancements 3D Modeling enhancements Layout enhancements

More information

CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

More information

SAMPLE TUTORIAL. Introduction. Running Sample on UNIX systems. Barry Paul Linder, Spring 1996.

SAMPLE TUTORIAL. Introduction. Running Sample on UNIX systems. Barry Paul Linder, Spring 1996. SAMPLE TUTORIAL Barry Paul Linder, Spring 1996. Introduction SAMPLE is a simulation package that mimics a real processing laboratory. The machines SAMPLE simulates include an Exposure machine, a Developer

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

EE582 Physical Design Automation of VLSI Circuits and Systems

EE582 Physical Design Automation of VLSI Circuits and Systems EE582 Prof. Dae Hyun Kim School of Electrical Engineering and Computer Science Washington State University Preliminaries Table of Contents Semiconductor manufacturing Problems to solve Algorithm complexity

More information

Article 3D Topography Mask Aligner

Article 3D Topography Mask Aligner Article 3D Topography Mask Aligner Lithography Simulation Ulrich Hofmann, Nezih Ünal GenISys GmbH 82024 Taufkirchen Germany Ralph Zoberbier SUSS MicroTec Lithography GmbH 85748 Garching Germany Ton Nellissen

More information

Bringing Patterned Media to Production with Value Added Metrology

Bringing Patterned Media to Production with Value Added Metrology Bringing Patterned Media to Production with Value Added Dean Dawson, Andrew S. Lopez Diskcon /IDEMA Conference, Session 6 September 24th, 2009 Overview Introduction AFM Scan Modes New Nanotrench Pattern

More information

FEI Helios NanoLab 600 TEM specimen prep recipe Nicholas G. Rudawski (352) (office) (805) (cell) Last updated: 07/16/18

FEI Helios NanoLab 600 TEM specimen prep recipe Nicholas G. Rudawski (352) (office) (805) (cell) Last updated: 07/16/18 FEI Helios NanoLab 600 TEM specimen prep recipe Nicholas G. Rudawski ngr@ufl.edu (352) 392 3077 (office) (805) 252-4916 (cell) Last updated: 07/16/18 This recipe is essentially a composite of several established

More information

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity Contents 1 Metal Forming and Machining Processes... 1 1.1 Introduction.. 1 1.2 Metal Forming...... 2 1.2.1 Bulk Metal Forming.... 2 1.2.2 Sheet Metal Forming Processes... 17 1.3 Machining.. 23 1.3.1 Turning......

More information

IntelliEtch. Atomistic Etch Simulator

IntelliEtch. Atomistic Etch Simulator IntelliEtch Atomistic Etch Simulator IntelliEtch Validated simulator Detailed experimental backing Ab initio effects First principle based etcher, includes effects of steric interaction, backbond weakening,

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

How to Use the Luminit LSD Scatter Model

How to Use the Luminit LSD Scatter Model How to Use the Luminit LSD Scatter Model Summary: This article describes the characteristics and use of Luminit s LSD scatter model in OpticStudio. The scatter model presented here is the idealized scatter

More information

OPTICAL TECHNOLOGIES FOR TSV INSPECTION Arun A. Aiyer, Frontier Semiconductor 2127 Ringwood Ave, San Jose, California 95131

OPTICAL TECHNOLOGIES FOR TSV INSPECTION Arun A. Aiyer, Frontier Semiconductor 2127 Ringwood Ave, San Jose, California 95131 OPTICAL TECHNOLOGIES FOR TSV INSPECTION Arun A. Aiyer, Frontier Semiconductor 2127 Ringwood Ave, San Jose, California 95131 ABSTRACT: In this paper, Frontier Semiconductor will introduce a new technology

More information

Materials for and performance of multilayer lithography schemes

Materials for and performance of multilayer lithography schemes Materials for and performance of multilayer lithography schemes Marc Weimer, Yubao Wang, Charles J. Neef, James Claypool, Kevin Edwards, Zhimin Zhu Brewer Science, Inc., 2401 Brewer Dr., Rolla, MO, USA

