Planning, Execution and Learning Application: Examples of Planning in Perception

Size: px
Start display at page:

Download "Planning, Execution and Learning Application: Examples of Planning in Perception"

Transcription

1 Planning, Execution and Learning Application: Examples of Planning in Perception Maxim Likhachev Robotics Institute Carnegie Mellon University

2 Two Examples Graph search for perception Planning for Active Perception Carnegie Mellon University 2

3 Two Examples Graph search for perception Planning for Active Perception Carnegie Mellon University 3

4 Perception via Search (PERCH) Venkatraman Narayanan PhD student at Search-based Planning Lab Carnegie Mellon University

5 Birdhouse Project (Cohen et al.) 5

6 Perception is Brittle Even for the (commonly occurring) Object Instance Detection (Objects with known 3D models) 6

7 Object Instance Detection Joint work with Upenn (K. Daniilidis), GDLS, RR 7

8 Amazon Picking Challenge (APC) 8

9 APC: Perception is Hard [Correll et. al 2016] 9

10 We see Depth Image We know - List of objects in the scene - 3D models of those objects 10

11 We see Depth Image We know - List of objects in the scene - 3D models of those objects We do Global reasoning 11

12 Deliberative Perception: Formulation identify type and 3 DoF pose of all objects in the scene (point cloud/depth image) assuming robot knows 3D models of objects 6 DoF camera pose 12

13 Deliberative Perception: Formulation Optimize over space of joint object configurations Ideas for the objective function? 13

14 Deliberative Perception: Formulation min J(O1:K) O1:K J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud observed cloud rendered cloud 14

15 Deliberative Perception: Formulation Optimize over space of joint object configurations combinatorial search space Ideas for better search-space? e.g.: 4 objects, 10 (x,y) locations, 10 orientations scenes ~12 10 ms / render on single GPU 16

16 Deliberative Perception: Formulation optimal solution 17

17 Deliberative Perception: Formulation optimal solution 18

18 Deliberative Perception: Formulation optimal solution 19

19 Deliberative Perception: Formulation optimal solution 20

20 Deliberative Perception: Formulation Any problems with edgecosts? optimal solution 21

21 Deliberative Perception: Formulation optimal solution Monotone Scene Generation Tree (only objects/poses not occluding already set objects are allowed = positive edgecosts) 22

22 Deliberative Perception: Formulation Assumptions on the objects? optimal solution Monotone Scene Generation Tree (only objects/poses not occluding already set objects are allowed = positive edgecosts) 23

23 Deliberative Perception: Formulation optimal solution 24

24 Deliberative Perception: Formulation optimal solution Want edge costs to: Be nonnegative Add up to optimization objective 25

25 Deliberative Perception: Formulation J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud input rgb (unused) input depth 26

26 Deliberative Perception: Formulation J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud input rgb (unused) input depth Jrendered(O1) + Jobserved(O1) 27

27 Deliberative Perception: Formulation J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud input rgb (unused) input depth Jrendered(O1) Jrendered(O2) Jobserved(O1) Jobserved(O2) 28

28 Deliberative Perception: Formulation J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud input rgb (unused) input depth Jrendered(O1) Jrendered(O2) Jrendered(O3) Jobserved(O1) Jobserved(O2) Jobserved(O3) 29

29 Deliberative Perception: Formulation J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud input rgb (unused) input depth Jrendered(O1) Jrendered(O2) Jrendered(O3) Jrendered(O3) Jobserved(O1) Jobserved(O2) Jobserved(O3) Jobserved(O3) 30

30 Deliberative Perception: Formulation J(O1:K) = Jrendered(O1:K) + Jobserved(O1:K) outliers in rendered cloud outliers in observed cloud input rgb (unused) input depth J(O1:K) = Σi Jrendered(Oi) + Jobserved(Oi) s.t. Oi+1 does not occlude Oj for all j < i+1 31

31 PERCH: Perception via Search Edge cost from level i-1 to i Monotone Scene Generation Tree Jrendered(Oi) + Jobserved(Oi) PERCH, Narayanan & Likhachev, ICRA 16 32

