# 2.1 Binary Logic and Gates

Size: px
Start display at page:

Transcription

1 1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi Fall Binary Logic and Gates Digital circuits hardware components that manipulate binary information implemented using transistors and interconnections in IC each basic circuit is called logic gate performs a specific logical operation Boolean Algebra mathematical notation to specify the operation of each gate used to analyze and design circuits

2 2 2.1 Binary Logic and Gates Binary Logic take on two discrete values & with the operations of mathematical logic three logical operations 1) AND Z = X Y (Z is equal to X and Y) 2) OR Z = X + Y (Z is equal to X or Y) 3) NOT Z = X' (Z is equal to NOT X) -- complement operation (0 => 1 & 1 => 0) AND/OR is similar to multiplication/addition 2.1 Binary Logic and Gates logical OR logical AND logical NOT = = 0 0' = = = 0 1' = = = = = 1

3 3 2.1 Binary Logic and Gates Logic Gates electronic circuits that operate on one or more input signals to produce an output signal voltage operated circuits: logic 0 & logic 1 intermediate region is crossed during state transition 2.2 Boolean Algebra deal with binary variables and logic operations with three basic logic operations AND, OR, NOT express logical relationship between binary variables F = X + Y' Z Consider F = X + Y' Z represented in a truth table transformed from an algebraic expression into a circuit diagram composed of logic gates (Fig 2.3)

4 4 2.2 Boolean Algebra Basic Identities of Boolean Algebra most basic identities of Boolean algebra dual - obtained by interchanging OR and AND, and replacing 1's by 0's and 0's by 1's Table 2-3. Basic Identities of Boolean Algebra 2.2 Boolean Algebra AB + C + 1 = 1 (by identity 3) commutative laws -- the order doesn't affect the result X + Y = Y + X, X Y = Y X associative laws -- parentheses can be removed altogether X + (Y + Z) = (X + Y) + Z = X + Y + Z X (Y Z) = (X Y) Z = X Y Z distributive laws (dual) X + Y Z = (X + Y) (X + Z) (A + B) (A + CD) =? DeMorgan's theorem -- obtain complement of an expression (X + Y)' = X' Y' (X Y)' = X' + Y' can be extended to three or more variables (A + B + C +... )' = A' B' C'...

5 5 2.2 Boolean Algebra Algebraic Manipulation Boolean algebra is a useful tool for simplifying digital circuits F = X'YZ + X'YZ' + XZ = X'Y (Z+Z') + XZ = X'Y 1 + XZ = X'Y + XZ compare two implementations in Fig Boolean Algebra use truth table to verify two expressions (Table 2.5) manipulate Boolean algebra ==> obtain a simpler circuit popular tools 1. X + XY = X (1 + Y) = X 2. XY + XY' = X (Y + Y') = X 3. X + X'Y = (X + X') (X + Y) = X + Y 4. X (X + Y) = X + X Y = X (1 + Y) = X 5. (X + Y)(X + Y') = X + YY' = X 6. X (X' + Y) = XX' + XY = XY consensus theorem XY + X'Z + YZ = XY + X'Z (prove it!) dual (X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z) (Ex) (A+B)(A'+C) = AA' + AC + A'B + BC = AC + A'B + BC = AC + A'B

6 6 2.2 Boolean Algebra Complement of a Function obtained from an interchange of 1's to 0's and 0's to 1's derived algebraically by applying DeMorgan's theorem (Ex 2.1) Find the complement of F1 = X'YZ' + X'Y'Z F1' = (X'YZ' + X'Y'Z)' = (X'YZ')' (X'Y'Z)' = (X + Y' + Z) (X + Y + Z') (Ex 2.2) Find the complement of F1 = X'YZ' + X'Y'Z by taking dual and complementing each literal dual of F1 (X' + Y + Z') (X' + Y' + Z) comp of each literal (X + Y' + Z) (X + Y + Z') 2.3 Standard Forms facilitate the simplification procedures for Boolean expression contain product terms (XY'Z) and sum terms (X+Y+Z') Minterms & Maxterms minterm (a product term) & maxterm (a sum term) all the variables appear exactly once show exactly one combination of the binary variables in a truth table 2 n distinct terms for n variables (Ex) 4 minterms for 2 variables X & Y X'Y', X'Y, XY', & XY

