Chapter 8. I/O operations initiated by program instructions. Requests to processor for service from an I/O device

Size: px
Start display at page:

Download "Chapter 8. I/O operations initiated by program instructions. Requests to processor for service from an I/O device"

Transcription

1 hapter 8 The I/O subsystem I/O buses and addresses Programmed I/O I/O operations initiated by program instructions I/O interrupts Requests to processor for service from an I/O device irect Memory ccess (M) Moving data in and out without processor intervention I/O data format change and error control Error detection and correction coding of I/O data omputer ystems esign and rchitecture

2 eparate Memory and I/O onnections to Processor llows tailoring bus to its purpose, but Requires many connections to PU (pins) Memory & I/O access can be distinguished Timing and synch. can be different for each Least expensive option peed penalty omputer ystems esign and rchitecture

3 Memory Mapped I/O ombine memory control and I/O control lines to make one unified bus for memory and I/O This makes addresses of I/O device registers appear to the processor as memory addresses Reduces the number of connections to the processor chip Increased generality may require a few more control signals tandardizes data transfer to and from the processor synchronous operation is optional with memory, but demanded by I/O devices omputer ystems esign and rchitecture

4 ddress pace of Memory Mapped I/O omputer ystems esign and rchitecture

5 Programmed I/O evice Interface tructure Focus on the unified I/O interface between the memory bus and an arbitrary device. everal device registers (memory addresses) share address decode and control logic. omputer ystems esign and rchitecture

6 R I/O Register ddress ecoder elects the I/O space elects this device ssumes R addresses above FFFFF are reserved for I/O registers llows for 1024 registers of 32 bits The range from FFFF to FFFFFFFF 16 is addressable by a negative displacement omputer ystems esign and rchitecture

7 Interface esign for R haracter Output omputer ystems esign and rchitecture

8 ynchronous and emi-synchronous ata Input Used for register to register inside PU Used for memory to PU read with a few cycle memory Used for I/O over longer distances (feet) omputer ystems esign and rchitecture

9 synchronous ata input May I? Yes, you may. Thanks. You re welcome. Ready cknowledge at a v alid t robe dat a (c) synchronous input omputer ystems esign and rchitecture

10 Example: Programmed I/O evice river for haracter Output evice requirements: 8 data lines set to bits of an II character tart signal to begin operation ata bits held until device returns one signal esign decisions matching bus to device Use low order 8 bits of word for character Make loading of character register signal tart lear Ready status bit on tart & set it on one Return Ready as sign of status register for easy testing Output Register tatus Register Ready Unused haracter Unused omputer ystems esign and rchitecture

11 Fig 8.8 haracter Output Program Fragment tatus register OTT = FFFFF110H Output register OUT = FFFFF114H lar r3, Wait ;et branch target for wait. ldr r2, har ;Get character for output. Wait: ld r1, OTT ;Read device status register, brpl r3, r1 ; test for ready, and repeat if not. st r2, OUT ;Output character and start device. For readability: I/O registers are all caps., program locations have initial cap., and instruction mnemonics are lower case 10 MIP R would execute 10,000 instructions waiting for a 1,000 character/sec printer omputer ystems esign and rchitecture

12 implified Interrupt Interface Logic Request and enable flags per device Returns vector and interrupt information on bus when acknowledged omputer ystems esign and rchitecture

13 aisy-hained Interrupt How does acknowledge signal select one and only one device to return interrupt info.? One way is to use a priority chain with acknowledge passed from device to device omputer ystems esign and rchitecture

14 Interrupt Logic for an R I/O Interface Request set by Ready, cleared by acknowledge iack only sent out if this device not requesting omputer ystems esign and rchitecture

15 Interrupt Response Time Response to another interrupt is delayed until interrupts reenabled by rfi haracter input handler disables interrupts for a maximum of 17 instructions If the PU clock is 20MHz, it takes 10 cycles to acknowledge an interrupt, and average execution rate is 8 PI Then 2nd interrupt could be delayed by ( sec omputer ystems esign and rchitecture

16 Priority Interrupt ystem with m = 2 k Levels omputer ystems esign and rchitecture

17 irect Memory ccess (M) llows external devices to access memory without processor intervention Requires a M interface device Must be set up or programmed, and transfer initiated. omputer ystems esign and rchitecture

18 teps a M evice Interface Must Take to Transfer Block of ata 1. Become bus master 2. end memory address and R/W signal 3. ynch. sending and receiving of data using complete 4. Release bus as needed (perhaps after each xfer) 5. dvance memory address to point to next data item 6. ount number of items transferred, check for end of data block 7. Repeat if more data to be transferred omputer ystems esign and rchitecture