32 PERCH: Qualitative Results Input Depth Image Output Depth Image PERCH, Narayanan & Likhachev, ICRA 16 38

33 Leveraging Discriminative Guidance 39

34 40

35 41

36 Use discriminative learners as heuristics to guide global deliberative search D2P, Narayanan & Likhachev, RSS 16 42

37 Discriminatively-guided Deliberative Perception (D2P) D2P, Narayanan & Likhachev, RSS 16 43

38 Discriminatively-guided Deliberative Perception (D2P) For each hypothesis i heuristici(s) = distance between predicted and hallucinated location D2P, Narayanan & Likhachev, RSS 16 44

39 Discriminatively-guided Deliberative Perception (D2P) Heuristics are multi-modal hypotheses Do not want to combine into one heuristic h1 h2 h3 45

40 Discriminatively-guided Deliberative Perception (D2P) Heuristics are multi-modal hypotheses Do not want to combine into one heuristic What else can we use? h1 h2 h3 46

41 Using Multiple Heuristics: MHA* h1 h2 h3 g(s)+w h1(s) g(s)+w h2(s) g(s)+w h3(s) shared g-values 48

42 Using Multiple Heuristics: MHA* OPEN1 = OPEN2 = OPEN3 = {sstart} while sgoal not expanded for i in 1 to 3 expand from OPENi g(s)+w h1(s) g(s)+w h2(s) g(s)+w h3(s) shared g-values 49

43 Deliberative Perception: Properties Guarantees on solution quality min J(O1:K) O1:K J(O1:K) = Jobserved(O1:K) + Jrendered(O1:K) 55

44 Deliberative Perception: Properties Guarantees on solution quality min J(O1:K) O1:K J(O1:K) = Jobserved(O1:K) + Jrendered(O1:K) Introduce notion of completeness for multi-object instance recognition 56

45 Implementation Details Cost Computation ICP to eliminate discretization artifacts Cache depth images Search Lazy edge evaluation Parallelize successor generation 58

46 Dataset Household objects occlusion dataset 36 objects models 82 object instances in 23 scenes Ground truth pose for all objects available [Point Cloud Library, Aldoma et al., IEEE RAM 12] 59

47 Experiments: Baseline Comparions Baselines: OUR-CVFH, Brute-force ICP (without rendering) 60

48 Summary Deliberative Perception: search for best explanation of the observed scene Discriminative guidance from any and multiple statistical learners Multi-Heuristic A* (MHA*) for graph search with distinct hypotheses Theoretical guarantees on solution quality Notion of completeness for multi-object pose estimation Bibliography PERCH: Perception via Search, Narayanan and Likhachev, ICRA 16 Discriminatively-guided Deliberative Perception (D2P), Narayanan and Likhachev, RSS 16 Multi-Heuristic A*, Aine, Swaminathan, Narayanan, Hwang, and Likhachev, RSS 14, IJRR 16 Improved Multi-Heuristic A*, Narayanan, Aine, and Likhachev, SoCS 15 Graph Search with Edge Existence Priors, Narayanan and Likhachev, AAAI 17 (submitted) Deliberative Object Pose Estimation in Clutter, Narayanan and Likhachev, ICRA 17 (submitted) 67

49 Two Examples Graph search for perception Planning for Active Perception Carnegie Mellon University 68

50 Active Perception What should be a sequence of viewpoints to get full certainty about the object of interest? Movie generated by S. Kim Carnegie Mellon University 69

51 Active Perception What should be a sequence of viewpoints to get full certainty about the object of interest? Define the planning problem Movie generated by S. Kim Carnegie Mellon University 70

52 Summary Techniques for planning are a form of optimization and are often applicable beyond pure planning Carnegie Mellon University 71

Deliberative Object Pose Estimation in Clutter

Deliberative Object Pose Estimation in Clutter Deliberative Object Pose Estimation in Clutter Venkatraman Narayanan Abstract A fundamental robot perception task is that of identifying and estimating the poses of objects with known 3D models in RGB-D

More information

PERCH: Perception via Search for Multi-Object Recognition and Localization

PERCH: Perception via Search for Multi-Object Recognition and Localization PERCH: Perception via Search for Multi-Object Recognition and Localization Venkatraman Narayanan Maxim Likhachev Abstract In many robotic domains such as flexible automated manufacturing or personal assistance,