7 7 2.3 Standard Forms Table 2-6. Minterms for 3 Variables 2.3 Standard Forms m j (minterm) -- complemented if the bit is 0 uncomplemented if the bit is 1 M j (maxterm) -- complemented if the bit is 1 uncomplemented if the bit is 0 j denotes the binary number of the term minterm: having the minimum No of 1's in its truth table maxterm: having the maximum No of 1's in its truth table a minterm and maxterm with the same subscript are complements of each other (M j = m j ') (Ex) (m 3 )' = ( X' Y Z )' = X + Y' + Z' = M 3

8 8 2.3 Standard Forms a Boolean function can be expressed by a sum of minterms (Ex) Table 2-8(a) F = X'Y'Z'+X'YZ'+XY'Z+XYZ = m0+m2+m5+m7 F(X,Y,Z) = m(0,2,5,7) ( = logical sum, Boolean OR) F' = X'Y'Z+X'YZ+XY'Z'+XYZ' = m1+m3+m4+m6 F(X,Y,Z)' = m(1,3,4,6) F = (m1+m3+m4+m6)' = m1 m3' m4' m6' = M1 M3 M4 M6 = (X+Y+Z') (X+Y'+Z') (X'+Y+Z) (X'+Y'+Z) F(X,Y,Z) = M(1,3,4,6) ( : logical product, Boolean AND) summary of minterms (p46) a function can be converted to the sum of minterms form by means of a truth table 2. 3 Standard Forms X Y Z F (Ex) E = Y' + X'Z from the truth table, E(X,Y,Z) = m(0,1,2,4,5) E(X,Y,Z)' = m(3,6,7) (the total number of minterms in E and E' is 8)

9 9 2.3 Standard Forms Sum of Products a standard algebraic expression obtained directly from a truth table (sum of minterms) & simplify the expression to sum-of-products form (Ex) F = Y' + X'YZ' + XY three product terms -- two AND gates, one OR gate two-level implementation 2.3 Standard Forms (Ex) F = AB + C(D+E) (three-level) => AB + CD + DE (two-level) two-level implementation is preferred for its delay time

10 Standard Forms Product of Sums another standard algebraic expression obtained by forming a logical product of sum terms (Ex) F = X(Y'+Z)(X+Y+Z') needs 2 OR gates and one AND gates 2.4 Map Simplification Karnough map (K-map) to simplify Boolean functions of up to 4 variables (5 or 6 variables can be drawn, but cumbersome to use) a diagram of squares, each representing one minterm simplified expressions are in sum-of-products or product-of-sums two-level implementations

11 Map Simplification Two-Variable Map four minterms for a Boolean function with 2 variables (Ex) m1+m2+m3 = X'Y+XY'+XY = X+Y = X+Y (by algebra) => X'Y+X(Y'+Y) = X'Y+Y 2.4 Map Simplification Three-variable Map 8 minterms for 3 variables Ex2.3 F(X,Y,Z) = m(2,3,4,5) (from K-map) F = X'Y + XY'

12 Map Simplification (Ex) (Ex) (Ex) = X' + Y m0+m2+m4+m6 = Z' m0+m1+m2+m3+m6+m7 2.4 Map Simplification Ex2.4 F1(X,Y,Z) = m(3,4,6,7) F2(X,Y,Z) = m(0,2,4,5,6) (Ex) F2(X,Y,Z) = m(1,3,4,5,6) = X'Z + XZ' + XY' or = X'Z + XZ' + Y'Z

13 Map Simplification Four-variable Map 16 minterms for 4 variables 2.4 Map Simplification Ex2.5 F(W,X,Y,Z) = m(0,1,2,4,5,6,8,9,12,13,14) F = Y' + W'Z' + XZ' Ex2.6 F = A'B'C' + B'CD' + A'BCD' + AB'C' F = B'D' + B'C' + A'CD'

14 Map Manipulation ensure that all minterms of the functions are included necessary to minimize the number of terms Essential Prime Implicants implicant if the function has the value 1 for all minterms of the product term prime implicant if the removal of any literal from an implicant results in a product term that is not an implicant a product term obtained by combining the maximum possible number of adjacent squares in the map essential prime implicant if a minterm of a function is included in only one prime implicant 2.5 Map Manipulation To find the simplified expression from the map, 1) first determine all prime implicant 2) simplified expression all the essential prime implicant + other prime implicant (Ex) Fig 2.21 A'D and BD': essential prime implicants A'B: not essential

