Announcements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary

Save this PDF as:

Size: px
Start display at page:

Download "Announcements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary"

Transcription

1 Announcements EE108B Lecture MIPS Assembly Language III Christos Kozyrakis Stanford University PA1 available, due on Thursday 2/8 Work on you own (no groups) Homework #1 due on Tue 1/23, 5pm outside Gates 310 Lab #1 is available Due on Tuesday 1/30, midnight EE108B Review Session Friday: 2:15pm-3:05pm in Thornton Review of MIPS Assembly Language II MIPS Machine Instruction Review: Instruction Format Summary Memory data transfer Data alignment Control transfer instructions Branches and jumps Machine language Encoding assembly instructions MIPS instruction formats R-format 3 4

3 I-Format Example (Incorrect) PC Relative Addressing Consider the bne instruction bne \$t2, \$s2, Exit # goto Exit if \$t2!= \$s2 Fill in each of the fields Bits How can we improve our use of immediate addresses when branching? Since instructions are always 32 bits long and word addressing requires alignment, every address must be a multiple of 4 bytes Therefore, we actually branch to the address that is PC immediate First Second Source Source Register Register Immediate This is not the optimum encoding 9 10 I-Format Example Branching Far Away Re-consider the bne instruction bne \$t2, \$s2, Exit # goto Exit if \$t2!= \$s2 Use PC-Relative addressing for the immediate Bits First Second Source Source Register Register Immediate If the target is greater than to words away, then the compiler inverts the condition and inserts an unconditional jump Consider the example where L1 is far away beq \$s0, \$s1, L1 # goto L1 if S\$0=\$s1 Can be rewritten as bne \$s0, \$s1, L2 j L1 L2: # Inverted # Unconditional jump Compiler must be careful not to cross 256 MB boundaries with jump instructions 11 12

6 Loading a 32 bit Constant For Loop Example MIPS only has 16 bits of immediate value Could load from memory but still have to generate memory address Use lui and ori to load 0xdeadbeef into \$a0 lui \$a0, 0xdead # \$a0 = dead0000 ori \$a0, \$a0, 0xbeef # \$a0 = deadbeef /* Compute x raised to nonnegative power p */ int ipowr_for(int x, unsigned p) int result; for (result = 1; p!= 0; p = p>>1) if (p & 0x1) result *= x; x = x*x; return result; Algorithm Exploit property that p = p 0 + 2p 1 + 4p n 1 p n 1 Gives: x p = z 0 z 2 1 (z 2 2 ) 2 ( ((z n 12 ) 2 ) ) 2 z i = 1 when p i = 0 z i = x when p i = 1 times Complexity O(log p) Example 3 10 = 3 2 * 3 8 = 3 2 * ((3 2 ) 2 ) While Loop Transformation For Loop Transformation While loop review while () Similar to while loop for (; ; ) goto test; loop: test: if () goto loop; ; goto test; loop: ; test: if () goto loop; 23 24

9 Nested Stacks The stack grows downward and shrinks upward A: CALL B B: CALL C C: RET RET A A B C A A B A B Stacks Data is pushed onto the stack to store it and popped from the stack when not longer needed MIPS does not support in hardware (use loads/stores) Procedure calling convention requires one Calling convention Common rules across procedures required Recent machines are set by software convention and earlier machines by hardware instructions Using Stacks Stacks can grow up or down Stack grows down in MIPS Entire stack frame is pushed and popped, rather than single elements MIPS Storage Layout Procedure Activation Record (Frame) textbook Each procedure creates an activation record on the stack \$sp = 7fffffff 16 \$gp = Stack Dynamic data Static data Text/Code Reserved Stack and dynamic area grow towards one another to maximize storage use before collision First word of frame \$fp Last word of frame \$sp Saved arguments Saved return address Saved registers (if any) Local Arrays and Structures (if any) Higher addresses Stack grows downwards Lower addresses 35 36