More information

Deliberative Perception

Deliberative Perception Deliberative Perception Venkatraman Narayanan CMU-RI-TR-17-67 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Robotics The Robotics Institute Carnegie Mellon

More information

Planning, Execution and Learning Heuristics and Multi-Heuristic A*

Planning, Execution and Learning Heuristics and Multi-Heuristic A* 15-887 Planning, Execution and Learning Heuristics and Multi-Heuristic A* Maxim Likhachev Robotics Institute Carnegie Mellon University Design of Informative Heuristics Example problem: move picture frame

More information

Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty. Venkatraman Narayanan and Maxim Likhachev

Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty. Venkatraman Narayanan and Maxim Likhachev Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty Venkatraman Narayanan and Maxim Likhachev Motivation Motivation A lot of household objects are ARTICULATED A lot of

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

arxiv: v1 [cs.ro] 24 Oct 2017

arxiv: v1 [cs.ro] 24 Oct 2017 Improving 6D Pose Estimation of Objects in Clutter via Physics-aware Monte Carlo Tree Search arxiv:1710.08577v1 [cs.ro] 24 Oct 2017 Chaitanya Mitash, Abdeslam Boularias and Kostas E. Bekris Abstract This

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd Supplementary Material

Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd Supplementary Material Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd Supplementary Material Andreas Doumanoglou 1,2, Rigas Kouskouridas 1, Sotiris Malassiotis 2, Tae-Kyun Kim 1 1 Imperial College London

More information

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots

Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots 15-887 Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots Maxim Likhachev Robotics Institute Carnegie Mellon University Two Examples Planning

More information

Learning 6D Object Pose Estimation and Tracking

Learning 6D Object Pose Estimation and Tracking Learning 6D Object Pose Estimation and Tracking Carsten Rother presented by: Alexander Krull 21/12/2015 6D Pose Estimation Input: RGBD-image Known 3D model Output: 6D rigid body transform of object 21/12/2015

More information

Real-time Scalable 6DOF Pose Estimation for Textureless Objects

Real-time Scalable 6DOF Pose Estimation for Textureless Objects Real-time Scalable 6DOF Pose Estimation for Textureless Objects Zhe Cao 1, Yaser Sheikh 1, Natasha Kholgade Banerjee 2 1 Robotics Institute, Carnegie Mellon University, PA, USA 2 Department of Computer

More information

arxiv: v1 [cs.ro] 11 Jul 2016

arxiv: v1 [cs.ro] 11 Jul 2016 Initial Experiments on Learning-Based Randomized Bin-Picking Allowing Finger Contact with Neighboring Objects Kensuke Harada, Weiwei Wan, Tokuo Tsuji, Kohei Kikuchi, Kazuyuki Nagata, and Hiromu Onda arxiv:1607.02867v1

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

VISUAL POSE ESTIMATION FOR A MOBILE MANIPULATOR

VISUAL POSE ESTIMATION FOR A MOBILE MANIPULATOR VISUAL POSE ESTIMATION FOR A MOBILE MANIPULATOR With Aaron Walsman and Siddhartha Srinivasa Personal Robotics Lab, Carnegie Mellon University Shushman Choudhury IIT Kharagpur MOBILE MANIPULATOR A robotic

More information

Colored Point Cloud Registration Revisited Supplementary Material

Colored Point Cloud Registration Revisited Supplementary Material Colored Point Cloud Registration Revisited Supplementary Material Jaesik Park Qian-Yi Zhou Vladlen Koltun Intel Labs A. RGB-D Image Alignment Section introduced a joint photometric and geometric objective

More information

BOP: Benchmark for 6D Object Pose Estimation

BOP: Benchmark for 6D Object Pose Estimation BOP: Benchmark for 6D Object Pose Estimation Hodan, Michel, Brachmann, Kehl, Buch, Kraft, Drost, Vidal, Ihrke, Zabulis, Sahin, Manhardt, Tombari, Kim, Matas, Rother 4th International Workshop on Recovering

More information

Ensemble Learning for Object Recognition and Pose Estimation

Ensemble Learning for Object Recognition and Pose Estimation Ensemble Learning for Object Recognition and Pose Estimation German Aerospace Center (DLR) May 10, 2013 Outline 1. Introduction 2. Overview of Available Methods 3. Multi-cue Integration Complementing Modalities