19 I/O Interface rchitecture for a M evice omputer ystems esign and rchitecture

20 Multiplexer and elector M hannels omputer ystems esign and rchitecture

21 Error etection and orrection Bit Error Rate, BER, is the probability that, when read, a given bit will be in error. BER is a statistical property Especially important in I/O, where noise and signal integrity cannot be so easily controlled inside processor or worse in outside world Many techniques Parity check EE Encoding R omputer ystems esign and rchitecture

22 Parity hecking dd a Parity Bit to the word Even Parity: Make the parity bit 1 if needed to make number 1 of bits even, else make it 0 Odd Parity: Make the parity bit 1 if needed to make number of 1 bits odd, else make it 0 Example: for word , to add odd parity bit: omputer ystems esign and rchitecture

23 Multiple Parity hecks for a Hamming ode dd parity bits, P i, to data bits, i Reserve bit numbers that are a power of 2 for Parity Bits Example: P 1 =001, P 2 = 010, P 4 =100, etc. Each parity bit, P i, is computed over those data bits that have a "1" at the bit number of the parity bit. Example: P 2 (010) is computed from 3 (011), 6 (110), 7 (111),... Thus each bit takes part in a different combination of parity checks. When the word is checked, if only one bit is in error, all the parity bits that use it in their computation will be incorrect. omputer ystems esign and rchitecture

24 Motivating Example: use the Venn iagram to Explain Error etection and orrection using the Hamming ode b. insert data c. ender omputes and inserts even parity bits d. Receiver recomputes parity bits, detects and corrects error. omputer ystems esign and rchitecture

25 Example:Encode 1011 Using the Hamming ode and Odd Parity Insert the data bits: P 1 P 2 1 P P 1 is computed from P = 1, so P 1 = 1. P 2 is computed from P = 1, so P 2 = 0. P 4 is computed from P = 1, so P 4 = 1. The final encoded number is Note that the Hamming encoding scheme assumes that at most one bit is in error. omputer ystems esign and rchitecture

26 EE (ingle Error orrect, ouble Error etect) dd another parity bit, at position 0, which is computed to make the parity over all bits, data and parity, even or odd. If one bit is in error, a unique set of Hamming checks will fail, and the overall parity will also be wrong. Let c i be 1 if check i fails, otherwise 0. In the case of a 1-bit error, the string c k-1,..., c 1, c 0 will be the binary index of the erroneous bit. For Example if the c i string is 0110 then bit at position 6 is in error. If two bits are in error, one or more Hamming checks will fail, but the overall parity will be correct. Thus the failure of one or more Hamming checks, coupled with correct overall parity means that 2 bits are in error. This assumes that the probability of 3 or more bits being in error is negligible. omputer ystems esign and rchitecture

27 Example: ompute the odd parity EE encoding of the 8-bit value The 8 data bits would have 5 parity bits added to them to make the 13-bit value P 0 P 1 P 2 0 P P Now P 1 = 0, P 2 = 1, P 4 = 0, and P 8 = 0, and we can compute that P 0, overall parity, = 1, giving the encoded value: omputer ystems esign and rchitecture

28 Example: Extract the orrect ata Value from the EE- Encoded tring , ssuming odd Parity The string shows even parity, so there must be a single bit in error. hecks c 2 and c 4 fail, giving the binary index of the erroneous bits as 0110 = 6, so 6 is in error. It should be 0 instead of 1 omputer ystems esign and rchitecture

29 yclic Redundancy heck, R When data is transmitted serially over communications lines, the pattern of errors usually results in several or many bits in error, due to the nature of line noise. The "crackling" of telephone lines is this kind of noise. Parity checks are not as useful in these cases. Instead R checks are used. The R can be generated serially. It usually consists of XOR gates. omputer ystems esign and rchitecture

30 R Generator Based on the Polynomial x 16 + x 12 + x The number and position of XOR gates is determined by the polynomial R does not support error correction but the R bits generated can be used to detect multi-bit errors. The R results in extra R bits, which are appended to the data word and sent along. The receiving entity can check for errors by recomputing the R and comparing it with the one that was transmitted. omputer ystems esign and rchitecture

31 erial ata Transmission with ppended R ode omputer ystems esign and rchitecture

Chapter 8. Input and Output

Chapter 8. Input and Output Chapter 8. Input and Output The I/O subsystem I/O buses and addresses Programmed I/O I/O operations initiated by program instructions I/O interrupts Requests to processor for service from an I/O device

More information

Chapter 8 Overview. I/O operations initiated by program instructions. Requests to processor for service from an I/O device

Chapter 8 Overview. I/O operations initiated by program instructions. Requests to processor for service from an I/O device Chapter 8 Overview The I/O subsystem I/O buses and addresses Programmed I/O I/O operations initiated by program instructions I/O interrupts Requests to processor for service from an I/O device irect Memory

More information

Chapter 4 Topics C S. D A 2/e

Chapter 4 Topics C S. D A 2/e Chapter 4 Topics The esign Process 1-bus Microarchitecture for RC ata Path Implementation Logic esign for the 1-bus RC The Control Unit The 2- and 3-bus Processor esigns The Machine Reset Process Machine

More information

Error Detection And Correction

Error Detection And Correction Announcements Please read Error Detection and Correction sent to you by your grader. Lab Assignment #2 deals with Hamming Code. Lab Assignment #2 is available now and will be due by 11:59 PM on March 22.

