0.35um design verifications

Size: px
Start display at page:

Download "0.35um design verifications"

Transcription

1 0.35um design verifications Path end segment check (END) First check is the end segment check, This error is related to the routing metals when routing is done with a path. The finish of this path can case an extra angle to occur. This can cause an error to occur during mask making so it must be corrected. endsegment/endsegment.rpt This file contains the coordinates of the errors. Example In the endsegment.rpt file you can find the coordinates like the following: Path endsegment length 0.05 at location (10.5,30.1) in cell DIV on layer 35 is less than 1/2 of path width 0.7. This means the error is located in cell DIV at coordinates x=10.5 y=30.1 The error is located on the igs layer 35 (in C35 this is metal1) Solution To correct this error, here are some possible solutions: If using Cadence, stream out the design File / export / stream In the options dialog, set the option Convert Paths to Polygons Previous step can also be done manually by selecting the path Edit / Other / Convert To Polygon Using Cadence 6 OA, this menu can be found: Edit / Advanced / Convert to Polygon

2 ANTENNA RULE CHECK (ANT) Antenna errors can cause a charge to blow up your gate during ion-etching. The checks are done with Calibre and we can accept an antenna ratio till 300. During ion-etching of the metal routing charges are build up which can be a hazard for associated GATE oxide(plasma damage). ant/ant_{topcell}_hier_shortreport.rpt This is a text based file with an overview of the errors in your design. ant/ant_{topcell}_hier_calibre_results.gds This is a gdsii type file which can be streamed into Cadence giving a visual presentation of the error in the design (and the rpt file). Every error in the rpt file has a cell in the gds file with the same name. Please notice that these error polygons which show the error are drawn on the layer marker[err] which is igs layer 0 datatype 0. Example RULECHECK ANT_MET2_GATE_AR2... TOTAL Result Count = 187 (351) AR2 Maximum ratio of floating MET2 edge to connected GATE area > 400 This error shows a metal 2 antenna ratio errors. Solution To prevent possible plasma damage of the gate there are 2 solutions: place a diffusion diode close to the gate which creates a path for the charge to the substrate, this must be placed as close a possible to the gate without violating the DRC. This diode must be placed reversed biased. * Cadence 5: Use diode library: TECH_C35B4 cell: ND_C and place these as near the gate on the related metal routing * Cadence 6 OA: within cadence OA, it's, Create --> Via and then select ND_C * You can also draw the diode yourself using the following layers: MET1 CONT DIFF NPLUS route to topmetal4 (and back down if preferred) as close as possible to the gate, this will create a path for the charge to a S/D diffusion at the other end of the metal routing. Note, antenna violation rules can be found in the CMOS C35 Design rules manual ENG - 183, Rev.: 9.0, 0.35UM CMOS C35 Design Rules

3 DESIGN FOR MANUFACTURING CHECK (DFM) The DFM rules are yield related rules and can have an influence on the yield and the lifetime of your devices. So these are mostly important when going into production. For mpw these are not so critical, but as designer you are always able to make your design more robust when respecting these rules. dfm/dfm_{topcell}_hier_shortreport.rpt This is a text based summery file with an overview of the violations in your design. dfm/dfm_{topcel} _hier_calibre_results.gds This is a gdsii type file which can be streamed into Cadence giving a visual presentation of the error in the design (and the rpt file). Every error in the rpt file has a cell in the gds file with the same name. Please notice that these error polygons which show the error are drawn on the layer marker[err] which is igs layer 0 datatype 0. Exception DFM0009 RATIO_GATE_VIA_INSUFFICIENT_DFMC0009 DFM0012 RATIO_GATE_VIA2_INSUFFICIENT_DFMC0012 DFM0015 RATIO_GATE_VIA3_INSUFFICIENT_DFMC0015 DFM0008 : more vias can be placed here on m1/m2 connection DFM0011 : more via2 can be placed here on m2/m3 connection DFM0014 : more via3 can be placed here on m4/m3 connection This rule reflects to an electrochemical occurrence which results that a single via could get destroyed during processing and therefore we advise designers to resolve these problem by always placing multiple via s when possible. DESIGN RULE CHECK (DRC) ASSURA The Design Rule Check is the most important check. Here the design is checked according to de rules given by the foundry. Besides showing the crucial errors, also a lot of warnings and info is shown in this report. Some of them can be ignored, others must be corrected. assura/assura_topcell.rpt This is a text based summery file with an overview of the violations in your design. drc/drc_topcell.err This is a text type file containing the coordinates of all violations present.