More information

Manufacturing Challenges and their Implications on Design

Manufacturing Challenges and their Implications on Design Manufacturing Challenges and their Implications on Design Phiroze Parakh, Ph.D 45nm/32nm Design Challenges MANUFACTURING VARIATIONS PROCESS & DESIGN VARIATIONS LARGE DESIGNS LOW POWER The Evolution of

More information

Los Alamos National Laboratory

Los Alamos National Laboratory Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36 TITLE: AUTHOR(S). X3D MOVING GRID METHODS FOR SEMICONDUCTOR

More information

APPENDIX I OVERVIEW OF TCAD SIMULATION TOOL

APPENDIX I OVERVIEW OF TCAD SIMULATION TOOL 97 APPENDIX I OVERVIEW OF TCAD SIMULATION TOOL INTRODUCTION TCAD (Technology Computer Aided Design) is a technology that solves the equations representing the manufacturing process of Large Scale Integration

More information

21 rue La Nouë Bras de Fer Nantes - France Phone : +33 (0) website :

21 rue La Nouë Bras de Fer Nantes - France Phone : +33 (0) website : 21 rue La Nouë Bras de Fer - 44200 Nantes - France Phone : +33 (0) 240 180 916 - email : info@systemplus.fr - website : www.systemplus.fr August 2012- Version 1 Written by: Maher SAHMIMI DISCLAIMER : System

More information

Simulating Accurate 3D Geometries for Interconnect Parasitic Extraction Using CLEVER

Simulating Accurate 3D Geometries for Interconnect Parasitic Extraction Using CLEVER Connecting TCAD To Tapeout A Journal for Process and Device Engineers Simulating Accurate 3D Geometries for Interconnect Parasitic Extraction Using CLEVER Introduction CLEVER is designed to model interconnect

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Lecture 4: Reflection Models

Lecture 4: Reflection Models Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physics-based models

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Visible-frequency dielectric metasurfaces for multi-wavelength achromatic and highly-dispersive holograms

Visible-frequency dielectric metasurfaces for multi-wavelength achromatic and highly-dispersive holograms Supporting Materials Visible-frequency dielectric metasurfaces for multi-wavelength achromatic and highly-dispersive holograms Bo Wang,, Fengliang Dong,, Qi-Tong Li, Dong Yang, Chengwei Sun, Jianjun Chen,,

More information

Behavioral modeling of crosswafer chip-to-chip process induced non-uniformity. W. CLARK COVENTOR, Villebon sur Yvette, France

Behavioral modeling of crosswafer chip-to-chip process induced non-uniformity. W. CLARK COVENTOR, Villebon sur Yvette, France Behavioral modeling of crosswafer chip-to-chip process induced non-uniformity W. CLARK COVENTOR, Villebon sur Yvette, France Variability Concerns Variability is a major concern of any semiconductor process

More information

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia Lecture 4a CMOS Fabrication, Layout and Simulation R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca 1 Fabrication Fabrication is the process used to create devices and wires. Transistors

More information

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source

Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

The interfacing software named PSG Slice has been developed using the. computer programming language C. Since, the software has a mouse driven

The interfacing software named PSG Slice has been developed using the. computer programming language C. Since, the software has a mouse driven CHAPTER 6 DEVELOPMENT OF SLICING MODULE FOR RAPID PROTOTYPING MACHINE 6.1 INTRODUCTION The interfacing software named PSG Slice has been developed using the computer programming language C. Since, the

More information

Analysis Steps 1. Start Abaqus and choose to create a new model database

Analysis Steps 1. Start Abaqus and choose to create a new model database Source: Online tutorials for ABAQUS Problem Description The two dimensional bridge structure, which consists of steel T sections (b=0.25, h=0.25, I=0.125, t f =t w =0.05), is simply supported at its lower

More information

Introduction to Light and Polarized Light

Introduction to Light and Polarized Light Aspects of Light Introduction to Light and Polarized Light Amplitude (height of wave) corresponds to the intensity (brightness) of light Wavelength corresponds to the energy of light In the visible spectrum

More information

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component

Topic 9: Lighting & Reflection models. Lighting & reflection The Phong reflection model diffuse component ambient component specular component Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

ULTRASONIC INSPECT ABILITY MODELS FOR JET ENGINE FORGINGS

ULTRASONIC INSPECT ABILITY MODELS FOR JET ENGINE FORGINGS ULTRASONIC INSPECT ABILITY MODELS FOR JET ENGINE FORGINGS INTRODUCTION T. A. Gray Center for Nondestructive Evaluation Iowa State University Ames, IA 50011 Ultrasonic inspections of axially symmetric forgings,

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization Chapter 33 - Light Properties of Light 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization MFMcGraw-PHY 2426 Chap33-Light - Revised: 6-24-2012 2 Electromagnetic

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

IB-2 Polarization Practice

IB-2 Polarization Practice Name: 1. Plane-polarized light is incident normally on a polarizer which is able to rotate in the plane perpendicular to the light as shown below. In diagram 1, the intensity of the incident light is 8

More information

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress Detroit, MI 23 April 2012 PDF-based simulations of turbulent spray combustion in a constant-volume chamber under

More information

CHAPTER 4 DESIGN AND MODELING OF CANTILEVER BASED ELECTROSTATICALLY ACTUATED MICROGRIPPER WITH IMPROVED PERFORMANCE

CHAPTER 4 DESIGN AND MODELING OF CANTILEVER BASED ELECTROSTATICALLY ACTUATED MICROGRIPPER WITH IMPROVED PERFORMANCE 92 CHAPTER 4 DESIGN AND MODELING OF CANTILEVER BASED ELECTROSTATICALLY ACTUATED MICROGRIPPER WITH IMPROVED PERFORMANCE 4.1 INTRODUCTION Bio-manipulation techniques and tools including optical tweezers,

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

3D Field Computation and Ray-tracing

3D Field Computation and Ray-tracing 3D 3D Family 3D Field Computation and Ray-tracing 3D computes the properties of electrostatic and magnetic electron optical systems, using a fully 3D potential computation and direct electron ray-tracing

More information

Installation. Overview. Quick start

Installation. Overview. Quick start Installation The RSD2013 software is compiled to run on a Windows platform. It mainly consist out of two executables: RSD2013_GUI.exe and RSD2013.exe. The first executable is the graphical user interface

More information

Taurus-Device. Multidimensional Device Simulation SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD

Taurus-Device. Multidimensional Device Simulation SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD SYSTEMS PRODUCTS LOGICAL PRODUCTS PHYSICAL IMPLEMENTATION SIMULATION AND ANALYSIS LIBRARIES TCAD Aurora DFM WorkBench Davinci Medici Raphael Raphael-NES Silicon Early Access TSUPREM-4 Taurus-Device Taurus-Lithography

More information

IPC-D-859. Design Standard for Thick Film Multilayer Hybrid Circuits ANSI/IPC-D-859. The Institute for. Interconnecting

IPC-D-859. Design Standard for Thick Film Multilayer Hybrid Circuits ANSI/IPC-D-859. The Institute for. Interconnecting The Institute for Interconnecting and Packaging Electronic Circuits Design Standard for Thick Film Multilayer Hybrid Circuits ANSI/ Original Publication December 1989 A standard developed by the Institute

More information

GETTING MORE FROM EVERY MEMBER OF THE LLS FAMILY

GETTING MORE FROM EVERY MEMBER OF THE LLS FAMILY LLS RETROFIT Adding Process Capabilities Increasing Process Reliability Increasing System Throughput Extending System Lifetime Implementing Custom Solutions GETTING MORE FROM EVERY MEMBER OF THE LLS FAMILY

More information

RESTRICTED WORLD TRADE G/IT/SPEC/8/Rev.1 23 February 1998 ORGANIZATION PROPOSED ADDITIONS TO PRODUCT COVERAGE. Submission by Australia.

RESTRICTED WORLD TRADE G/IT/SPEC/8/Rev.1 23 February 1998 ORGANIZATION PROPOSED ADDITIONS TO PRODUCT COVERAGE. Submission by Australia. RESTRICTED WORLD TRADE G/IT/SPEC/8/Rev.1 23 February 1998 ORGANIZATION (98-0664) Committee of Participants on the Expansion of Trade in Information Technology Products Original: English PROPOSED ADDITIONS

More information

A 10-minute introduction to. Molfow+ A test-particle Monte Carlo simulator for UHV systems

A 10-minute introduction to. Molfow+ A test-particle Monte Carlo simulator for UHV systems A 10-minute introduction to Molfow+ A test-particle Monte Carlo simulator for UHV systems 1 The basics First, let s learn the Molflow terminology and the interface in a few slides. Or, if you prefer learning

More information

Modeling Flow Through Porous Media

Modeling Flow Through Porous Media Tutorial 7. Modeling Flow Through Porous Media Introduction Many industrial applications involve the modeling of flow through porous media, such as filters, catalyst beds, and packing. This tutorial illustrates

More information

Abaqus/CAE Axisymmetric Tutorial (Version 2016)

Abaqus/CAE Axisymmetric Tutorial (Version 2016) Abaqus/CAE Axisymmetric Tutorial (Version 2016) Problem Description A round bar with tapered diameter has a total load of 1000 N applied to its top face. The bottom of the bar is completely fixed. Determine

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Solved with COMSOL Multiphysics 4.2

Solved with COMSOL Multiphysics 4.2 Laminar Static Mixer Introduction In static mixers, also called motionless or in-line mixers, a fluid is pumped through a pipe containing stationary blades. This mixing technique is particularly well suited

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

The Laser Model in FLASH

The Laser Model in FLASH The Laser Model in FLASH Milad Fatenejad RAL Tutorial May 2012 1 of 31 Summary FLASH contains code for modeling laser energy deposition and radiation diffusion Laser ray tracing Radiation diffusion Example

More information

Physical Optics. You can observe a lot just by watching. Yogi Berra ( )

Physical Optics. You can observe a lot just by watching. Yogi Berra ( ) Physical Optics You can observe a lot just by watching. Yogi Berra (1925-2015) OBJECTIVES To observe some interference and diffraction phenomena with visible light. THEORY In a previous experiment you

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

FDM Lightweight Structures DESIGN GUIDE

FDM Lightweight Structures DESIGN GUIDE FDM Lightweight Structures THE 3D PRINTING SOLUTIONS COMPANY FDM Lightweight Structures Many aerospace and automotive applications require parts with a very high stiffness-to-weight ratio. Because of the

More information

0.35um design verifications

0.35um design verifications 0.35um design verifications Path end segment check (END) First check is the end segment check, This error is related to the routing metals when routing is done with a path. The finish of this path can

More information

Memjet ML Printhead from the RapidX1 Color Label Printer

Memjet ML Printhead from the RapidX1 Color Label Printer ML210700 Printhead from the RapidX1 Color Label Printer MEMS Process Review 3685 Richmond Road, Suite 500, Ottawa, ON K2H 5B7 Canada Tel: 613-829-0414 www.chipworks.com MEMS Process Review Some of the

More information

SOLIDWORKS Simulation Avoiding Singularities

SOLIDWORKS Simulation Avoiding Singularities SOLIDWORKS Simulation Avoiding Singularities What is a Singularity? A singularity is a function s divergence into infinity. SOLIDWORKS Simulation occasionally produces stress (or heat flux) singularities.

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Rapid advances in integrated circuit technology have made it possible to fabricate digital circuits with large number of devices on a single chip. The advantages of integrated circuits

More information