More information

Chapter 7- Memory System Design

Chapter 7- Memory System Design Chapter 7- Memory ystem esign RM structure: Cells and Chips Memory boards and modules Cache memory Virtual memory The memory as a sub-system of the computer CPU Main Memory Interface equence of events:

More information

Chapter 5 Processor Design Advanced Topics

Chapter 5 Processor Design Advanced Topics Chapter 5 Processor esign dvanced Topics The principles of pipelining pipelined design of RC Pipeline hazards Instruction-level parallelism (ILP) uperscalar processors Very Long Instruction Word (VLIW)

More information

Chapter 1: The General Purpose Machine

Chapter 1: The General Purpose Machine Chapter 1: The General Purpose Machine Computer ystems esign and rchitecture User s View of a Computer The user sees software, speed, storage capacity, and peripheral device functionality. Computer ystems

More information

Error Detection. Hamming Codes 1

Error Detection. Hamming Codes 1 Error Detection Hamming Codes 1 Error detecting codes enable the detection of errors in data, but do not determine the precise location of the error. - store a few extra state bits per data word to indicate

More information

CHAPTER CONFIGURING THE ERM AND SLAVE MODULES WITH ERM WORKBENCH. In This Chapter:

CHAPTER CONFIGURING THE ERM AND SLAVE MODULES WITH ERM WORKBENCH. In This Chapter: ONFIGURING THE ERM N SLVE MOULES WITH ERM WORKENH HPTER In This hapter: ERM Workbench Software............................................ Launching ERM Workbench...........................................

More information

Selection Information FAST/LS TTL FAST AND LS TTL

Selection Information FAST/LS TTL FAST AND LS TTL election Information FT/L TTL 1 FT ND L TTL GENERL INFORMTION TTL in Perspective ince its introduction, TTL has become the most popular form of digital logic. It has evolved from the original gold-doped

More information

PCI Interrupt Controller for Industry Standard PCI-ISA Bus Architecture using PCI-to-PCI Bridge Technology. Ross L. Armstrong

PCI Interrupt Controller for Industry Standard PCI-ISA Bus Architecture using PCI-to-PCI Bridge Technology. Ross L. Armstrong nterrupt ontroller for ndustry tandard - Bus rchitecture using -to- Bridge echnology oss L. rmstrong igital quipment orporation (cotland) Ltd., osshill ndustrial state, yr, cotland. K6 6B. he demand for

More information

This Errata Sheet contains corrections or changes made after the publication of this manual.

This Errata Sheet contains corrections or changes made after the publication of this manual. Errata heet This Errata heet contains corrections or changes made after the publication of this manual. Product Family: L ate: pril Manual Number --M Revision and ate nd Edition, Rev. ; March hanges to

More information

Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors. 10/12/2017 Input/Output Systems and Peripheral Devices (02-2)

Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors. 10/12/2017 Input/Output Systems and Peripheral Devices (02-2) Programmed I/O Interrupt-Driven I/O Direct Memory Access (DMA) I/O Processors 1 Principle of Interrupt-Driven I/O Multiple-Interrupt Systems Priority Interrupt Systems Parallel Priority Interrupts Daisy-Chain

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Building Memory

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Building Memory Computer Science 324 Computer rchitecture Mount Holyoke College Fall 2007 Topic Notes: Building Memory We ll next look at how we can use the devices we ve been looking at to construct memory. Tristate

More information

1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals.

1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals. 1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals. A typical communication link between the processor and

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 6 Coding I Chapter 3 Information Redundancy Part.6.1 Information Redundancy - Coding A data word with d bits is encoded

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

Ladder logic (LAD) representation Statement list (STL) representation Available in these CPUs

Ladder logic (LAD) representation Statement list (STL) representation Available in these CPUs 1 he following conventions are used in this chapter to illustrate the equivalent ladder logic and statement list instructions and the CPUs in which the instructions are available: = n n adder logic ()

More information

Chapter 1: General Purpose Machine

Chapter 1: General Purpose Machine Chapter 1: General Purpose Machine Computer ystems esign and rchitecture User s View of a Computer The user sees software, speed, storage capacity, and peripheral device functionality. Computer ystems

More information

falling edge Intro Computer Organization

falling edge Intro Computer Organization Clocks 1 A clock is a free-running signal with a cycle time. A clock may be either high or low, and alternates between the two states. The length of time the clock is high before changing states is its