15 Map Manipulation (Ex) Fig 2.22 A'B'C'D', BC'D, ABC', AB'C: essential prime implicants ACD or ABD: not essential F = A'B'C'D' + BC'D + ABC' + AB'C + ACD or ABD 2.5 Map Manipulation Nonessential Prime Implicant Selection Rule minimize the overlap among prime implicant as much as possible Ex2.7 F(A,B,C,D) = m(0,1,2,4,5,10,11,13,15) F' = A'C' + ABD + AB'C + A'B'D'

16 Map Manipulation Product-of-Sums Simplification from sum-of-products to product-of-sums complement the function (taking a dual) 1) Combine the squares marked with 0's 2) change the function, which is expressed in product of sums to sum of products Ex2.8 F(A,B,C,D) = m(0,1,2,5,8,9,10) F' = AB + CD + BD' F = (A'+B')(C'+D')(B'+D) 2.5 Map Manipulation Ex) F = (A'+B'+C) (B + D) 1) plot the map by taking its complement F' = ABC' + B'D' 2) marking 0's in the squares to represent F' remaining squares are marked with 1's 3) combine the 0's and then complement the function Don't Care Conditions unspecified minterms of a function ex) 4-bit binary code for the decimal digits marked with cross (X) provide the further simplification of the function

17 Map Manipulation Ex) F(A,B,C,D) = m(1,3,7,11,15) d(a,b,c,d) = m(0,2,5) obtain a simplified productof-sums F = CD + A'B' = CD + A'D F' = Z' + WY' F = Z(W' + Y) 2.6 NAND and NOR Gates Boolean functions are expressed in terms of AND, OR, NOT straight forward to implement the function with these gates Other useful logic gates

18 NAND and NOR Gates NAND gate a universal gate because any digital system can be implemented with it Implementation of NOT (inverter), AND, OR 2 graphic symbols: AND-invert & invert-or 2.6 NAND and NOR Gates Two-Level Implementation easy to implement with NAND gates, if the function is in sum of products form (Ex) F = AB + CD F = ( (AB)' (CD)' )' = AB + CD

19 NAND and NOR Gates Ex2.9) F(X,Y,Z) = m(1,2,3,4,5,7) 2.6 NAND and NOR Gates Multilevel NAND Circuits with three or more levels 1) convert all AND gates to NAND gates w/ AND-invert 2) convert all OR gates to NAND gates w/ invert-or 3) convert rest small circles to inverters Ex) F = A (CD + B) + BC'

20 NAND and NOR Gates NOR gate dual of the NAND operation another universal gate implementation of NOT (inverter), AND, OR two graphic symbol for NOR gate 2.6 NAND and NOR Gates Two-Level Implementation easy to implement with NOR gates, if the function is in product of sums form (Ex) F = (A + B) (C + D) E (Ex) F = (AB' + A'B) E (C + D')

21 Exclusive-OR Gate exclusive-or (XOR) gate X Y = X Y' + X' Y 1 if only one variable is equal to 1, but not both exclusive-nor gate ( X Y )' = X Y + X' Y' 1 if both are equal to 1 or both are equal to 0 they are to be the complement of each other 2.7 Exclusive-OR Gate properties X 0 = X X 1 = X' X X = 0 X X' = 1 X Y' = (X Y)' X' Y = (X Y)' A B = B A (A B) C = A (B C) = A B C implementation with NAND gates

22 Integrated Circuits Integrated Circuits (IC) small silicon semiconductor crystal, called a chip contains electronic components for the digital gates Levels of Integration SSI (small scale integration), < 10 gates MSI, 10 ~ 100 gates LSI, 100 ~ 1000s VLSI, > 1000s 2.8 Integrated Circuits Digital Logic Families RTL, DTL - earliest logic families TTL - widespread, considered as standard ECL - high speed operation MOS - high component density CMOS - low power consumption BiCMOS - CMOS + TTL, used selectively Positive and Negative Logic Normal Convention: Positive Logic/Active High Low Voltage = 0; High Voltage = 1 Alternative Convention sometimes used: Negative Logic/Active Low Low Voltage = 1; High Voltage = 0

23 Integrated Circuits (f) polarity indicator: small triangles in I/O

### Gate-Level Minimization

Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method

### Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

### Gate Level Minimization

Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =

### Gate-Level Minimization

Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### Lecture (05) Boolean Algebra and Logic Gates

Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either

### Boolean Algebra. BME208 Logic Circuits Yalçın İŞLER

Boolean Algebra BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 5 Boolean Algebra /2 A set of elements B There exist at least two elements x, y B s. t. x y Binary operators: +