More information

7. Boosting and Bagging Bagging

7. Boosting and Bagging Bagging Group Prof. Daniel Cremers 7. Boosting and Bagging Bagging Bagging So far: Boosting as an ensemble learning method, i.e.: a combination of (weak) learners A different way to combine classifiers is known

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

Learning Semantic Environment Perception for Cognitive Robots

Learning Semantic Environment Perception for Cognitive Robots Learning Semantic Environment Perception for Cognitive Robots Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems Some of Our Cognitive Robots Equipped

More information

Sub-Optimal Heuristic Search ARA* and Experience Graphs

Sub-Optimal Heuristic Search ARA* and Experience Graphs Robot Autonomy (16-662, S13) Lecture#09 (Wednesday Feb 13, 2013) Lecture by: Micheal Phillips Sub-Optimal Heuristic Search ARA* and Experience Graphs Scribes: S.Selvam Raju and Adam Lebovitz Contents 1

More information

Robust Articulated ICP for Real-Time Hand Tracking

Robust Articulated ICP for Real-Time Hand Tracking Robust Articulated-ICP for Real-Time Hand Tracking Andrea Tagliasacchi* Sofien Bouaziz Matthias Schröder* Mario Botsch Anastasia Tkach Mark Pauly * equal contribution 1/36 Real-Time Tracking Setup Data

More information

From 3D descriptors to monocular 6D pose: what have we learned?

From 3D descriptors to monocular 6D pose: what have we learned? ECCV Workshop on Recovering 6D Object Pose From 3D descriptors to monocular 6D pose: what have we learned? Federico Tombari CAMP - TUM Dynamic occlusion Low latency High accuracy, low jitter No expensive

More information

Textureless Layers CMU-RI-TR Qifa Ke, Simon Baker, and Takeo Kanade

Textureless Layers CMU-RI-TR Qifa Ke, Simon Baker, and Takeo Kanade Textureless Layers CMU-RI-TR-04-17 Qifa Ke, Simon Baker, and Takeo Kanade The Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 Abstract Layers are one of the most well

More information

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA 14, by Pizzoli, Forster, Scaramuzza [M. Pizzoli, C. Forster,

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

Detection and Fine 3D Pose Estimation of Texture-less Objects in RGB-D Images

Detection and Fine 3D Pose Estimation of Texture-less Objects in RGB-D Images Detection and Pose Estimation of Texture-less Objects in RGB-D Images Tomáš Hodaň1, Xenophon Zabulis2, Manolis Lourakis2, Šťěpán Obdržálek1, Jiří Matas1 1 Center for Machine Perception, CTU in Prague,

More information

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University Search-based Planning Library SBPL Maxim Likhachev Robotics Institute Carnegie Mellon University Outline Overview Few SBPL-based planners in details - 3D (x,y,θ) lattice-based planning for navigation (available

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

Discrete Motion Planning

Discrete Motion Planning RBE MOTION PLANNING Discrete Motion Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Homework 1 is out Due Date - Feb 1 Updated

More information

Analysis of Goal-directed Manipulation in Clutter using Scene Graph Belief Propagation

Analysis of Goal-directed Manipulation in Clutter using Scene Graph Belief Propagation Analysis of Goal-directed Manipulation in Clutter using Scene Graph Belief Propagation Karthik Desingh Anthony Opipari Odest Chadwicke Jenkins Abstract Goal-directed manipulation requires a robot to perform

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision

Stereo. Outline. Multiple views 3/29/2017. Thurs Mar 30 Kristen Grauman UT Austin. Multi-view geometry, matching, invariant features, stereo vision Stereo Thurs Mar 30 Kristen Grauman UT Austin Outline Last time: Human stereopsis Epipolar geometry and the epipolar constraint Case example with parallel optical axes General case with calibrated cameras

More information

Imagining the Unseen: Stability-based Cuboid Arrangements for Scene Understanding

Imagining the Unseen: Stability-based Cuboid Arrangements for Scene Understanding : Stability-based Cuboid Arrangements for Scene Understanding Tianjia Shao* Aron Monszpart Youyi Zheng Bongjin Koo Weiwei Xu Kun Zhou * Niloy J. Mitra * Background A fundamental problem for single view