More information

Topic Notes: Building Memory

Topic Notes: Building Memory Computer Science 220 ssembly Language & Comp. rchitecture Siena College Fall 2011 Topic Notes: Building Memory We ll next see how we can use flip-flop devices to construct memory. Buffers We ve seen and

More information

Chapter 2: Machine Languages and Digital Logic

Chapter 2: Machine Languages and Digital Logic Chapter 2: Machine Languages and igital Logic Computer ystems esign and rchitecture What are the components of an I? ometimes known as The Programmers Model of the machine torage cells General and special

More information

CAP3+ NT7532 CAP1- CAP1+ CAP2+ CAP2- Figure. 7

CAP3+ NT7532 CAP1- CAP1+ CAP2+ CAP2- Figure. 7 The tep-up Voltage ircuits Using the step-up voltage circuits within the NT75 chips it is possible to produce 4X, X, X step-ups of the V DD -V voltage levels. V VUT V VUT V VUT AP+ AP- AP+ NT75 AP+ AP-

More information

Chapter 1: Basics of Microprocessor [08 M]

Chapter 1: Basics of Microprocessor [08 M] Microprocessor: Chapter 1: Basics of Microprocessor [08 M] It is a semiconductor device consisting of electronic logic circuits manufactured by using either a Large scale (LSI) or Very Large Scale (VLSI)

More information

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output

MICROPROCESSOR MICROPROCESSOR. From the above description, we can draw the following block diagram to represent a microprocessor based system: Output 8085 SATISH CHANDRA What is a Microprocessor? The word comes from the combination micro and processor. Processor means a device that processes whatever. In this context, processor means a device that processes

More information

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE:

1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: 1. INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER ARCHITECTURE: A microprocessor is a programmable electronics chip that has computing and decision making capabilities similar to central processing unit

More information

Chapter 4: Processor Design. Block Diagram of 1-Bus SRC

Chapter 4: Processor Design. Block Diagram of 1-Bus SRC 4-1 Chapter 4 Processor Design Chapter 4: Processor Design Topics 4.1 The Design Process 4.2 1-Bus Microarchitecture for the SRC 4.3 Data Path Implementation 4.4 Logic Design for the 1-Bus SRC 4.5 The

More information

Introduction to Actel FPGA Architecture

Introduction to Actel FPGA Architecture Introduction to ctel FPG rchitecture pplication Note 65 This overview of the different ctel device families covers the major architectural features in sufficient detail to ensure the reader is familiar

More information

Replacement Policy: Which block to replace from the set?

Replacement Policy: Which block to replace from the set? Replacement Policy: Which block to replace from the set? Direct mapped: no choice Associative: evict least recently used (LRU) difficult/costly with increasing associativity Alternative: random replacement

More information

Architecture of 8085 microprocessor

Architecture of 8085 microprocessor Architecture of 8085 microprocessor 8085 consists of various units and each unit performs its own functions. The various units of a microprocessor are listed below Accumulator Arithmetic and logic Unit

More information

PLC CommuniCations In This Chapter...

PLC CommuniCations In This Chapter... PL ommunications In This hapter... Introduction... PL ommunication Ports Specifications... LE Status Indicators... Steps to Using the LIK PL ommunications... Typical ommunications pplications... W-: om

More information

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by:

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by: T305 T325 B BLOCK 4 T325 Summary Prepared by: Session 3 [Type Dr. Saatchi, your address] Seyed Mohsen [Type your phone number] [Type your e-mail address] Dr. Saatchi, Seyed Mohsen T325 Error Control Coding

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

Example 1: Using Modbus Poll to MB-GATEWAY with DL06 Slave... A-2. Step 3: Connect to the MB-GATEWAY using the Modbus Poll simulator software...

Example 1: Using Modbus Poll to MB-GATEWAY with DL06 Slave... A-2. Step 3: Connect to the MB-GATEWAY using the Modbus Poll simulator software... pplication Examples ppendix In this ppendix... Example 1: Using Modbus Poll to M-GTEWY with L0 Slave... - Items needed for this example:... - Step 1: onnect the M-GTEWY serial port to the L0 secondary

More information

The functional block diagram of 8085A is shown in fig.4.1.

The functional block diagram of 8085A is shown in fig.4.1. Lecture-13 Internal Architecture of Intel 05A The functional block diagram of 05A is shown in fig.4.1. INTA INTR RST7.5 RST5.5 RST6.5 TRAP SOD SID INTERRUPT SERIAL I/O (Internal Bus) FR(S) IR() B() C()

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

N.B. These pastpapers may rely on the knowledge gained from the previous chapters.