### Gate-Level Minimization

MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may

### Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

### Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Tong In Oh 1 Basic Definitions 2 3 2.3 Axiomatic Definition of Boolean Algebra Boolean algebra: Algebraic structure defined by a set of elements, B, together

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### Lecture 4: Implementation AND, OR, NOT Gates and Complement

EE210: Switching Systems Lecture 4: Implementation AND, OR, NOT Gates and Complement Prof. YingLi Tian Feb. 13, 2018 Department of Electrical Engineering The City College of New York The City University

### Chapter 3. Gate-Level Minimization. Outlines

Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

### Lecture 5. Chapter 2: Sections 4-7

Lecture 5 Chapter 2: Sections 4-7 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms Sum-of-Minterm (SOM) Representations Product-of-Maxterm

### UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.

UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?

### Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### X Y Z F=X+Y+Z

This circuit is used to obtain the compliment of a value. If X = 0, then X = 1. The truth table for NOT gate is : X X 0 1 1 0 2. OR gate : The OR gate has two or more input signals but only one output

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### Chapter 2. Boolean Expressions:

Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

### 2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

### BOOLEAN ALGEBRA. 1. State & Verify Laws by using :

BOOLEAN ALGEBRA. State & Verify Laws by using :. State and algebraically verify Absorption Laws. (2) Absorption law states that (i) X + XY = X and (ii) X(X + Y) = X (i) X + XY = X LHS = X + XY = X( + Y)

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

### Experiment 3: Logic Simplification

Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

### Digital Logic Design. Outline

Digital Logic Design Gate-Level Minimization CSE32 Fall 2 Outline The Map Method 2,3,4 variable maps 5 and 6 variable maps (very briefly) Product of sums simplification Don t Care conditions NAND and NOR

### Chapter 2 Boolean algebra and Logic Gates

Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions

### Combinational Logic & Circuits

Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

### 數位系統 Digital Systems 朝陽科技大學資工系. Speaker: Fuw-Yi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷

數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: Fuw-Yi Yang 楊伏夷 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象,

### A B AB CD Objectives:

Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3

### CMPE223/CMSE222 Digital Logic

CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Terminology For a given term, each

### Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

### B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

### Simplification of Boolean Functions

Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.

### Presented By :- Alok Kumar Lecturer in ECE C.R.Polytechnic, Rohtak

Presented By :- Alok Kumar Lecturer in ECE C.R.Polytechnic, Rohtak Content - Introduction -2 Feature -3 Feature of BJT -4 TTL -5 MOS -6 CMOS -7 K- Map - Introduction Logic IC ASIC: Application Specific

### Simplification of Boolean Functions

COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 5 -- page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean

### Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

### Presentation 4: Programmable Combinational Devices

Presentation 4: Programmable Combinational Devices Asst. Prof Dr. Ahmet ÖZKURT DEUEEE Based on the Presentation by Prof. Kim, Young Ho Dept. of Information Computer Engineering E-mail : yhkim@hyowon.cs.pusan.ac.kr

### Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

### Objectives: 1- Bolean Algebra. Eng. Ayman Metwali

Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-

### Gate-Level Minimization

Gate-Level Minimization Mano & Ciletti Chapter 3 By Suleyman TOSUN Ankara University Outline Intro to Gate-Level Minimization The Map Method 2-3-4-5 variable map methods Product-of-Sums Method Don t care

### Circuit analysis summary

Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

### ECE380 Digital Logic

ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8- Terminology For

### Chapter 2: Combinational Systems

Uchechukwu Ofoegbu Chapter 2: Combinational Systems Temple University Adapted from Alan Marcovitz s Introduction to Logic and Computer Design Riddle Four switches can be turned on or off. One is the switch

### R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai

L T P C R.M.D. ENGINEERING COLLEGE R.S.M. Nagar, Kavaraipettai- 601206 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC8392 UNIT - I 3 0 0 3 OBJECTIVES: To present the Digital fundamentals, Boolean

### Chap-2 Boolean Algebra

Chap-2 Boolean Algebra Contents: My name Outline: My position, contact Basic information theorem and postulate of Boolean Algebra. or project description Boolean Algebra. Canonical and Standard form. Digital

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

### Code No: 07A3EC03 Set No. 1

Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### Chapter 3 Simplification of Boolean functions

3.1 Introduction Chapter 3 Simplification of Boolean functions In this chapter, we are going to discuss several methods for simplifying the Boolean function. What is the need for simplifying the Boolean