More information

Active Multi-View Object Recognition: A Unifying View on Online Feature Selection and View Planning

Active Multi-View Object Recognition: A Unifying View on Online Feature Selection and View Planning Active Multi-View Object Recognition: A Unifying View on Online Feature Selection and View Planning Christian Potthast, Andreas Breitenmoser, Fei Sha, Gaurav S. Sukhatme University of Southern California

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Search-based Planning with Motion Primitives. Maxim Likhachev Carnegie Mellon University

Search-based Planning with Motion Primitives. Maxim Likhachev Carnegie Mellon University Search-based Planning with Motion Primitives Maxim Likhachev Carnegie Mellon University generate a graph representation of the planning problem search the graph for a solution What is Search-based Planning

More information

CMU Amazon Picking Challenge

CMU Amazon Picking Challenge CMU Amazon Picking Challenge Team Harp (Human Assistive Robot Picker) Graduate Developers Abhishek Bhatia Alex Brinkman Lekha Walajapet Feroza Naina Rick Shanor Search Based Planning Lab Maxim Likhachev

More information

Stereo: Disparity and Matching

Stereo: Disparity and Matching CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS2 is out. But I was late. So we pushed the due date to Wed Sept 24 th, 11:55pm. There is still *no* grace period. To

More information

Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation

Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation A. Aldoma 1 and F. Tombari 2 and J. Prankl 1 and A. Richtsfeld 1 and L. Di Stefano 2 and

More information

Exploiting Depth Camera for 3D Spatial Relationship Interpretation

Exploiting Depth Camera for 3D Spatial Relationship Interpretation Exploiting Depth Camera for 3D Spatial Relationship Interpretation Jun Ye Kien A. Hua Data Systems Group, University of Central Florida Mar 1, 2013 Jun Ye and Kien A. Hua (UCF) 3D directional spatial relationships

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

Adaptive Gesture Recognition System Integrating Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs Adaptive Gesture Recognition System Integrating Multiple Inputs Master Thesis - Colloquium Tobias Staron University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Technical Aspects

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

Object Detection by 3D Aspectlets and Occlusion Reasoning

Object Detection by 3D Aspectlets and Occlusion Reasoning Object Detection by 3D Aspectlets and Occlusion Reasoning Yu Xiang University of Michigan Silvio Savarese Stanford University In the 4th International IEEE Workshop on 3D Representation and Recognition

More information

Lecture 10 Dense 3D Reconstruction

Lecture 10 Dense 3D Reconstruction Institute of Informatics Institute of Neuroinformatics Lecture 10 Dense 3D Reconstruction Davide Scaramuzza 1 REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time M. Pizzoli, C. Forster,

More information

Detecting Object Instances Without Discriminative Features

Detecting Object Instances Without Discriminative Features Detecting Object Instances Without Discriminative Features Edward Hsiao June 19, 2013 Thesis Committee: Martial Hebert, Chair Alexei Efros Takeo Kanade Andrew Zisserman, University of Oxford 1 Object Instance

More information

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS

LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS LEARNING TO GENERATE CHAIRS WITH CONVOLUTIONAL NEURAL NETWORKS Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas Brox University of Freiburg Presented by: Shreyansh Daftry Visual Learning and Recognition

More information

Object and Class Recognition I:

Object and Class Recognition I: Object and Class Recognition I: Object Recognition Lectures 10 Sources ICCV 2005 short courses Li Fei-Fei (UIUC), Rob Fergus (Oxford-MIT), Antonio Torralba (MIT) http://people.csail.mit.edu/torralba/iccv2005

More information

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision

Object Recognition Using Pictorial Structures. Daniel Huttenlocher Computer Science Department. In This Talk. Object recognition in computer vision Object Recognition Using Pictorial Structures Daniel Huttenlocher Computer Science Department Joint work with Pedro Felzenszwalb, MIT AI Lab In This Talk Object recognition in computer vision Brief definition

More information

Attention and Visual Search: Active Robotic Vision Systems that Search

Attention and Visual Search: Active Robotic Vision Systems that Search Attention and Visual Search: Active Robotic Vision Systems that Search John K. Tsotsos and Ksenia Shubina Dept. of Computer Science & Engineering, and Centre for Vision Research, York University, Toronto,

More information

SURVEY OF STATE-OF-THE-ART METHODS FOR OBJECT RECOGNITION IN 3D POINT CLOUDS. Technical Report ARP3D.TR2. version 1.0

SURVEY OF STATE-OF-THE-ART METHODS FOR OBJECT RECOGNITION IN 3D POINT CLOUDS. Technical Report ARP3D.TR2. version 1.0 Project IP-2014-09-3155 Advanced 3D Perception for Mobile Robot Manipulators SURVEY OF STATE-OF-THE-ART METHODS FOR OBJECT RECOGNITION IN 3D POINT CLOUDS Technical Report ARP3D.TR2 version 1.0 Robert Cupec,

More information

Dynamic Multi-Heuristic A*

Dynamic Multi-Heuristic A* Dynamic Multi-Heuristic A* Fahad Islam, Venkatraman Narayanan and Maxim Likhachev Abstract Many motion planning problems in robotics are high dimensional planning problems. While sampling-based motion

More information

Sub-optimal Heuristic Search and its Application to Planning for Manipulation

Sub-optimal Heuristic Search and its Application to Planning for Manipulation Sub-optimal Heuristic Search and its Application to Planning for Manipulation Mike Phillips Slides adapted from Planning for Mobile Manipulation What planning tasks are there? robotic bartender demo at

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material

DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material DeepIM: Deep Iterative Matching for 6D Pose Estimation - Supplementary Material Yi Li 1, Gu Wang 1, Xiangyang Ji 1, Yu Xiang 2, and Dieter Fox 2 1 Tsinghua University, BNRist 2 University of Washington

More information

Tactile-Visual Integration for Task-Aware Grasping. Mabel M. Zhang, Andreas ten Pas, Renaud Detry, Kostas Daniilidis

Tactile-Visual Integration for Task-Aware Grasping. Mabel M. Zhang, Andreas ten Pas, Renaud Detry, Kostas Daniilidis Tactile-Visual Integration for Task-Aware Grasping Mabel M. Zhang, Andreas ten Pas, Renaud Detry, Kostas Daniilidis Molyneux s Question William Molyneux s famous question to John Locke in 1688: Suppose

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

3D Attention-Driven Depth Acquisition for Object Identification

3D Attention-Driven Depth Acquisition for Object Identification 3D Attention-Driven Depth Acquisition for Object Identification Kai Xu, Yifei Shi, Lintao Zheng, Junyu Zhang, Min Liu, Hui Huang, Hao Su, Daniel Cohen-Or and Baoquan Chen National University of Defense

More information

Recognition of Objects and Places in 3D Point Clouds for Robotic Applications

Recognition of Objects and Places in 3D Point Clouds for Robotic Applications Recognition of Objects and Places in 3D Point Clouds for Robotic Applications Robert Cupec, Emmanuel Karlo Nyarko, Damir Filko, Luka Markasović Faculty of Electrical Engineering Osijek Josip Juraj Strossmayer

More information

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Motivation Aerial robotic operation in GPS-denied Degraded

More information

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration 1 Lab 1 Camera Calibration Objective In this experiment, students will use stereo cameras, an image acquisition program and camera calibration algorithms to achieve the following goals: 1. Develop a procedure

More information

CSE-571. Deterministic Path Planning in Robotics. Maxim Likhachev 1. Motion/Path Planning. Courtesy of Maxim Likhachev University of Pennsylvania

CSE-571. Deterministic Path Planning in Robotics. Maxim Likhachev 1. Motion/Path Planning. Courtesy of Maxim Likhachev University of Pennsylvania Motion/Path Planning CSE-57 Deterministic Path Planning in Robotics Courtesy of Maxim Likhachev University of Pennsylvania Tas k : find a feasible (and cost-minimal) path/motion from the current configuration

More information

Direct Methods in Visual Odometry

Direct Methods in Visual Odometry Direct Methods in Visual Odometry July 24, 2017 Direct Methods in Visual Odometry July 24, 2017 1 / 47 Motivation for using Visual Odometry Wheel odometry is affected by wheel slip More accurate compared

More information

Towards a visual perception system for LNG pipe inspection

Towards a visual perception system for LNG pipe inspection Towards a visual perception system for LNG pipe inspection LPV Project Team: Brett Browning (PI), Peter Rander (co PI), Peter Hansen Hatem Alismail, Mohamed Mustafa, Joey Gannon Qri8 Lab A Brief Overview

More information

The Crucial Components to Solve the Picking Problem

The Crucial Components to Solve the Picking Problem B. Scholz Common Approaches to the Picking Problem 1 / 31 MIN Faculty Department of Informatics The Crucial Components to Solve the Picking Problem Benjamin Scholz University of Hamburg Faculty of Mathematics,

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Filtering and mapping systems for underwater 3D imaging sonar

Filtering and mapping systems for underwater 3D imaging sonar Filtering and mapping systems for underwater 3D imaging sonar Tomohiro Koshikawa 1, a, Shin Kato 1,b, and Hitoshi Arisumi 1,c 1 Field Robotics Research Group, National Institute of Advanced Industrial

More information

CS 558: Computer Vision 13 th Set of Notes

CS 558: Computer Vision 13 th Set of Notes CS 558: Computer Vision 13 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Context and Spatial Layout

More information

Revisiting 3D Geometric Models for Accurate Object Shape and Pose

Revisiting 3D Geometric Models for Accurate Object Shape and Pose Revisiting 3D Geometric Models for Accurate Object Shape and Pose M. 1 Michael Stark 2,3 Bernt Schiele 3 Konrad Schindler 1 1 Photogrammetry and Remote Sensing Laboratory Swiss Federal Institute of Technology

More information

Seminar Heidelberg University

Seminar Heidelberg University Seminar Heidelberg University Mobile Human Detection Systems Pedestrian Detection by Stereo Vision on Mobile Robots Philip Mayer Matrikelnummer: 3300646 Motivation Fig.1: Pedestrians Within Bounding Box

More information

Observations. Basic iteration Line estimated from 2 inliers

Observations. Basic iteration Line estimated from 2 inliers Line estimated from 2 inliers 3 Observations We need (in this case!) a minimum of 2 points to determine a line Given such a line l, we can determine how well any other point y fits the line l For example:

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

Learning with Side Information through Modality Hallucination

Learning with Side Information through Modality Hallucination Master Seminar Report for Recent Trends in 3D Computer Vision Learning with Side Information through Modality Hallucination Judy Hoffman, Saurabh Gupta, Trevor Darrell. CVPR 2016 Nan Yang Supervisor: Benjamin

More information

Fitting (LMedS, RANSAC)

Fitting (LMedS, RANSAC) Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros e-mail: argyros@csd.uoc.gr LMedS and RANSAC What if we have very many outliers? 2 1 Least Median of Squares ri : Residuals Least Squares n 2

More information

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps

OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps OpenStreetSLAM: Global Vehicle Localization using OpenStreetMaps Georgios Floros, Benito van der Zander and Bastian Leibe RWTH Aachen University, Germany http://www.vision.rwth-aachen.de floros@vision.rwth-aachen.de

More information

Planning with Experience Graphs

Planning with Experience Graphs Planning with Experience Graphs Mike Phillips Carnegie Mellon University Collaborators Benjamin Cohen, Andrew Dornbush, Victor Hwang, Sachin ChiFa, Maxim Likhachev MoHvaHon Many tasks are repehhve. They

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Human Body Recognition and Tracking: How the Kinect Works. Kinect RGB-D Camera. What the Kinect Does. How Kinect Works: Overview

Human Body Recognition and Tracking: How the Kinect Works. Kinect RGB-D Camera. What the Kinect Does. How Kinect Works: Overview Human Body Recognition and Tracking: How the Kinect Works Kinect RGB-D Camera Microsoft Kinect (Nov. 2010) Color video camera + laser-projected IR dot pattern + IR camera $120 (April 2012) Kinect 1.5 due

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Temporal Integration of Feature Correspondences For Enhanced Recognition in Cluttered And Dynamic Environments

Temporal Integration of Feature Correspondences For Enhanced Recognition in Cluttered And Dynamic Environments Temporal Integration of Feature Correspondences For Enhanced Recognition in Cluttered And Dynamic Environments Thomas Fäulhammer, Aitor Aldoma, Michael Zillich and Markus Vincze Abstract We propose a method

More information

Visual Perception for Robots

Visual Perception for Robots Visual Perception for Robots Sven Behnke Computer Science Institute VI Autonomous Intelligent Systems Our Cognitive Robots Complete systems for example scenarios Equipped with rich sensors Flying robot

More information

CS 223B Computer Vision Problem Set 3

CS 223B Computer Vision Problem Set 3 CS 223B Computer Vision Problem Set 3 Due: Feb. 22 nd, 2011 1 Probabilistic Recursion for Tracking In this problem you will derive a method for tracking a point of interest through a sequence of images.