N.B. These pastpapers may rely on the knowledge gained from the previous chapters. N.B. These pastpapers may rely on the knowledge gained from the previous chapters. 1 SEC 94-PAPER 1-Q3B Briefly explain the purpose of the PROGRAM COUNTER 2 SEC 94-PAPER 2A-Q4 (a) Why is a 16-bit 60 MHz

More information

Lecture / The Data Link Layer: Framing and Error Detection

Lecture / The Data Link Layer: Framing and Error Detection Lecture 2 6.263/16.37 The Data Link Layer: Framing and Error Detection MIT, LIDS Slide 1 Data Link Layer (DLC) Responsible for reliable transmission of packets over a link Framing: Determine the start

More information

INPUT-OUTPUT ORGANIZATION

INPUT-OUTPUT ORGANIZATION INPUT-OUTPUT ORGANIZATION Peripheral Devices: The Input / output organization of computer depends upon the size of computer and the peripherals connected to it. The I/O Subsystem of the computer, provides

More information

M25PXX 512 Kbit to 32 Mbit, Low Voltage, Serial Flash Memory With 40 MHz or 50 MHz SPI Bus Interface

M25PXX 512 Kbit to 32 Mbit, Low Voltage, Serial Flash Memory With 40 MHz or 50 MHz SPI Bus Interface 512 Kbit to 32 Mbit, Low Voltage, erial Flash Memory ith 40 MHz or 50 MHz PI Bus Interface ATA BRIEF FEATURE UMMARY 512Kbit to 32Mbit of Flash Memory Page Program (up to 256 Bytes) in 1.4ms (typical) ector

More information

Chapter 3 Part 2 Combinational Logic Design

Chapter 3 Part 2 Combinational Logic Design University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski

More information

Computer Systems Design and Architecture

Computer Systems Design and Architecture Computer ystems esign and rchitecture Vincent P. Heuring and Harry F. Jordan epartment of Electrical and Computer Engineering University of Colorado - Boulder Computer ystems esign and rchitecture econd

More information

Page 1. Chapter 1: The General Purpose Machine. Looking Ahead Chapter 5 Important advanced topics in CPU design

Page 1. Chapter 1: The General Purpose Machine. Looking Ahead Chapter 5 Important advanced topics in CPU design 1-1 Chapter 1 The General Purpose Machine Chapter 1: The General Purpose Machine Topics 1.1 The General Purpose Machine 1.2 The User s View 1.3 The Machine/Assembly Language Programmer s View 1.4 The Computer

More information

Controller Implementation--Part I. Cascading Edge-triggered Flip-Flops. Clock Skew. Cascading Edge-triggered Flip-Flops. Why Gating of Clocks is Bad!

Controller Implementation--Part I. Cascading Edge-triggered Flip-Flops. Clock Skew. Cascading Edge-triggered Flip-Flops. Why Gating of Clocks is Bad! Controller Implementation--Part I lternative controller FSM implementation approaches based on: Classical Moore and Mealy machines Time state: ivide and Jump counters Microprogramming (ROM) based approaches»

More information

Automated TestVector Generation. Issues in Test Vector Generation. BIST Approach. Built-In Self Test (BIST) LFSR (cont)

Automated TestVector Generation. Issues in Test Vector Generation. BIST Approach. Built-In Self Test (BIST) LFSR (cont) The oncept of a Fault Testing centers around detection of faults in a circuit. The digital world is made up of interconnected gates Thus, only two things can fail - gates and their interconnections faulty

More information

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07)

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07) Serial I-O for 8051 Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai 400 076 (version 14/10/07) 1 Motivation Serial communications means sending data a single bit at a time. But

More information

Lecture 2 Error Detection & Correction. Types of Errors Detection Correction

Lecture 2 Error Detection & Correction. Types of Errors Detection Correction Lecture 2 Error Detection & Correction Types of Errors Detection Correction Basic concepts Networks must be able to transfer data from one device to another with complete accuracy. Data can be corrupted

More information

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 6 Combinational and sequential circuits

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 6 Combinational and sequential circuits EE 459/5 HL Based igital esign with Programmable Logic Lecture 6 ombinational and sequential circuits Read before class: hapter 2 from textbook Overview ombinational circuits Multiplexer, decoders, encoders,

More information

Content beyond Syllabus. Parity checker and generator

Content beyond Syllabus. Parity checker and generator Class : SE Div: B Subject : Logic Design Content beyond Syllabus Parity checker and generator What is parity bit? The parity generating technique is one of the most widely used error detection techniques

More information

Overview. EECS Components and Design Techniques for Digital Systems. Lec 16 Arithmetic II (Multiplication) Computer Number Systems.

Overview. EECS Components and Design Techniques for Digital Systems. Lec 16 Arithmetic II (Multiplication) Computer Number Systems. Overview EE 15 - omponents and Design Techniques for Digital ystems Lec 16 Arithmetic II (Multiplication) Review of Addition Overflow Multiplication Further adder optimizations for multiplication LA in

More information

VHDL CODE FOR SINGLE BIT ERROR DETECTION AND CORRECTION WITH EVEN PARITY CHECK METHOD USING XILINX 9.2i

VHDL CODE FOR SINGLE BIT ERROR DETECTION AND CORRECTION WITH EVEN PARITY CHECK METHOD USING XILINX 9.2i VHDL CODE FOR SINGLE BIT ERROR DETECTION AND CORRECTION WITH EVEN PARITY CHECK METHOD USING XILINX 9.2i Vivek Singh, Rahul Kumar, Manish Kumar Upadhyay Dept. of Electronics & Communication Engineering..

More information

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science Advanced Computer Networks Department of Computer Science DCS COMSATS Institute of Information Technology Rab Nawaz Jadoon Assistant Professor COMSATS University, Lahore Pakistan Advanced Computer Networks

More information

CS:APP Chapter 4 Computer Architecture Logic Design Randal E. Bryant Carnegie Mellon University

CS:APP Chapter 4 Computer Architecture Logic Design Randal E. Bryant Carnegie Mellon University S:PP hapter 4 omputer rchitecture Logic esign Randal E. Bryant arnegie Mellon University http://csapp.cs.cmu.edu S:PP Overview of Logic esign Fundamental Hardware Requirements ommunication How to get values

More information

University of Alexandria Faculty of Engineering Division of Communications & Electronics

University of Alexandria Faculty of Engineering Division of Communications & Electronics University of Alexandria Faculty of Engineering Division of Communications & Electronics Subject Name: Microprocessors Lecturer: Dr. Mohammed Morsy Academic Year: 2012 2013 Assistants: Eng. Ahmed Bedewy

More information

PART III. Data Link Layer MGH T MGH C I 204

PART III. Data Link Layer MGH T MGH C I 204 PART III Data Link Layer Position of the data-link layer Data link layer duties LLC and MAC sublayers IEEE standards for LANs Chapters Chapter 10 Error Detection and Correction Chapter 11 Data Link Control

More information

Chapter 7 : Input-Output Organization

Chapter 7 : Input-Output Organization Chapter 7 Input-Output organization 7.1 Peripheral devices In addition to the processor and a set of memory modules, the third key element of a computer system is a set of input-output subsystem referred

More information

Microprocessor Architecture. mywbut.com 1

Microprocessor Architecture. mywbut.com 1 Microprocessor Architecture mywbut.com 1 Microprocessor Architecture The microprocessor can be programmed to perform functions on given data by writing specific instructions into its memory. The microprocessor

More information

Alternative Ways to Implement Processor FSMs. Outline. Moore Machine State Diagram. Random Logic. Moore Machine Diagram

Alternative Ways to Implement Processor FSMs. Outline. Moore Machine State Diagram. Random Logic. Moore Machine Diagram Outline lternative controller FSM implementation approaches based on: Classical Moore and Mealy machines Time state: ivide and Counter Jump counters Microprogramming (ROM) based approaches» branch sequencers»

More information

Chapter. Troubleshooting

Chapter. Troubleshooting Troubleshooting hapter In this hapter... -more Micro-Graphic Panel does not Power up... - isplay is lank... - isplay is im... - No User Program... - Lost Firmware Update Mode Screen isplayed... - Updating

More information

ECE/Comp. Sci. 352 { Digital System Fundamentals

ECE/Comp. Sci. 352 { Digital System Fundamentals epartment of Electrical and Computer Engineering University of Wisconsin - Madison Final uggested olution ECE/Comp. ci. 352 { igital ystem Fundamentals. (25 points) hort Questions (a)(5points) Convert

More information

ECE251: Thursday November 8

ECE251: Thursday November 8 ECE251: Thursday November 8 Universal Asynchronous Receiver & Transmitter Text Chapter 22, Sections 22.1.1-22.1.4-read carefully TM4C Data Sheet Section 14-no need to read this A key topic but not a lab

More information

The Memory Hierarchy Part I

The Memory Hierarchy Part I Chapter 6 The Memory Hierarchy Part I The slides of Part I are taken in large part from V. Heuring & H. Jordan, Computer Systems esign and Architecture 1997. 1 Outline: Memory components: RAM memory cells

More information

High Level View. EE 122: Error detection and reliable transmission. Overview. Error Detection

High Level View. EE 122: Error detection and reliable transmission. Overview. Error Detection High Level View EE 22: Error detection and reliable transmission Ion Stoica September 6, 22 Goal: transmit correct information Problem: bits can get corrupted - Electrical interference, thermal noise Solution