4 DESIGN RULE CHECK (DRC) - CALIBRE The Design Rule Check is the most important check. Here the design is checked according to de rules given by the foundry. Besides showing the crucial errors, also a lot of warnings and info is shown in this report. Some of them can be ignored, others must be corrected. drc/drc_{topcell}_hier_shortreport.rpt This is a text based file with an overview of the errors in your design. drc/drc_{topcel} _hier_calibre_results.gds This is a gdsii type file which can be streamed into Cadence giving a visual presentation of the error in the design (and the rpt file). Every error in the rpt file has a cell in the gds file with the same name. Please notice that these error polygons which show the error are drawn on the layer marker[err] which is igs layer 0 datatype 0. Note Not all errors are considered crucial for the project. The responsible for checking these errors is placed on the customer. We ll give you our remarks but in general the customer can decide to wave or solve the errors. Here are some standard remarks on some errors which can be ignored. All errors in a logo, most likely metal spacing errors can be ignored as they ll not influence the working of your design. All errors related to spacing of the logo and your logic, ex a transistor near the logo can be crucial and must be corrected. All errors located in standards AMS devices (core or I/O) can be ignored. To make these devices as dense as possible, the DRC is sometimes violated but all standard cell s available are silicon proven and fully characterized as is. It is not allowed to make any adjustments or error corrections to these standard cells. Errors related to slotting and density: The fill pattern scripts where created to have a certain percentage and even distribution of metal/poly on the wafer. This because these have an influence on the yield(=number of good dies) on a wafer. Now, on mpw we have several different designs which are placed together and a minimum of dies is guaranteed. So, yield is of no importance. Therefore you can ignore the rules on mpw. The percentage and the distribution of metal/poly is only relevant with full wafer runs, cause here a big fallout could mean that extra wafers have to be started to get the required number of dies. So, these rules are not mandatory with the exception when you would go to an engineering run (production) in a later state, where yield can become important. When generating the fillers, you can draw NOFILL in area s on which you don t want the fillers to be generated. Errors related to MTOP spacing. This is a stress release and CMP rule which can influence the wafer yield which is identical to the slotting and density errors above ignored on MPW. Errors missing layers FIMP, NLDD. These layers are generated layers and the layer generation ll be done in the fab. Also there are some errors which must be corrected. All metal spacing and width errors. Exception for logo s (mentioned above), the wide metal spacing errors and the max MTOP spacing errors. All drc rules of the types min width and min spacing which are not in standard cells or in a logo. Calibre erc rules As we will perform the calibre drc which will provide some electrical rules information which is only relevant if these labels are present on the IO pads. (shorted pads, gate not connected to power, floating nets,...) You may place supply labels(vdd and GND) on the supply cell s in the layer PIN purpose pad. Notice that the erc rules in calibre are very limited and ll give some unreal errors. Most important to have a working asic is having a matching LvS which ll clear all erc errors.

5 FAQ, KNOWN ITEMS AND REMARKS start of the processing / delivery of the dies Unless specified differently the processing of our C35 MPW s starts one week after the Europractice MPW deadline found on the Europractice website or EP calendar. This concludes that all MPW participants must have a final error free design ready on Friday morning following on the MPW deadline (normally on Monday). On Friday the MPW reticle is designed and all design on which violations exists are postponed to the next MPW. Standard calculation adds 1 week of design verifications, 8 weeks of processing and 3 weeks of packaging to the MPW deadline. This concluded that the delivery of the dies ll be on the MPW deadline + 12 weeks. This date is dependent on the foundry load and/or holiday periods. Neither the foundry or Europractice give any guaranty regarding the delivery date of the ordered products. number of dies / extra wafer It is possible to require extra dies on an MPW participation. Standard 40 dies are delivered for one submission. A customer can purchase one or more extra wafers each giving him 50 extra dies. The order of the extra wafer must be ordered before the start of the MPW processing and a quote for this ll be provided case by case. If there are some wafer parts available after the MPW, the dies on this can be purchased to its first buyer. This ll have an extra sawing possibly destroying the other dies on this wafer. scribe placement Placing the scribe ll have an influence on the drc reports on your design. the scribe contains a stack of metals and violates some of the standard drc violations. For this we encourage our customer not to place the scribe themselves. We can place this scribe for you which has some advantages: smaller errors reports as the drc is done on the design without scribe. invoiced area is your design area without the scribe If you want to create your own scribe, this must fulfill some specific drc rules: scribe must be made on a grid of 5um scribe must have a spacing of at least 10um from all design structures with exception of the standard ams I/O pads which already have a spacing to a metal1 scribe node. the scribe must be made in a separate cell which may only contain the scribe and the topcell of the design. DRC ll be ran on the topcell so all data in the scribe cell is ignored for MPW! When placing the scribe yourself, the invoiced design area ll be the design inclusive scribe! design boundaries, incl labels, invoiced area When making your design, it is very helpful to place labels on the bondpads for simulation etc. These labels can extend the boundary of your design and make it invisible to check if mistakenly some real data is outside the I/O ring boundary. For this reason, we ask to remove the labels from the design and to make sure the design boundary is identical to the design size. for example making a sub cell not on the origin, can make the boundary of the topcell greater than the real design area. In general the boundary area ll be invoiced so it is very important this ll not extend from the real design size. Your Europractice contact ll always remove the labels and try to make the design boundary identical to the design size before increasing the invoice. layer generation Since some time, the fab changed their policy so all layers ll be generated in the fab during mask prep. All generated layers from the customer ll be removed and regenerated by the fab. fillers Although density and slot errors are uncritical, you can solve these errors with some filler scripts which are provided by the fab. The explanation to use these fillers can be found on the fab asic website. On request your Europractice contact can also generate the fillers on your design. As these fillers give a lot of floating net violations which ll make possible real errors invisible, the fillers are generated on the final version. As Europractice is not responsible for making any adjustments on the layout, the final filled version ll be passed back to the customer for a final confirmation. Make sure to submit your design in time if you want this fillers to be generated.

6 physical die size Although your design could have less drawn dimensions, the physical dimension of your unpackaged dies ll be bigger as each design ll get a scribe line + some spare area for the saw. Secondly for MPW, we cannot saw each design next to his scribe line, this would destroy all other designs on this MPW so we create the MPW sawing line fitting the biggest design of the sawing scheme. This can cause some dummy area surrounding your current unpackaged dies. 0.35µm Power Supply Concept Ams provides an application note with an overview of the power concept used within ams' periphery libraries. It explains the star point concept used in the 0.35µm library cells and gives hints for running LVS checks. You can find this application note on the following link:

More information can be found in the Cadence manuals Virtuoso Layout Editor User Guide and Cadence Hierarchy Editor User Guide.

More information can be found in the Cadence manuals Virtuoso Layout Editor User Guide and Cadence Hierarchy Editor User Guide. Chapter 6 Building with Layout This chapter consists of two parts. The first describes the generation of layout views and the second deals with the various tools used for verifying the layout, both physical

More information

Physical Verification Challenges and Solution for 45nm and Beyond. Haifang Liao Celesda Design Solutions, Inc.

Physical Verification Challenges and Solution for 45nm and Beyond. Haifang Liao Celesda Design Solutions, Inc. Physical Verification Challenges and Solution for 45nm and Beyond Haifang Liao Celesda Design Solutions, Inc. Nanometer Design Era Semiconductor feature size has been shrunk 500x in 40 years Space for

More information

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction

VLSI Lab Tutorial 3. Virtuoso Layout Editing Introduction VLSI Lab Tutorial 3 Virtuoso Layout Editing Introduction 1.0 Introduction The purpose of this lab tutorial is to guide you through the design process in creating a custom IC layout for your CMOS inverter

More information

Place & Route: Using Silicon Ensemble

Place & Route: Using Silicon Ensemble Place & Route: Using Silicon Ensemble Introduction In a typical digital design flow, hardware description language is used to model a design and verify desired behavior. Once the desired functionality

More information

EE582 Physical Design Automation of VLSI Circuits and Systems

EE582 Physical Design Automation of VLSI Circuits and Systems EE582 Prof. Dae Hyun Kim School of Electrical Engineering and Computer Science Washington State University Preliminaries Table of Contents Semiconductor manufacturing Problems to solve Algorithm complexity

More information

Addressable Test Chip Technology for IC Design and Manufacturing. Dr. David Ouyang CEO, Semitronix Corporation Professor, Zhejiang University 2014/03

Addressable Test Chip Technology for IC Design and Manufacturing. Dr. David Ouyang CEO, Semitronix Corporation Professor, Zhejiang University 2014/03 Addressable Test Chip Technology for IC Design and Manufacturing Dr. David Ouyang CEO, Semitronix Corporation Professor, Zhejiang University 2014/03 IC Design & Manufacturing Trends Both logic and memory

More information

Using ASIC circuits. What is ASIC. ASIC examples ASIC types and selection ASIC costs ASIC purchasing Trends in IC technologies

Using ASIC circuits. What is ASIC. ASIC examples ASIC types and selection ASIC costs ASIC purchasing Trends in IC technologies Using ASIC circuits What is this machine? ASIC examples ASIC types and selection ASIC ASIC purchasing Trends in IC technologies 9.3.2004 Turo Piila 1 9.3.2004 Turo Piila 2 What is ASIC Floorplan and layout

More information

UNIVERSITY OF WATERLOO

UNIVERSITY OF WATERLOO UNIVERSITY OF WATERLOO UW ASIC DESIGN TEAM: Cadence Tutorial Description: Part I: Layout & DRC of a CMOS inverter. Part II: Extraction & LVS of a CMOS inverter. Part III: Post-Layout Simulation. The Cadence

More information

EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015

EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015 EE 330 Laboratory 3 Layout, DRC, and LVS Fall 2015 Contents Objective:... 2 Part 1 Creating a layout... 2 1.1 Run DRC Early and Often... 2 1.2 Create N active and connect the transistors... 3 1.3 Vias...

More information

EE 330 Laboratory Experiment Number 11

EE 330 Laboratory Experiment Number 11 EE 330 Laboratory Experiment Number 11 Design and Simulation of Digital Circuits using Hardware Description Languages Fall 2017 Contents Purpose:... 3 Background... 3 Part 1: Inverter... 4 1.1 Simulating

More information

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 26 March 2017 Disclaimer: This course

More information

Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics

Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics Cadence Tutorial 2: Layout, DRC/LVS and Circuit Simulation with Extracted Parasitics Introduction This tutorial describes how to generate a mask layout in the Cadence Virtuoso Layout Editor. Use of DIVA

More information

CircuitsMulti-Projets

CircuitsMulti-Projets From layout to chips CircuitsMulti-Projets MPW Services Center for ICs, Photonics & MEMS Prototyping & Low Volume Production mycmp.fr Grenoble - France From layout to chips STMicroelectronics Standard

More information

Microelectronica. Full-Custom Design with Cadence Tutorial

Microelectronica. Full-Custom Design with Cadence Tutorial Área Científica de Electrónica Microelectronica Full-Custom Design with Cadence Tutorial AustriaMicroSystems C35B3 (HIT-Kit 3.70) Marcelino Santos Table of contends 1. Starting Cadence... 3 Starting Cadence

More information

Process technology and introduction to physical

Process technology and introduction to physical Neuromorphic Engineering II Lab 3, Spring 2014 1 Lab 3 March 10, 2014 Process technology and introduction to physical layout Today you will start to learn to use the Virtuoso layout editor XL which is

More information

Laboratory 6. - Using Encounter for Automatic Place and Route. By Mulong Li, 2013

Laboratory 6. - Using Encounter for Automatic Place and Route. By Mulong Li, 2013 CME 342 (VLSI Circuit Design) Laboratory 6 - Using Encounter for Automatic Place and Route By Mulong Li, 2013 Reference: Digital VLSI Chip Design with Cadence and Synopsys CAD Tools, Erik Brunvand Background

More information

Virtuoso Layout Editor

Virtuoso Layout Editor This tutorial will cover the basic steps involved in using the Cadence layout editor called Virtuoso, extracting layout, and running simulation on the layout. The inverter layout is used as an example