More information

Multiview Reconstruction

Multiview Reconstruction Multiview Reconstruction Why More Than 2 Views? Baseline Too short low accuracy Too long matching becomes hard Why More Than 2 Views? Ambiguity with 2 views Camera 1 Camera 2 Camera 3 Trinocular Stereo

More information

Real-Time Vision-Based State Estimation and (Dense) Mapping

Real-Time Vision-Based State Estimation and (Dense) Mapping Real-Time Vision-Based State Estimation and (Dense) Mapping Stefan Leutenegger IROS 2016 Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots The Perception-Action Cycle in

More information

Using RGB, Depth, and Thermal Data for Improved Hand Detection

Using RGB, Depth, and Thermal Data for Improved Hand Detection Using RGB, Depth, and Thermal Data for Improved Hand Detection Rachel Luo, Gregory Luppescu Department of Electrical Engineering Stanford University {rsluo, gluppes}@stanford.edu Abstract Hand detection

More information

Stable Vision-Aided Navigation for Large-Area Augmented Reality

Stable Vision-Aided Navigation for Large-Area Augmented Reality Stable Vision-Aided Navigation for Large-Area Augmented Reality Taragay Oskiper, Han-Pang Chiu, Zhiwei Zhu Supun Samarasekera, Rakesh Teddy Kumar Vision and Robotics Laboratory SRI-International Sarnoff,

More information

Removing Moving Objects from Point Cloud Scenes

Removing Moving Objects from Point Cloud Scenes Removing Moving Objects from Point Cloud Scenes Krystof Litomisky and Bir Bhanu University of California, Riverside krystof@litomisky.com, bhanu@ee.ucr.edu Abstract. Three-dimensional simultaneous localization

More information

3D Reconstruction from Scene Knowledge

3D Reconstruction from Scene Knowledge Multiple-View Reconstruction from Scene Knowledge 3D Reconstruction from Scene Knowledge SYMMETRY & MULTIPLE-VIEW GEOMETRY Fundamental types of symmetry Equivalent views Symmetry based reconstruction MUTIPLE-VIEW

More information

/10/$ IEEE 4048

/10/$ IEEE 4048 21 IEEE International onference on Robotics and Automation Anchorage onvention District May 3-8, 21, Anchorage, Alaska, USA 978-1-4244-54-4/1/$26. 21 IEEE 448 Fig. 2: Example keyframes of the teabox object.

More information

Improving Vision-based Topological Localization by Combining Local and Global Image Features

Improving Vision-based Topological Localization by Combining Local and Global Image Features Improving Vision-based Topological Localization by Combining Local and Global Image Features Shuai Yang and Han Wang Nanyang Technological University, Singapore Introduction Self-localization is crucial

More information

Long-term motion estimation from images

Long-term motion estimation from images Long-term motion estimation from images Dennis Strelow 1 and Sanjiv Singh 2 1 Google, Mountain View, CA, strelow@google.com 2 Carnegie Mellon University, Pittsburgh, PA, ssingh@cmu.edu Summary. Cameras

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, September 28-October

More information

arxiv: v2 [cs.ro] 3 Aug 2017

arxiv: v2 [cs.ro] 3 Aug 2017 A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation Chaitanya Mitash, Kostas E. Bekris and Abdeslam Boularias arxiv:1703.03347v2 [cs.ro] 3 Aug

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Human Upper Body Pose Estimation in Static Images

Human Upper Body Pose Estimation in Static Images 1. Research Team Human Upper Body Pose Estimation in Static Images Project Leader: Graduate Students: Prof. Isaac Cohen, Computer Science Mun Wai Lee 2. Statement of Project Goals This goal of this project

More information