More information

MPC860 Interface with Generic MC68000 Bus

MPC860 Interface with Generic MC68000 Bus MPC860 Interface with Generic MC68000 Bus The main point of this document is to demonstrate an interface between an MPC860 and a generic MC68000 peripheral. It should be noted that this interface only

More information

Introduction. Chapter 4. Instruction Execution. CPU Overview. University of the District of Columbia 30 September, Chapter 4 The Processor 1

Introduction. Chapter 4. Instruction Execution. CPU Overview. University of the District of Columbia 30 September, Chapter 4 The Processor 1 Chapter 4 The Processor Introduction CPU performance factors Instruction count etermined by IS and compiler CPI and Cycle time etermined by CPU hardware We will examine two MIPS implementations simplified

More information

CMSC 2833 Lecture 18. Parity Add a bit to make the number of ones (1s) transmitted odd.

CMSC 2833 Lecture 18. Parity Add a bit to make the number of ones (1s) transmitted odd. Parity Even parity: Odd parity: Add a bit to make the number of ones (1s) transmitted even. Add a bit to make the number of ones (1s) transmitted odd. Example and ASCII A is coded 100 0001 Parity ASCII

More information

lecture 22 Input / Output (I/O) 4

lecture 22 Input / Output (I/O) 4 lecture 22 Input / Output (I/O) 4 - asynchronous bus, handshaking - serial bus Mon. April 4, 2016 "synchronous" bus = clock based (system bus clock is slower than CPU clock) "asynchronous" bus = not clock

More information

The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port

The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port The MC9S12 in Expanded Mode Using MSI logic to build ports Using MSI logic to build an output port Using MSI logic to build an input port A Simple Parallel Output Port We want a port which will write 8

More information

Appendix. Productivity1000 Error Codes. In This Appendix...

Appendix. Productivity1000 Error Codes. In This Appendix... Productivity00 Error odes ppendix In This ppendix... ommunications Error odes... 2 Module Error odes... PU Error odes... Project Error odes... Project Error Messages... ppendix : Productivity00 Error odes

More information

Other Data Link Protocols: Computer Networks by Prof Kamal K Mehta Associate Professor Dept of Computer Science & Engineering

Other Data Link Protocols: Computer Networks by Prof Kamal K Mehta Associate Professor Dept of Computer Science & Engineering Other Data Link Protocols: Data Link Protocol ategories A protocol in data communications is the set of rules or specifications used to implement partially a layer or one or more layers of the OSI model.

More information

UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan

UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan UPY14602-DIGITAL ELECTRONICS AND MICROPROCESSORS Lesson Plan UNIT I - NUMBER SYSTEMS AND LOGIC GATES Introduction to decimal- Binary- Octal- Hexadecimal number systems-inter conversions-bcd code- Excess

More information

8051 Serial Communication

8051 Serial Communication 8051 Serial Communication Basics of serial communication Parallel: transfers eight bits of data simultaneously over eight data lines expensive - short distance fast Serial : one bit at a time is transferred

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 What is an Operating System? What is

More information

State Elements. Register File Design and Memory Design. An unclocked state element. Latches and Flip-flops

State Elements. Register File Design and Memory Design. An unclocked state element. Latches and Flip-flops SE 67.0: Introduction to omputer Architecture State Elements egister File esign and Memory esign Unclocked vs. locked locks used in synchronous logic when shouln element that contains state be updated?

More information

Parallel logic circuits

Parallel logic circuits Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note on Disk I/O 1 I/O Devices Storage devices Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD User

More information

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS

MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS MICROPROCESSOR AND MICROCONTROLLER BASED SYSTEMS UNIT I INTRODUCTION TO 8085 8085 Microprocessor - Architecture and its operation, Concept of instruction execution and timing diagrams, fundamentals of

More information

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses

Today. Comments about assignment Max 1/T (skew = 0) Max clock skew? Comments about assignment 3 ASICs and Programmable logic Others courses Today Comments about assignment 3-43 Comments about assignment 3 ASICs and Programmable logic Others courses octor Per should show up in the end of the lecture Mealy machines can not be coded in a single

More information

EE 122: Error detection and reliable transmission. Ion Stoica September 16, 2002

EE 122: Error detection and reliable transmission. Ion Stoica September 16, 2002 EE 22: Error detection and reliable transmission Ion Stoica September 6, 2002 High Level View Goal: transmit correct information Problem: bits can get corrupted - Electrical interference, thermal noise

More information

13 Entering Programs

13 Entering Programs Entering Ladder Programs Purpose of Section Handheld Programmer Key Sequences Instruction Overview This section will demonstrate how to use the Handheld programmer for mnemonic programming. The HPP is

More information

Chapter. Troubleshooting. In This Chapter...