More information

EE434 ASIC & Digital Systems. From Layout to SPICE Simulation (Virtuoso, Calibre, HSpice) Spring 2017 Dae Hyun Kim

EE434 ASIC & Digital Systems. From Layout to SPICE Simulation (Virtuoso, Calibre, HSpice) Spring 2017 Dae Hyun Kim EE434 ASIC & Digital Systems From Layout to SPICE Simulation (Virtuoso, Calibre, HSpice) Spring 2017 Dae Hyun Kim daehyun@eecs.wsu.edu 1 Preparation for Lab2 Download the following file into your working

More information

Microelectronics User Group Meeting. TWEPP 2010, Aachen, Germany 22/9/2010

Microelectronics User Group Meeting. TWEPP 2010, Aachen, Germany 22/9/2010 Microelectronics User Group Meeting TWEPP 2010, Aachen, Germany 22/9/2010 Agenda 16:45 17:00 ASIC design tools and foundry services at CERN by Kostas Kloukinas (CERN) 17:00 17:15 Update on the Design Implementation

More information

ASIC Physical Design Top-Level Chip Layout

ASIC Physical Design Top-Level Chip Layout ASIC Physical Design Top-Level Chip Layout References: M. Smith, Application Specific Integrated Circuits, Chap. 16 Cadence Virtuoso User Manual Top-level IC design process Typically done before individual

More information

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL)

EE115C Digital Electronic Circuits. Tutorial 4: Schematic-driven Layout (Virtuoso XL) EE115C Digital Electronic Circuits Tutorial 4: Schematic-driven Layout (Virtuoso XL) This tutorial will demonstrate schematic-driven layout on the example of a 2-input NAND gate. Simple Layout (that won

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

Physical Placement with Cadence SoCEncounter 7.1

Physical Placement with Cadence SoCEncounter 7.1 Physical Placement with Cadence SoCEncounter 7.1 Joachim Rodrigues Department of Electrical and Information Technology Lund University Lund, Sweden November 2008 Address for correspondence: Joachim Rodrigues

More information

EE 330 Laboratory 3 Layout, DRC, and LVS

EE 330 Laboratory 3 Layout, DRC, and LVS EE 330 Laboratory 3 Layout, DRC, and LVS Spring 2018 Contents Objective:... 2 Part 1 creating a layout... 2 1.1 Run DRC... 2 1.2 Stick Diagram to Physical Layer... 3 1.3 Bulk Connections... 3 1.4 Pins...

More information

LEON3-Fault Tolerant Design Against Radiation Effects ASIC

LEON3-Fault Tolerant Design Against Radiation Effects ASIC LEON3-Fault Tolerant Design Against Radiation Effects ASIC Microelectronic Presentation Days 3 rd Edition 7 March 2007 Table of Contents Page 2 Project Overview Context Industrial Organization LEON3-FT

More information

Circuits Multi Projets

Circuits Multi Projets Circuits Multi Projets MPW Services Center for IC / MEMS Prototyping http://cmp.imag.fr Grenoble France CMP annual users meeting, 4 Feb. 2016, PARIS STMicroelectronics Standard Technology offers at CMP

More information

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS)

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) Objective Part A: To become acquainted with Spectre (or HSpice) by simulating an inverter,

More information

Investigation on seal-ring rules for IC product reliability in m CMOS technology

Investigation on seal-ring rules for IC product reliability in m CMOS technology Microelectronics Reliability 45 (2005) 1311 1316 www.elsevier.com/locate/microrel Investigation on seal-ring rules for IC product reliability in 0.25- m CMOS technology Shih-Hung Chen a * and Ming-Dou

More information

Joe Civello ADS Product Manager/ Keysight EEsof EDA

Joe Civello ADS Product Manager/ Keysight EEsof EDA Joe Civello 2018.01.11 ADS Product Manager/ Keysight EEsof EDA 3D Layout Viewing directly from the Layout Window 3D Editing & Routing PCB & IC/Module Design Dramatically Improved Visual Inspection Simplified

More information

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE60: CMOS Analog Circuits L: Fabrication and Layout - (8.8.0) B. Mazhari Dept. of EE, IIT Kanpur Suppose we have a Silicon wafer which is P-type and we wish to create a region within it which is N-type

More information

Design rule illustrations for the AMI C5N process can be found at:

Design rule illustrations for the AMI C5N process can be found at: Cadence Tutorial B: Layout, DRC, Extraction, and LVS Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revised by C Young & Waqar A Qureshi -FS08 Document Contents Introduction

More information

Introduction to Layout design

Introduction to Layout design Introduction to Layout design Note: some figures are taken from Ref. B. Razavi, Design of Analog CMOS integrated circuits, Mc Graw-Hill, 001, and MOSIS web site: http://www.mosis.org/ 1 Introduction to

More information

TQPED MMIC Design Training

TQPED MMIC Design Training TQPED MMIC Design Training Outline Installation and Use of the Library AWR AWR Design Kit (PDK Process Design Kit) ICED Layout Kit Create a new document using the Library Environment Setup Hotkeys Background

More information

EE 330 Laboratory Experiment Number 11 Design, Simulation and Layout of Digital Circuits using Hardware Description Languages

EE 330 Laboratory Experiment Number 11 Design, Simulation and Layout of Digital Circuits using Hardware Description Languages EE 330 Laboratory Experiment Number 11 Design, Simulation and Layout of Digital Circuits using Hardware Description Languages Purpose: The purpose of this experiment is to develop methods for using Hardware

More information

Pad Ring and Floor Planning

Pad Ring and Floor Planning Pad Ring and Floor Planning Pad Ring Core Block 1 Block 2 Block Block 3 Block 6 Block 5 The core of the chip (made up of one or more top level blocks) is surrounded by a ring of pads. The design of the

More information

Tutorial for Cadence SOC Encounter Place & Route

Tutorial for Cadence SOC Encounter Place & Route Tutorial for Cadence SOC Encounter Place & Route For Encounter RTL-to-GDSII System 13.15 T. Manikas, Southern Methodist University, 3/9/15 Contents 1 Preliminary Setup... 1 1.1 Helpful Hints... 1 2 Starting

More information

Chip Core. Final Assembly. Core Sizes. Connecting Core to Pads. Core. Pad Ring The connection to the outside world

Chip Core. Final Assembly. Core Sizes. Connecting Core to Pads. Core. Pad Ring The connection to the outside world Final Assembly Your final project chip consists of a core and a pad ring Core is the guts Pad ring (or pad frame) connects the guts to the outside world It s critical to do a functional simulation of your

More information

2019 Europractice MPW runs Schedule and Prices. Accessible for universities & research institutes Version v2.0

2019 Europractice MPW runs Schedule and Prices. Accessible for universities & research institutes Version v2.0 2019 mini@sic Europractice MPW runs Schedule and Prices Accessible for universities & research institutes Version 181115- v2.0 www.europractice-ic.com mini@sic Through the mini@sic program the EUROPRACTICE

More information

MPW Program for Space ESA Contract: 17767/03/NL/FM. Jean BOUILLON MDP ESA Feb 4th, 2004

MPW Program for Space ESA Contract: 17767/03/NL/FM. Jean BOUILLON MDP ESA Feb 4th, 2004 MPW Program for Space ESA Contract: 17767/03/NL/FM Jean BOUILLON MDP ESA Feb 4th, 2004 MPW Space Objectives! For ATC18RHA ASIC family! Share the set of reticules and silicon costs between several designs!

More information

TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION

TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION TUTORIAL II ECE 555 / 755 Updated on September 11 th 2006 CADENCE LAYOUT AND PARASITIC EXTRACTION After finishing a schematic of your design (Tutorial-I), the next step is creating masks which are for

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

Physical Design Implementation for 3D IC Methodology and Tools. Dave Noice Vassilios Gerousis

Physical Design Implementation for 3D IC Methodology and Tools. Dave Noice Vassilios Gerousis I NVENTIVE Physical Design Implementation for 3D IC Methodology and Tools Dave Noice Vassilios Gerousis Outline 3D IC Physical components Modeling 3D IC Stack Configuration Physical Design With TSV Summary

More information

Final Assembly. Chip Core

Final Assembly. Chip Core Final Assembly Your final project chip consists of a core and a pad ring Core is the guts Pad ring (or pad frame) connects the guts to the outside world It s critical to do a functional simulation of your

More information

Design Solutions in Foundry Environment. by Michael Rubin Agilent Technologies

Design Solutions in Foundry Environment. by Michael Rubin Agilent Technologies Design Solutions in Foundry Environment by Michael Rubin Agilent Technologies Presenter: Michael Rubin RFIC Engineer, R&D, Agilent Technologies former EDA Engineering Manager Agilent assignee at Chartered

More information

Cadence Virtuoso Layout Connectivity Mark- Net Tutorial

Cadence Virtuoso Layout Connectivity Mark- Net Tutorial Cadence Virtuoso Layout Connectivity Mark- Net Tutorial Digital VLSI Chip Design CAD manual addendum When you re drawing layout, especially of a complex cell, it s sometimes hard to see exactly what your

More information

Composite Layout CS/EE N-type from the top. N-type Transistor. Diffusion Mask. Polysilicon Mask

Composite Layout CS/EE N-type from the top. N-type Transistor. Diffusion Mask. Polysilicon Mask Composite Layout CS/EE 6710 Introduction to Layout Inverter Layout Example Layout Design Rules Drawing the mask layers that will be used by the fabrication folks to make the devices Very different from

More information

EE 330 Laboratory Experiment Number 11 Design and Simulation of Digital Circuits using Hardware Description Languages

EE 330 Laboratory Experiment Number 11 Design and Simulation of Digital Circuits using Hardware Description Languages EE 330 Laboratory Experiment Number 11 Design and Simulation of Digital Circuits using Hardware Description Languages Fall 2015 Purpose: The purpose of this experiment is to develop methods for using Hardware

More information

PDK-Based Analog/Mixed-Signal/RF Design Flow 11/17/05

PDK-Based Analog/Mixed-Signal/RF Design Flow 11/17/05 PDK-Based Analog/Mixed-Signal/RF Design Flow 11/17/05 Silvaco s What is a PDK? Which people build, use, and support PDKs? How do analog/mixed-signal/rf engineers use a PDK to design ICs? What is an analog/mixed-signal/rf

More information

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia Lecture 4a CMOS Fabrication, Layout and Simulation R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca 1 Fabrication Fabrication is the process used to create devices and wires. Transistors

More information

Lay ay ut Design g R ules

Lay ay ut Design g R ules HPTER 5: Layout esign Rules Introduction ny circuit physical mask layout must conform to a set of geometric constraints or rules called as Layout esign rules before it can be manufactured using particular

More information

Lab 2. Standard Cell layout.

Lab 2. Standard Cell layout. Lab 2. Standard Cell layout. The purpose of this lab is to demonstrate CMOS-standard cell design. Use the lab instructions and the cadence manual (http://www.es.lth.se/ugradcourses/cadsys/cadence.html)

More information

ECE425: Introduction to VLSI System Design Machine Problem 3 Due: 11:59pm Friday, Dec. 15 th 2017

ECE425: Introduction to VLSI System Design Machine Problem 3 Due: 11:59pm Friday, Dec. 15 th 2017 ECE425: Introduction to VLSI System Design Machine Problem 3 Due: 11:59pm Friday, Dec. 15 th 2017 In this MP, you will use automated tools to synthesize the controller module from your MP2 project into

More information

Virtuoso Custom Design Platform GXL. Open Database. PDKs. Constraint Management. Customer IP

Virtuoso Custom Design Platform GXL. Open Database. PDKs. Constraint Management. Customer IP Virtuoso Custom Design Platform GL The Cadence Virtuoso custom design platform is the industry s leading design system for complete front-to-back analog, RF, mixed-signal, and custom digital design. The

More information

Synopsys Custom Designer Tutorial for a chip integra7on using the University of Utah Standard Cell Libraries In ON Semiconductor 0.

Synopsys Custom Designer Tutorial for a chip integra7on using the University of Utah Standard Cell Libraries In ON Semiconductor 0. Synopsys Custom Designer Tutorial for a chip integra7on using the University of Utah Standard Cell Libraries In ON Semiconductor 0.5u C5 CMOS Version 6.0 Overview This tutorial will take you through the

More information

ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018

ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018 ECE471/571 Energy Efficient VLSI Design Project 2 Cadence Setup and Creation of an Inverter Due Date 11:30 am on Friday, February 2 nd, 2018 Introduction This project will first walk you through the setup

More information

Brief Introduction of Cell-based Design. Ching-Da Chan CIC/DSD

Brief Introduction of Cell-based Design. Ching-Da Chan CIC/DSD Brief Introduction of Cell-based Design Ching-Da Chan CIC/DSD 1 Design Abstraction Levels SYSTEM MODULE + GATE CIRCUIT S n+ G DEVICE n+ D 2 Full Custom V.S Cell based Design Full custom design Better patent

More information

Expert Layout Editor. Technical Description

Expert Layout Editor. Technical Description Expert Layout Editor Technical Description Agenda Expert Layout Editor Overview General Layout Editing Features Technology File Setup Multi-user Project Library Setup Advanced Programmable Features Schematic

More information

FABRICATION TECHNOLOGIES

FABRICATION TECHNOLOGIES FABRICATION TECHNOLOGIES DSP Processor Design Approaches Full custom Standard cell** higher performance lower energy (power) lower per-part cost Gate array* FPGA* Programmable DSP Programmable general

More information

ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool

ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool ELEC451 Integrated Circuit Engineering Using Cadence's Virtuoso Layout Editing Tool Contents Contents 1. General 2. Creating and Working On a Layout o 2.1 Undoing/Re-doing an Action o 2.2 Display Options

More information

CMP Model Application in RC and Timing Extraction Flow

CMP Model Application in RC and Timing Extraction Flow INVENTIVE CMP Model Application in RC and Timing Extraction Flow Hongmei Liao*, Li Song +, Nickhil Jakadtar +, Taber Smith + * Qualcomm Inc. San Diego, CA 92121 + Cadence Design Systems, Inc. San Jose,

More information

Latch-up Verification / Rule Checking Throughout Circuit Design Flow

Latch-up Verification / Rule Checking Throughout Circuit Design Flow Latch-up Verification / Rule Checking Throughout Circuit Design Flow Michael Khazhinsky ESD and Latch-up Design Silicon Labs April 2016 Motivation The verification of latch-up protection networks in modern

More information

- create new schematic to the new project, PCB design begins with a schematic diagram, which present how components are connected

- create new schematic to the new project, PCB design begins with a schematic diagram, which present how components are connected Eagle 8.x tutorial - create a new project, Eagle designs are organized as projects - create new schematic to the new project, PCB design begins with a schematic diagram, which present how components are

More information

O N C A D E N C E V I R T U O S O. CHEN, Jason Application Engineer, Keysight Technologies

O N C A D E N C E V I R T U O S O. CHEN, Jason Application Engineer, Keysight Technologies O N C A D E N C E V I R T U O S O CHEN, Jason 2018.05.08 Application Engineer, Keysight Technologies Introduction to Momentum Momentum Features for RFIC Design Circuit/EM Cosimulation Flow on Cadence Virtuoso

More information

UNIT 4 INTEGRATED CIRCUIT DESIGN METHODOLOGY E5163

UNIT 4 INTEGRATED CIRCUIT DESIGN METHODOLOGY E5163 UNIT 4 INTEGRATED CIRCUIT DESIGN METHODOLOGY E5163 LEARNING OUTCOMES 4.1 DESIGN METHODOLOGY By the end of this unit, student should be able to: 1. Explain the design methodology for integrated circuit.

More information

EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits

EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits EE 330 Spring 2018 Laboratory 2: Basic Boolean Circuits Contents Objective:... 2 Part 1: Introduction... 2 Part 2 Simulation of a CMOS Inverter... 3 Part 2.1 Attaching technology information... 3 Part

More information

EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial

EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial EEC 116 Fall 2011 Lab #1 Cadence Schematic Capture and Layout Tutorial Dept. of Electrical and Computer Engineering University of California, Davis September 26, 2011 Reading: Rabaey Chapters 1, 2, A,

More information

CMOS VLSI Design Lab 4: Full Chip Assembly

CMOS VLSI Design Lab 4: Full Chip Assembly CMOS VLSI Design Lab 4: Full Chip Assembly In this final lab, you will assemble and simulate your entire MIPS microprocessor! You will build your top level chip cell by connecting the datapath, aludec,

More information

EECS 627, Lab Assignment 3

EECS 627, Lab Assignment 3 EECS 627, Lab Assignment 3 1 Introduction In this lab assignment, we will use Cadence ICFB and Calibre to become familiar with the process of DRC/LVS checks on a design. So far, we have placed and routed

More information

Amplifier Simulation Tutorial. Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5)

Amplifier Simulation Tutorial. Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5) Amplifier Simulation Tutorial Design Kit: Cadence 0.18μm CMOS PDK (gpdk180) (Cadence Version 6.1.5) Yongsuk Choi, Marvin Onabajo This tutorial provides a quick introduction to the use of Cadence tools

More information

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 1: Introduction to VLSI Technology Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Course Objectives

More information

PACKAGE DESIGNERS NEED ASSEMBLY-LEVEL LVS FOR HDAP VERIFICATION TAREK RAMADAN MENTOR, A SIEMENS BUSINESS

PACKAGE DESIGNERS NEED ASSEMBLY-LEVEL LVS FOR HDAP VERIFICATION TAREK RAMADAN MENTOR, A SIEMENS BUSINESS PACKAGE DESIGNERS NEED ASSEMBLY-LEVEL LVS FOR HDAP VERIFICATION TAREK RAMADAN MENTOR, A SIEMENS BUSINESS D E S I G N T O S I L I C O N W H I T E P A P E R w w w. m e n t o r. c o m INTRODUCTION Contrary

More information

Tutorial I: Cadence Innovus ECE6133: Physical Design Automation of VLSI Systems Georgia Institute of Technology Prof. Sung Kyu Lim

Tutorial I: Cadence Innovus ECE6133: Physical Design Automation of VLSI Systems Georgia Institute of Technology Prof. Sung Kyu Lim Tutorial I: Cadence Innovus ECE6133: Physical Design Automation of VLSI Systems Georgia Institute of Technology Prof. Sung Kyu Lim I. Setup for Cadence Innovus 1. Copy the following files into your working

More information

Cadence IC Design Manual

Cadence IC Design Manual Cadence IC Design Manual For EE5518 ZHENG Huan Qun Lin Long Yang Revised on May 2017 Department of Electrical & Computer Engineering National University of Singapore 1 P age Contents 1 INTRODUCTION...

More information

A Method to Implement Layout Versus Schematic Check in Integrated Circuits Design Programs

A Method to Implement Layout Versus Schematic Check in Integrated Circuits Design Programs A Method to Implement Layout Versus Schematic Check in Integrated Circuits Design Programs Radu Gabriel Bozomitu, Daniela Ionescu Telecommunications Department Faculty of Electronics and Telecommunications,

More information

Abstract Editor (Last updated: Oct. 23, 2008)

Abstract Editor (Last updated: Oct. 23, 2008) Abstract Editor (Last updated: Oct. 23, 2008) Abstract Editor Tutorial This tutorial has been created to discuss all of the steps needed to create an abstract Library Exchange Format (LEF) file for custom

More information

Creating LEF File. Abstract Generation: Creating LEF Tutorial File Release Date: 01/13/2004. Export GDS:

Creating LEF File. Abstract Generation: Creating LEF Tutorial File Release Date: 01/13/2004. Export GDS: Creating LEF Tutorial 1-1 - Creating LEF File Abstract Generation: Export GDS: Abstract generator comes as a part of the Silicon Ensemble package. As such, it cannot directly read ICFB library databases.

More information

C Allegro Package Designer Flows

C Allegro Package Designer Flows 1 Allegro User Guide: Getting Started with Physical Design Product Version 16.6 October 2012 C Allegro Package Designer Flows This appendix presents design flows that illustrate the use of the Allegro

More information

Computer-Based Project on VLSI Design Co 3/7

Computer-Based Project on VLSI Design Co 3/7 Computer-Based Project on VLSI Design Co 3/7 IC Layout and Symbolic Representation This pamphlet introduces the topic of IC layout in integrated circuit design and discusses the role of Design Rules and

More information

ECE260B CSE241A Winter Tapeout. Website:

ECE260B CSE241A Winter Tapeout. Website: ECE260B CSE241A Winter 2007 Tapeout Website: http://vlsicad.ucsd.edu/courses/ece260b-w07 ECE 260B CSE 241A Tapeout 1 Tapeout definition What is the definition of the tapeout? There is no standard definition

More information

Taming the Challenges of Advanced-Node Design. Tom Beckley Sr. VP of R&D, Custom IC and Signoff, Silicon Realization Group ISQED 2012 March 20, 2012

Taming the Challenges of Advanced-Node Design. Tom Beckley Sr. VP of R&D, Custom IC and Signoff, Silicon Realization Group ISQED 2012 March 20, 2012 Taming the Challenges of Advanced-Node Design Tom Beckley Sr. VP of R&D, Custom IC and Signoff, Silicon Realization Group ISQED 2012 March 20, 2012 The custom design community Designers ( Relaxed attitude

More information

An overview of standard cell based digital VLSI design

An overview of standard cell based digital VLSI design An overview of standard cell based digital VLSI design Implementation of the first generation AsAP processor Zhiyi Yu and Tinoosh Mohsenin VCL Laboratory UC Davis Outline Overview of standard cellbased

More information

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout)

CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout) CPE/EE 427, CPE 527, VLSI Design I: Tutorial #1, Full Custom VLSI (inverter layout) Joel Wilder, Aleksandar Milenkovic, ECE Dept., The University of Alabama in Huntsville Adapted from Virginia Tech, Dept.

More information

Design Factors Affecting Laser Cutting Parameters Line width Wider lines more heat flow Lines affect spot size larger line: wider spot Lines much

Design Factors Affecting Laser Cutting Parameters Line width Wider lines more heat flow Lines affect spot size larger line: wider spot Lines much Design Factors Affecting Laser Cutting Parameters Line width Wider lines more heat flow Lines affect spot size larger line: wider spot Lines much larger than spot size Require several positions and laser

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2019 HW5: Delay and Layout Sunday, February 17th Due: Friday,

More information

Technologies and Tools for µe design

Technologies and Tools for µe design Technologies and Tools for µe design What can CERN offer -PH-ESE Outline Technologies and Tools Status ASIC Testing infrastructure Packaging common needs 2 1 - ASIC Technologies CMOS 130 and 90 nm RF technologies,

More information

Prerequisites for Rou4ng

Prerequisites for Rou4ng Basic Zroute Flow Prerequisites for Rou4ng Library requirements Zroute gets all of the design rule informa4on from the technology file; therefore, you must ensure that all design rules are defined in the

More information

Synopsys ASIC Tutorial

Synopsys ASIC Tutorial Synopsys ASIC Tutorial Version 11.0 Updated November 30, 2015 Linux log in and tutorial Synthesis with dc_shell Timing Area Chip implementaeon with icc_shell Placement RouEng Clock tree Finishing Chip

More information

Virtuoso - Enabled EPDA framework AIM SUNY Process

Virtuoso - Enabled EPDA framework AIM SUNY Process Virtuoso - Enabled EPDA framework AIM SUNY Process CADENCE, LUMERICAL, PHOENIX SOFTWARE Driven by our customers Cadence is the leader with Virtuoso custom design platform for electronics custom and mixed

More information

Cell-Based IC Physical Design & Verification SOC Encounter. Advisor : 李昆忠 Presenter : 蕭智元

Cell-Based IC Physical Design & Verification SOC Encounter. Advisor : 李昆忠 Presenter : 蕭智元 Cell-Based IC Physical Design & Verification SOC Encounter Advisor : 李昆忠 Presenter : 蕭智元 Reference: SOC Encounter Training Manual, 2007, edited by CIC. Introduction We ll use some EDA tools to transform

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Lab #2: Layout and Simulation NTU IC541CA 1 Assumed Knowledge This lab assumes use of the Electric

More information

Hand book for use of library : Start_cmiV4

Hand book for use of library : Start_cmiV4 Hand book for use of library : Start_cmiV4 The library of CMI for layout design has been up-dated, changes are : - V4.3 (27. Feb. 2008) o add cell ELECTRODEP_CIRCLE for electro-plating deposition o add

More information

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website :

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website : 9 rue Alfred Kastler - BP 10748-44307 Nantes Cedex 3 - France Phone : +33 (0) 240 180 916 - email : info@systemplus.fr - website : www.systemplus.fr August 2011 - Version 1 Written by: Sylvain HALLEREAU

More information

DRAM Fab partnership for Intelligent RAM (IRAM)

DRAM Fab partnership for Intelligent RAM (IRAM) DRA Fab partnership for Intelligent RA (IRA) David Patterson and John Wawrzynek patterson@cs.berkeley.edu http://iram.cs.berkeley.edu/ EECS, University of California Berkeley, CA 94720-1776 1 Outline Overview

More information

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI CHAPTER 2 ARRAY SUBSYSTEMS [2.4-2.9] MANJARI S. KULKARNI OVERVIEW Array classification Non volatile memory Design and Layout Read-Only Memory (ROM) Pseudo nmos and NAND ROMs Programmable ROMS PROMS, EPROMs,

More information

Tutorial 2 Automatic Placement & Routing

Tutorial 2 Automatic Placement & Routing Tutorial 2 Automatic Placement & Routing Please follow the instructions found under Setup on the CADTA main page before starting this tutorial. 1.1. Start Encounter Log on to a VLSI server using your EE

More information

Verifying the Multiplexer Layout

Verifying the Multiplexer Layout 4 This chapter introduces you to interactive verification. You will perform two different tests in the Virtuoso layout editor while using Assura interactive verification products. One test uses the Design

More information

High Volume Manufacturing Supply Chain Ecosystem for 2.5D HBM2 ASIC SiPs

High Volume Manufacturing Supply Chain Ecosystem for 2.5D HBM2 ASIC SiPs Open-Silicon.com 490 N. McCarthy Blvd, #220 Milpitas, CA 95035 408-240-5700 HQ High Volume Manufacturing Supply Chain Ecosystem for 2.5D HBM2 ASIC SiPs Open-Silicon Asim Salim VP Mfg. Operations 20+ experience

More information

Paradigms Shifts in CMP

Paradigms Shifts in CMP Paradigms Shifts in CMP Daniel Redfield Director - NMA CMPUG - Semicon West 2018 Paradigm Shifts in CMP State of CMP Market Inflections are driving CMP Growth and Complexity Paradigm Shifts in CMP Strategies

More information

Characterization and Reliability of custom digital ASIC designs using a 0.8µm bulk CMOS process for high temperature applications

Characterization and Reliability of custom digital ASIC designs using a 0.8µm bulk CMOS process for high temperature applications Characterization and Reliability of custom digital ASIC designs using a 0.8µm bulk CMOS process for high temperature applications Mark Watts, Shane Rose Quartzdyne, Inc. 4334 W Links Drive Salt Lake City,

More information

Transistor Flaring in Deep Submicron Design Considerations

Transistor Flaring in Deep Submicron Design Considerations Transistor Flaring in Deep Submicron Design Considerations Vipul Singhal, Keshav C.B., Sumanth K.G., P.R. Suresh Abstract - The deep sub-micron regime has broughtup several manufacturing issues which impact

More information