10 Procedure Activation Record (Frame) SGI/GCC Compiler Each procedure creates an activation record on the stack At least 32 bytes by convention to allow for \$a0-\$a3, \$ra, \$fp and be double double word aligned (16 byte multiple) First word of frame \$fp Arguments (>= 16 B) Local Arrays and Structures (if any) Saved return address Saved registers Higher addresses Stack grows downwards Register Assignments Use the following calling conventions Name Register number Usage \$zero 0 the constant value 0 \$v0-\$v1 2-3 values for results and expression evaluation \$a0-\$a3 4-7 arguments \$t0-\$t temporaries \$s0-\$s saved \$t8-\$t more temporaries \$gp 28 global pointer \$sp 29 stack pointer \$fp 30 frame pointer \$ra 31 return address Last word of frame \$sp Space for nested call args (>= 16 B) Lower addresses Register Assignments (cont) Caller vs. Callee Saved Registers 0 \$zero Zero constant (0) 1 \$at Reserved for assembler 2 \$v0 Expression results 3 \$v1 4 \$a0 Arguments 5 \$a1 6 \$a2 7 \$a3 8 \$t0 Caller saved \$t7 16 \$s0 Callee saved \$s7 24 \$t8 Temporary (cont d) 25 \$t9 26 \$k0 Reserved for OS kernel 27 \$k1 28 \$gp Pointer to global area 29 \$sp Stack Pointer 30 \$fp Frame Pointer 31 \$ra Return address Preserved Not Preserved Saved registers (\$s0-\$s7) Temporary registers (\$t0-\$t9) Stack/frame pointer (\$sp, \$fp, \$gp)argument registers (\$a0-\$a3) Return address (\$ra) Return values (\$v0-\$v1) Preserved registers (Callee Save) Save register values on stack prior to use Restore registers before return Not preserved registers (Caller Save) Do what you please and expect callees to do likewise Should be saved by the caller if needed after procedure call 39 40

12 Running Factorial Example Factorial Again Tail Recursion main() fact(3); sp(main) fp(fact(3)) sp(fact(3)) 32 fp(fact(2)) sp(fact(2)) 0 3 main 92 2 link 60 1 main() frame fact(3) frame fact(2) frame Stack just before call of fact(1) int fact_t (int n, int val) if (n <= 1) return val; return fact_t(n-1, val*n); int fact(int n) return fact_t(n, 1); fact_t(n, val) return fact_t(, ) Form Directly return value returned by recursive call Consequence Can convert into loop fact_t(n, val) start: val = ; n = ; goto start; Removing Tail Recursion Effect of Optimization Turn recursive chain into single procedure (leaf) Eliminate procedure call overhead No stack frame needed Constant space requirement Vs. linear for recursive version int fact_t (int n, int val) start: if (n <= 1) return val; val = val*n; n = n-1; goto start; Assembly Code for fact_t int fact_t (int n, int val) start: if (n <= 1) return val; val = val*n; n = n-1; goto start; fact_t: addui \$v0, \$a1, \$zero # \$v0 = \$a1 start: slti \$t0, \$a0, 2 # n < 2 beq \$t0, \$zero, skip # if n >= 2 goto skip jr \$ra # return skip: mult \$v0, \$v0, \$a0 # val = val * n addiu \$a0, \$a0, -1 # n = n - 1 j start # goto start 47 48

13 Pseudoinstructions Assembler expands pseudoinstructions move \$t0, \$t1 # Copy \$t1 to \$t0 addu \$t0, \$zero, \$t1 # Actual instruction Some pseudoinstructions need a temporary register Cannot use \$t, \$s, etc. since they may be in use The \$at register is reserved for the assembler blt \$t0, \$t1, L1 # Goto L1 if \$t0 < \$t1 slt \$at, \$t0, \$t1 # Set \$at = 1 if \$t0 < \$t1 bne \$at, \$zero, L1 # Goto L1 if \$at!= 0 49

EE108B Lecture 3. MIPS Assembly Language II

EE108B Lecture 3 MIPS Assembly Language II Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Urgent: sign up at EEclass and say if you are taking 3 or 4 units Homework

MIPS%Assembly% E155%

MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage \$0 0 the constant value 0 \$at 1 assembler temporary

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture

COMP 303 Computer Architecture Lecture 3 Comp 303 Computer Architecture 1 Supporting procedures in computer hardware The execution of a procedure Place parameters in a place where the procedure can access

CS 61c: Great Ideas in Computer Architecture

MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: \$s0-\$s7,\$t0-\$t9, \$0

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

Mips Code Examples Peter Rounce

Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register \$2 then

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

SPIM Instruction Set

SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large

MIPS Reference Guide

MIPS Reference Guide Free at PushingButtons.net 2 Table of Contents I. Data Registers 3 II. Instruction Register Formats 4 III. MIPS Instruction Set 5 IV. MIPS Instruction Set (Extended) 6 V. SPIM Programming

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats

Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:

Architecture II. Computer Systems Laboratory Sungkyunkwan University

MIPS Instruction ti Set Architecture II Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Making Decisions (1) Conditional operations Branch to a

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 \$zero all bits are zero 16 \$s0 local variable 1 \$at assembler temporary 17 \$s1 local

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College

Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

We will study the MIPS assembly language as an exemplar of the concept.

MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

Concocting an Instruction Set

Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi \$s2, \$s2, -1 beq \$s0, \$s1, loop or \$s2, \$s1, \$zero

Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi \$s2, \$s2, -1 beq \$s0, \$s1, loop or \$s2, \$s1, \$zero 25 Comparisons Set on less than (slt) compares its source registers

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology

Computer Organization MIPS Architecture Department of Computer Science Missouri University of Science & Technology hurson@mst.edu Computer Organization Note, this unit will be covered in three lectures.

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction

page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A General-Purpose Computer The von Neumann Model Many architectural approaches

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21

2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown

MIPS Instruction Format

MIPS Instruction Format MIPS uses a 32-bit fixed-length instruction format. only three different instruction word formats: There are Register format Op-code Rs Rt Rd Function code 000000 sssss ttttt ddddd

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

CSE Lecture In Class Example Handout

CSE 30321 Lecture 07-08 In Class Example Handout Part A: J-Type Example: If you look in your book at the syntax for j (an unconditional jump instruction), you see something like: e.g. j addr would seemingly

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Let s build a MIPS CPU but using Harvard architecture Basic Computer System Registers ALU

All instructions have 3 operands Operand order is fixed (destination first)

Instruction Set Architecture for MIPS Processors Overview Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu These slides are available at: http://www.csc.lsu.edu/~durresi/_07/

Assembly Programming

Designing Computer Systems Assembly Programming 08:34:48 PM 23 August 2016 AP-1 Scott & Linda Wills Designing Computer Systems Assembly Programming In the early days of computers, assembly programming

Week 10: Assembly Programming

Week 10: Assembly Programming Arithmetic instructions Instruction Opcode/Function Syntax Operation add 100000 \$d, \$s, \$t \$d = \$s + \$t addu 100001 \$d, \$s, \$t \$d = \$s + \$t addi 001000 \$t, \$s, i \$t = \$s +

MIPS Instruction Reference

Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

CS3350B Computer Architecture MIPS Procedures and Compilation

CS3350B Computer Architecture MIPS Procedures and Compilation Marc Moreno Maza http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html Department of Computer Science University of Western Ontario, Canada

CS61C : Machine Structures

inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #9: MIPS Procedures 2006-07-11 CS 61C L09 MIPS Procedures (1) Andy Carle C functions main() { int i,j,k,m;... i = mult(j,k);... m =

UCB CS61C : Machine Structures

inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 Introduction to MIPS Procedures I Sr Lecturer SOE Dan Garcia 2014-02-14 If cars broadcast their speeds to other vehicles (and the

COMP MIPS instructions 2 Feb. 8, f = g + h i;

Register names (save, temporary, zero) From what I have said up to now, you will have the impression that you are free to use any of the 32 registers (\$0,..., \$31) in any instruction. This is not so, however.

CPS311 - COMPUTER ORGANIZATION. A bit of history

CPS311 - COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

CSE Lecture In Class Example Handout

CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

Procedures and Stacks

Procedures and Stacks Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. March 15, 2018 L10-1 Announcements Schedule has shifted due to snow day Quiz 2 is now on Thu 4/12 (one week later)

Anne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B

Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. See P&H Chapter: 2.16-2.20, 4.1-4.4,

CS 61C: Great Ideas in Computer Architecture More RISC-V Instructions and How to Implement Functions

CS 61C: Great Ideas in Computer Architecture More RISC-V Instructions and How to Implement Functions Instructors: Krste Asanović and Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 9/14/17 Fall

Digital System Design II

Digital System Design II 数字系统设计 II Peng Liu ( 刘鹏 ) Dept. of Info. Sci. & Elec. Engg. Zhejiang University liupeng@zju.edu.cn Lecture 2 MIPS Instruction Set Architecture 2 Textbook reading MIPS ISA 2.1-2.4

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

ECE Exam I February 19 th, :00 pm 4:25pm

ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

Compiling Techniques

Lecture 10: An Introduction to MIPS assembly 18 October 2016 Table of contents 1 Overview 2 3 Assembly program template.data Data segment: constant and variable definitions go here (including statically

Solutions for Chapter 2 Exercises

Solutions for Chapter 2 Exercises 1 Solutions for Chapter 2 Exercises 2.2 By lookup using the table in Figure 2.5 on page 62, 7fff fffa hex = 0111 1111 1111 1111 1111 1111 1111 1010 two = 2,147,483,642

Concocting an Instruction Set

Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction

CS3350B Computer Architecture

CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures

Review (1/2) CS61C - Machine Structures Lecture 11 - Starting a Program October 4, 2000 David Patterson http://www-inst.eecs.berkeley.edu/~cs61c/ IEEE 754 Floating Point Standard: Kahan pack as much in

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer

Instructions (354 Review) Forecast Instructions are the words of a computer Instruction set architecture (ISA) is its vocabulary With a few other things, this defines the interface of computers But implementations

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons Instructor: Krste Asanovic, Randy H. Katz hdp://inst.eecs.berkeley.edu/~cs61c/sp12 Fall 2012 - - Lecture #7 1 New- School Machine Structures

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline.

The Main Idea of Today s Lecture Code Generation We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

Arguments and Return Values. EE 109 Unit 16 Stack Frames. Assembly & HLL s. Arguments and Return Values

1 Arguments and Return Values 2 EE 109 Unit 16 Stack Frames MIPS convention is to use certain registers for this task used to pass up to 4 arguments. If more arguments, use the stack used for return value

ECE/CS 552: Introduction To Computer Architecture 1. Instructor:Mikko H. Lipasti. University of Wisconsin-Madison. Basics Registers and ALU ops

ECE/CS 552: Instruction Sets Instructor:Mikko H. Lipasti Fall 2010 University of Wisconsin-Madison Lecture notes partially based on set created by Mark Hill. Instructions (354 Review) Instructions are

MIPS Procedure Calls. Lecture 6 CS301

MIPS Procedure Calls Lecture 6 CS301 Function Call Steps Place parameters in accessible location Transfer control to function Acquire storage for procedure variables Perform calculations in function Place

Operands and Addressing Modes Where is the data? Addresses as data Names and Values Indirection L5 Addressing Modes 1 Assembly Exercise Let s write some assembly language programs Program #1: Write a function

Computer Architecture Experiment

Computer Architecture Experiment Jiang Xiaohong College of Computer Science & Engineering Zhejiang University Architecture Lab_jxh 1 Topics 0 Basic Knowledge 1 Warm up 2 simple 5-stage of pipeline CPU

Lecture 6 Decision + Shift + I/O

Lecture 6 Decision + Shift + I/O Instructions so far MIPS C Program add, sub, addi, multi, div lw \$t0,12(\$s0) sw \$t0, 12(\$s0) beq \$s0, \$s1, L1 bne \$s0, \$s1, L1 j L1 (unconditional branch) slt reg1,reg2,reg3

CHW 362 : Computer Architecture & Organization

CHW 362 : Computer Architecture & Organization Instructors: Dr Ahmed Shalaby Dr Mona Ali http://bu.edu.eg/staff/ahmedshalaby14# http://www.bu.edu.eg/staff/mona.abdelbaset Assignment What is the size of

Chapter 6. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 6 <1>

Chapter 6 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 6 Chapter 6 :: Topics Introduction Assembly Language Machine Language Programming Addressing

Lecture 5. Announcements: Today: Finish up functions in MIPS

Lecture 5 Announcements: Today: Finish up functions in MIPS 1 Control flow in C Invoking a function changes the control flow of a program twice. 1. Calling the function 2. Returning from the function In

A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Announcements! HW2 available later today HW2 due in one week and a half Work alone

Inequalities in MIPS (2/4) Inequalities in MIPS (1/4) Inequalities in MIPS (4/4) Inequalities in MIPS (3/4) UCB CS61C : Machine Structures

CS61C L8 Introduction to MIPS : Decisions II & Procedures I (1) Instructor Paul Pearce inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures http://www.xkcd.org/627/ Lecture 8 Decisions & and Introduction

Lecture 3: The Instruction Set Architecture (cont.)

Lecture 3: The Instruction Set Architecture (cont.) COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Review: Instructions Computers process information

Lecture 6: Assembly Programs

Lecture 6: Assembly Programs Today s topics: Procedures Examples Large constants The compilation process A full example 1 Procedures Local variables, AR, \$fp, \$sp Scratchpad and saves/restores, \$fp Arguments

Shift and Rotate Instructions

Shift and Rotate Instructions Shift and rotate instructions facilitate manipulations of data (that is, modifying part of a 32-bit data word). Such operations might include: Re-arrangement of bytes in a

CS 4200/5200 Computer Architecture I

CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers \$0 \$31 Multiply divide Coprocessor 1 (FPU) Registers

EE 109 Unit 8 MIPS Instruction Set

1 EE 109 Unit 8 MIPS Instruction Set 2 Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system

Procedure Call Instructions

Procedure Calling Steps required 1. Place parameters in registers x10 to x17 2. Transfer control to procedure 3. Acquire storage for procedure 4. Perform procedure s operations 5. Place result in register

Review of Activation Frames. FP of caller Y X Return value A B C

Review of Activation Frames In general, activation frames are organized like this: HI LO Bookkeeping/preserved registers I/O parameters Locals and temps RA of caller FP of caller Y X Return value A B C

EE 352 Unit 3 MIPS ISA Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system Instruction set is the vocabulary the HW can understand and the SW is composed

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 4: Arithmetic and Data Transfer Instructions Agenda Review of last lecture Logic and shift instructions Load/store instructionsi

EE 352 Unit 6 Stack Frames Recursive Routines Arguments and Return Values MIPS convention is to use certain registers for this task \$a0 - \$a3 used to pass up to 4 arguments. If more arguments, use the

Chapter loop: lw \$v1, 0(\$a0) addi \$v0, \$v0, 1 sw \$v1, 0(\$a1) addi \$a0, \$a0, 1 addi \$a1, \$a1, 1 bne \$v1, \$zero, loop

Chapter 3 3.7 loop: lw \$v1, 0(\$a0) addi \$v0, \$v0, 1 sw \$v1, 0(\$a1) addi \$a0, \$a0, 1 addi \$a1, \$a1, 1 bne \$v1, \$zero, loop Instructions Format OP rs rt Imm lw \$v1, 0(\$a0) I 35 4 3 0 addi \$v0, \$v0, 1 I 8

Architecture I. Computer Systems Laboratory Sungkyunkwan University

MIPS Instruction ti Set Architecture I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Architecture (1) the attributes of a system as seen by the

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

Chapter 6 :: Topics. Chapter 6 :: Architecture

Chapter 6 :: Architecture Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Chapter 6 :: Topics Introduction Assembly Language Machine Language Programming Addressing Modes

Compilers and computer architecture: A realistic compiler to MIPS

1 / 1 Compilers and computer architecture: A realistic compiler to MIPS Martin Berger November 2017 Recall the function of compilers 2 / 1 3 / 1 Recall the structure of compilers Source program Lexical

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Machine Interpretation Levels of Representation/Interpretation

Stacks and Procedures

Stacks and Procedures I forgot, am I the Caller or Callee? Don t know. But, if you PUSH again I m gonna POP you. Support for High-Level Language constructs are an integral part of modern computer organization.

Lecture 2: RISC V Instruction Set Architecture. Housekeeping

S 17 L2 1 18 447 Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University Housekeeping S 17 L2 2 Your goal today get bootstrapped on RISC V RV32I to start

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

Lecture Topics. Branch Condition Options. Branch Conditions ECE 486/586. Computer Architecture. Lecture # 8. Instruction Set Principles.

ECE 486/586 Computer Architecture Lecture # 8 Spring 2015 Portland State University Instruction Set Principles MIPS Control flow instructions Dealing with constants IA-32 Fallacies and Pitfalls Reference:

EN164: Design of Computing Systems Lecture 11: Processor / ISA 4

EN164: Design of Computing Systems Lecture 11: Processor / ISA 4 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14

CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but

Lecture 2: RISC V Instruction Set Architecture. James C. Hoe Department of ECE Carnegie Mellon University

18 447 Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L02 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping get bootstrapped

COMP 303 MIPS Processor Design Project 3: Simple Execution Loop

COMP 303 MIPS Processor Design Project 3: Simple Execution Loop Due date: November 20, 23:59 Overview: In the first three projects for COMP 303, you will design and implement a subset of the MIPS32 architecture

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.

Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations

Field 6-Bit Op Code rs Field rt Field 16-bit Immediate field

Introduction to MIPS Instruction Set Architecture The MIPS used by SPIM is a 32-bit reduced instruction set architecture with 32 integer and 32 floating point registers. Other characteristics are as follows:

MIPS Assembly Programming

COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

The Single Cycle Processor

EECS 322 Computer Architecture The Single Cycle Processor Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please viewshow CWRU