Chapter. Troubleshooting. In This Chapter... Troubleshooting hapter In This hapter... ommon Problems...- Troubleshooting Flow hart...- Touch Panel does not Power up...- isplay is lank...- isplay is im...- No User Program...- Firmware Recovery Tool...-

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

1. Internal Architecture of 8085 Microprocessor

1. Internal Architecture of 8085 Microprocessor 1. Internal Architecture of 8085 Microprocessor Control Unit Generates signals within up to carry out the instruction, which has been decoded. In reality causes certain connections between blocks of the

More information

Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide

Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide Using the MC9S12 in Expanded Mode External Ports S12CPUV2 Reference Manual Multiplexed External Bus Interface (MEBI) Module V3 Block User Guide - Computer with N bit address bus can access 2 N bytes of

More information

Ch 4. Standard Single Purpose Processors: Peripherals

Ch 4. Standard Single Purpose Processors: Peripherals EE414 Embedded Systems Ch 4. Standard Single Purpose Processors: Peripherals Part 2/5: Parallel Interface Byung Kook Kim School of Electrical Engineering Korea Advanced Institute of Science and Technology

More information

Chapter 6. I/O issues

Chapter 6. I/O issues Computer Architectures Chapter 6 I/O issues Tien-Fu Chen National Chung Cheng Univ Chap6 - Input / Output Issues I/O organization issue- CPU-memory bus, I/O bus width A/D multiplex Split transaction Synchronous

More information

Chapter 10 Error Detection and Correction 10.1

Chapter 10 Error Detection and Correction 10.1 Chapter 10 Error Detection and Correction 10.1 10-1 INTRODUCTION some issues related, directly or indirectly, to error detection and correction. Topics discussed in this section: Types of Errors Redundancy

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Quiz 2 Agenda Lecture: Chapter 2 (2-7 through 2-11):

More information

Standard RLL Instructions

Standard RLL Instructions R Instructions InThishapter... oolean Instructions omparative oolean Immediate Instructions Timer, ounter and hift Register Instructions ccumulator / tack oad and Output ata Instructions ogical Instructions

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

CHAPTER 12 REGISTERS AND COUNTERS

CHAPTER 12 REGISTERS AND COUNTERS HPTER 2 REGISTERS N OUNTERS ontents 2. Registers and Register Transfers 2.2 Shift Registers 2.3 esign of inary ounters 2.4 ounters for Other Sequences 2.5 ounter esign Using SR and JK FlipFlops 2.6 erivation

More information

Chapter. Troubleshooting. In this Chapter...

Chapter. Troubleshooting. In this Chapter... Troubleshooting hapter In this hapter... Troubleshooting... - -more Micro Panel does not Power up... - isplay is lank... - isplay is im... - No User Program... - Lost Firmware Update Mode Screen isplayed...

More information

1. Draw general diagram of computer showing different logical components (3)

1. Draw general diagram of computer showing different logical components (3) Tutorial 1 1. Draw general diagram of computer showing different logical components (3) 2. List at least three input devices (1.5) 3. List any three output devices (1.5) 4. Fill the blank cells of the

More information

These three counters can be programmed for either binary or BCD count.

These three counters can be programmed for either binary or BCD count. S5 KTU 1 PROGRAMMABLE TIMER 8254/8253 The Intel 8253 and 8254 are Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.

More information

Link Layer: Error detection and correction

Link Layer: Error detection and correction Link Layer: Error detection and correction Topic Some bits will be received in error due to noise. What can we do? Detect errors with codes Correct errors with codes Retransmit lost frames Later Reliability

More information

Growing Together Globally Serial Communication Design In Embedded System

Growing Together Globally Serial Communication Design In Embedded System Growing Together Globally Serial Communication Design In Embedded System Contents Serial communication introduction......... 01 The advantages of serial design......... 02 RS232 interface......... 04 RS422

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

Exam Computer Systems/Computer Architecture and Organisation Bachelor 2 nd year, EE and CS, EWI

Exam Computer Systems/Computer Architecture and Organisation Bachelor 2 nd year, EE and CS, EWI Exam Computer Systems/Computer Architecture and Organisation Bachelor 2 nd year, EE and CS, EWI Module/course code: Computer Systems 201400210(CS) / 201400217(EE) Date: 30 September 2016 Time: 13:45-15:30

More information

CSE 461: Framing, Error Detection and Correction

CSE 461: Framing, Error Detection and Correction CSE 461: Framing, Error Detection and Correction Next Topics Framing Focus: How does a receiver know where a message begins/ends Error detection and correction Focus: How do we detect and correct messages

More information

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics

Chapter 4. MARIE: An Introduction to a Simple Computer. Chapter 4 Objectives. 4.1 Introduction. 4.2 CPU Basics Chapter 4 Objectives Learn the components common to every modern computer system. Chapter 4 MARIE: An Introduction to a Simple Computer Be able to explain how each component contributes to program execution.

More information