### CS February 17

Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

### Chapter 2 Combinational

Computer Engineering 1 (ECE290) Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization HOANG Trang 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits and Boolean Equations Binary Logic

### SWITCHING THEORY AND LOGIC CIRCUITS

SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra

### Combinational Logic Circuits Part III -Theoretical Foundations

Combinational Logic Circuits Part III -Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic

### UNIT II. Circuit minimization

UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### Switching Circuits & Logic Design

Switching Circuits & Logic Design Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 23 5 Karnaugh Maps K-map Walks and Gray Codes http://asicdigitaldesign.wordpress.com/28/9/26/k-maps-walks-and-gray-codes/

### BOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.

COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless

### Digital Logic Lecture 7 Gate Level Minimization

Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care

Class Subject Code Subject Prepared By Lesson Plan for Time: Lesson. No 1.CONTENT LIST: Introduction to UnitI 2. SKILLS ADDRESSED: Listening I year, 02 sem CS6201 Digital Principles & System Design S.Seedhanadevi

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

### Standard Forms of Expression. Minterms and Maxterms

Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:

### LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT 1 BOOLEAN ALGEBRA AND LOGIC GATES Review of binary

### Module -7. Karnaugh Maps

1 Module -7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or Sum-of-Minterms (SOM) 2.4 Canonical product of sum or Product-of-Maxterms(POM)

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### Chapter 3. Boolean Algebra and Digital Logic

Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how

### Binary logic. Dr.Abu-Arqoub

Binary logic Binary logic deals with variables like (a, b, c,, x, y) that take on two discrete values (, ) and with operations that assume logic meaning ( AND, OR, NOT) Truth table is a table of all possible

### Variable, Complement, and Literal are terms used in Boolean Algebra.

We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

### Computer Organization

Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering

### Philadelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.

Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms

### Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 1 Digital vs Analog Digital signals are binary; analog

### ENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.

Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to

### Boolean algebra. June 17, Howard Huang 1

Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware

### Literal Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10

Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm

### UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

### Specifying logic functions

CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last

### DKT 122/3 DIGITAL SYSTEM 1

Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits

### CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map

CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,

### Dr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010

Dr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010 Instructions: This examination paper includes 9 pages and 20 multiple-choice questions starting on page 3. You are responsible for ensuring that your

### Digital Logic Design (CEN-120) (3+1)

Digital Logic Design (CEN-120) (3+1) ASSISTANT PROFESSOR Engr. Syed Rizwan Ali, MS(CAAD)UK, PDG(CS)UK, PGD(PM)IR, BS(CE)PK HEC Certified Master Trainer (MT-FPDP) PEC Certified Professional Engineer (COM/2531)

### Computer Engineering Chapter 3 Boolean Algebra

Computer Engineering Chapter 3 Boolean Algebra Hiroaki Kobayashi 5/30/2011 Ver. 06102011 5/30/2011 Computer Engineering 1 Agenda in Chapter 3 What is Boolean Algebra Basic Boolean/Logical Operations (Operators)

### SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)

Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called

### Digital Design. Chapter 4. Principles Of. Simplification of Boolean Functions

Principles Of Digital Design Chapter 4 Simplification of Boolean Functions Karnaugh Maps Don t Care Conditions Technology Mapping Optimization, Conversions, Decomposing, Retiming Boolean Cubes for n =,

### Graduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB

CH5 Karnaugh Maps Lecturer: 吳安宇教授 Date:2006/0/20 CCESS IC L Problems in lgebraic Simplification The procedures are difficult to apply in a systematic way. It is difficult to tell when you have arrived

### NODIA AND COMPANY. GATE SOLVED PAPER Computer Science Engineering Digital Logic. Copyright By NODIA & COMPANY

No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. GATE SOLVED PAPER Computer

### EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

### Gate-Level Minimization. section instructor: Ufuk Çelikcan

Gate-Level Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to

### Computer Science. Unit-4: Introduction to Boolean Algebra

Unit-4: Introduction to Boolean Algebra Learning Objective At the end of the chapter students will: Learn Fundamental concepts and basic laws of Boolean algebra. Learn about Boolean expression and will

### Digital Techniques. Lecture 1. 1 st Class

Digital Techniques Lecture 1 1 st Class Digital Techniques Digital Computer and Digital System: Digital computer is a part of digital system, it based on binary system. A block diagram of digital computer

### 01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2006

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 26 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

### 01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2008

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 28 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom